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We investigate the incorporation of the surface-leaking (SL) algorithm into Tully’s fewest-switches
surface hopping (FSSH) algorithm to simulate some electronic relaxation induced by an electronic
bath in conjunction with some electronic transitions between discrete states. The resulting SL-FSSH
algorithm is benchmarked against exact quantum scattering calculations for three one-dimensional
model problems. The results show excellent agreement between SL-FSSH and exact quantum
dynamics in the wide band limit, suggesting the potential for a SL-FSSH algorithm. Discrepancies
and failures are investigated in detail to understand the factors that will limit the reliability of
SL-FSSH, especially the wide band approximation. Considering the easiness of implementation and
the low computational cost, we expect this method to be useful in studying processes involving
both a continuum of electronic states (where electronic dynamics are probabilistic) and processes
involving only a few electronic states (where non-adiabatic processes cannot ignore short-time
coherence). C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4908032]

I. INTRODUCTION

Electronic dynamics usually come in two flavors. First,
some electron relaxation events do not involve much coherence
and can best be described probabilistically. In such cases, elec-
trons are ejected into a continuum. Examples of such processes
include chemi-ionization1–6 and Auger recombination. Among
chemi-ionization processes, Penning ionization has attracted
much attention because of the large cross section in collisional
reactions involving metastable atoms and molecules. As a
result Penning ionization is a significant process in character-
izing thermal plasma, electrical discharges, and the production
of laser system, as well as in atmospheric chemistry.6 For
Auger recombination, Interatomic Coulombic Decay (ICD)
is a hot topic nowadays in the literature because the process
can be highly efficient when the excited ion has many neigh-
bors and ICD leads to many examples of fragmentation.7–11

The simplest approach for modeling these processes is to use
straightforward classical probability theory.1,2,12

While the processes above have a bath of electronic states
which leads to a certain amount of electronic friction and a
lack of coherence, a second class of non-adiabatic processes
involves only a minimal number of electronic states. These
non-adiabatic problems in chemistry include most forms of
photoexcited dynamics at low energies in solution, includ-
ing electron transfer and electronic energy transfer,13–20 spin
relaxation,21–24 intersystem-crossing,25–29 etc. These coherent
dynamics are important for understanding organic enzymes,
molecular photocatalysis, and organic photoexcitations. In
practice, modeling this second class of relaxation events re-
quires different tools from the first class. Nuclei must move
coherently for a reasonably long period of time. In practice,
a few methods exist for modeling such dynamics including
Meyer-Miller-Stock-Thoss (MMST)/Poisson bracket mapp-

a)Electronic mail: subotnik@sas.upenn.edu

ing equation (PBME),30–38 multiple spawning,39–41 and fewest-
switches surface hopping (FSSH).42 Given our group’s recent
experience with FSSH, we will focus on FSSH.

Now, many processes in nature involve both short time
electronic coherent and long time incoherent probabilistic
electronic dynamics. However, even though both areas have
been studied extensively for a long time both experimentally
and theoretically, there are few efficient theoretical approaches
to address both problems above where competition between
coherent non-adiabatic processes and incoherent relaxation
processes becomes predominate and interesting. The goal of
the present article is to study a surface-leaking FSSH (SL-
FSSH) algorithm that combines Preston’s surface-leaking1

with Tully’s FSSH algorithm,42 benchmark the performance
of SL-FSSH in system-bath model problems against quantum
scattering calculation, and investigate dynamics beyond the
wide band approximation to characterize the limitations of our
algorithm. In Paper II, we will discuss and benchmark a very
similar surface hopping approach in the context of a many body
physics problem (the Anderson-Holstein model).43

An outline of this article is as follows. In Sec. II, we review
briefly Tully’s FSSH algorithm and Preston’s surface-leaking
(SL) algorithm, and then outline the SL-FSSH algorithm. In
Sec. III, we compare exact and SL-FSSH results for three
model problems with different sets of parameters. In Sec. IV,
we investigate the sources of error in the SL-FSSH calculation,
and we discuss the wide band approximation and its break-
down. Section V concludes this paper.

II. SURFACE-LEAKING FSSH

A. Tully’s fewest-switches surface hopping

For modeling photoexcited molecular dynamics in solu-
tion, the most common prescription is Tully’s FSSH algo-
rithm.42 A representative Hamiltonian in a diabatic basis can
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be written as

H = Tn +He, (1)

where Tn is the nuclear kinetic energy operator, and the elec-
tronic Hamiltonian He can be written as

He =

i

Ei(R) |Ξi⟩ ⟨Ξi | +

i, j

Vi j(R)

×
�|Ξi⟩ 
Ξ j

�
+
�
Ξ j

� ⟨Ξi |� , (2)

where |Ξi⟩ is the ith electronic diabat, Ei is the energy of
diabatic state i, andVi j is the diabatic coupling between states
i and j. The premise of FSSH is that electrons are treated
quantum mechanically while nuclei are classical, while all
calculations are performed exclusively in an adiabatic basis

He =

j

Vj j

�
Φ j

� 

Φ j

�
, (3)

where Vj j is the adiabatic energy of state j and
�
Φ j

�
is the

corresponding adiabat. In detail, while the electrons move in
the instantaneous electric field caused by the nuclei, the nuclei
move along one single potential energy surface (PES) at a time
and hop (once in a while) between different PESs to account
for electronic relaxation. Preston and Tully first suggested that
hops should be made post-facto,44 whereby one can decide
if he/she has gone through a crossing. According to Tully’s
later FSSH model,42 there is a continuous hopping probability
at every time step—which depends on both the derivative
coupling between adiabatic electronic states and the history of
each trajectory. In particular, according to the FSSH algorithm,
for each trajectory we must propagate the positions (R) and
momenta (P) of each nuclear degree of freedom according to
Newton’s equations, and the corresponding electronic quan-
tum amplitudes (ci) for each adiabatic electronic state i accord-
ing to time-dependent Schrödinger equation. The hopping can
then be extracted from the evolution of this trajectory.

While the FSSH algorithm has several known problems
modeling photoexcited systems with a few electronic states
(including decoherence45–64), another obstacle posed by the
FSSH algorithm is its insistence on an adiabatic basis and
the difficulty running FSSH dynamics for systems with large
numbers of degrees of freedom. In such a limit, one problem
is that the cost of the algorithm increases at least quadratically
with the number of electronic states (ntot)65 because one is
forced to compute the derivative couplings between all ntot

electronic states to propagate the Schrödinger equation. In the
limit of a molecular system near a metal surface, the number
of electronically adiabatic states becomes very large and stan-
dard FSSH becomes impossible. Another practical problem for
FSSH is the conundrum of “trivial crossings,”18 where two or
more noninteracting states cross, leading to a spiky derivative
coupling in time domain and severely limiting the simulation
time step. There has been a lot of recent research18,66–68 seeking
to address this problem. In recent years, Tretiak18 has studied
energy transfer in extended organic chromophores by applying
FSSH to simulation with a large manifold of electronic states.
For such simulations, he has consistently found that the “trivial
crossing” problem cannot be ignored in practice.

To our knowledge, there have been only a few attempts
to heuristically amend FSSH dynamics to include manifold of

many electronic states (without using brute force). Li et al.
have proposed a scheme for mixing FSSH dynamics on the
ground states with mean-field Ehrenfest dynamics to treat a
manifold of excited states.69 In a set of very interesting papers,
Shenvi, Roy, and Tully70–72 proposed an ”Independent Electron
Surface Hopping (IESH)” algorithm that has been used to
model NO scattering off of a gold surface. For IESH, the basic
premise is to discretize a continuum of electronic levels and
then run independent trajectories, for which every electron is
independent and single excitations of the metal manifold are
allowed. Electronic friction is simulated by averaging over the
ensemble of trajectories, and Shenvi et al. have shown that
this model captures vibrational relaxation of the NO molecule
as induced by electron transfer to and from the metal. Given
the power of the IESH model, we would like to find a very
simple extension of FSSH for the case of many electronic states
that does not require continuum discretization and that has the
smallest possible computational overhead.

B. Surface-leaking algorithm

In contrast to the FSSH algorithm, which is usually applied
for only a handful of electronic excited states, there is a
different (far less well known, but also far simpler) approach
in the literature for treating coupled nuclear-electronic systems
with many electronic states. As originally constructed to model
the effects of chemi-ionization on atom-diatom collisions,1 the
Preston-Cohen “SL” model was used to predict rearrangement,
association, and dissociation branching ratios from atom-
diatom collisions.

Conceptually, the surface leaking model is very simple.
Consider a Hamiltonian of the form

H = Tn +Hs +Hb +Hsb. (4)

Here, Tn denotes the nuclear kinetic energy operator and Hs

represents the electronic Hamiltonian of the system,

Hs =

j

E j(R) �Ξ j

� 

Ξ j

�
, (5)

and Hb represents a bath of electronic states

Hb =

k

εk(R) |k⟩ ⟨k | . (6)

Hsb signifies the coupling between system and bath which we
assume is bilinear in the electronic degrees of freedom and a
function of only nuclear position

Hsb =

jk

Ujk(R) ��Ξ j

� ⟨k | + |k⟩ 
Ξ j

��
. (7)

For an infinite bath, the system-bath interaction is quantified
by its hybridization function

Γj(R) = 2πρ(E j(R))�Ujk(R)�2. (8)

Here,
�
Ujk

�2 is averaged over all states |k⟩ with energy E j(R).
If

�
Ujk

�2 is truly independent of k, Γj(R)/~ can be thought
of as the lifetime of the system electronic state j (when the
nuclei are at position R). The basic premise of the surface
leaking algorithm is to run nuclear dynamics along a potential
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energy surface of the system, while damping the population of
the system by Γj(R)∆t/~ at every time step (where ∆t is the
simulation time step).

C. SL-FSSH

Given how many modern experiments involve photoex-
cited systems of molecule-metal interface,73–75 it would seem
very natural to merge the surface leaking and surface hopping
algorithms. In so doing, one would like to include both the
short-time electronic coherence present in the FSSH algorithm
(so as to capture potential energy surface crossings) with the
long time irreversible electronic relaxation present in the SL
algorithm (so as to capture electronic dissipation into a metallic
bath). In other words, we would like to replace the simple
system Hamiltonian in Eq. (5) with the more complex Hamil-
tonian in Eq. (2).

In principle, merging SL and FSSH should be straightfor-
ward to achieve. On the one hand, one ought to diagonalize the
electronic states of the system and run FSSH dynamics along
such adiabatic states; on the other hand, one does not want to
include bath states in the above diagonalization, and one would
prefer to use perturbation theory on the system-bath coupling
to model the population leakage from the system to the bath. In
theory, this approach should be equivalent to including com-
plex energies in the time-dependent electronic Schrödinger
equation76 to damp out population and then allow the FSSH
algorithm to dictate naturally how population evolves. In this
paper, we want to formalize exactly how the algorithm is
applied, discuss the competition between surface leaking and
surface hopping, and then formally benchmark the resulting
algorithm against exact scattering calculations.

With this in mind, a step-by-step description of our SL-
FSSH algorithm is as follows:

1. Initialize all FSSH variables—the positions R and momenta
P of the nuclei, the current electronic state (active PES)
λ, and the electronic amplitudes ci according to the initial
condition. Each trajectory also carries a weight, Nsys = 1, to
represent the population of system.

2. (Same as FSSH) Propagate the nuclei and electronic wave
functions for one time step. The nuclei are propagated by
classical mechanical equations:

dRα

dt
=

Pα

Mα
, (9)

dPα

dt
= −∇αVλλ(R), (10)

where α labels a classical degree of freedom, Vi j(R) are the
matrix elements of electronic Hamiltonian at position R in
an adiabatic basis, and M is the mass of a nucleus. The
electronic amplitudes are propagated by time-dependent
Schrödinger equation

i~
dck
dt
=


j

cj

(
Vk j(R) − i~

dR
dt
· dk j(R)

)
, (11)

where dk j(R) is the non-adiabatic coupling vector between
state k and j at position R.

3. (Same as FSSH) Hopping probabilities gλ j from the current
electronic state λ to all other states j are determined as in
FSSH

gλ j = −
2

|cλ|2
Re

(
cλc∗jd jλ(R) · dR

dt

)
. (12)

A uniform random number ξ in [0,1] is then generated
and compared with the cumulative hopping probability to
determine the target state. For instance, if λ = 1 and ξ < g12
then current electronic state changes to state 2; if g12 ≤ ξ
< g12 + g13, the current electronic state changes to state 3,
etc. If ξ is larger than the sum


j gλ j, then no hopping

happens and current electronic state remains unchanged.
4. (Same as FSSH) If a hop does not occur, proceed to step 5.

If there is a hop, the momentum must be rescaled to account
for energy conservation. The momentum is rescaled in the
direction of the non-adiabatic coupling vector (assuming
we are hopping from current state λ to state j):

Pnew = P + ∆Pd̂λ j(R), (13)
α

(Pα,new)2
2Mα

+ Vj j(R) =

α

(Pα)2
2Mα

+ Vλλ(R), (14)

where d̂λ j(R) is the unit vector of non-adiabatic coupling
vector at position R. If Pnew is complex, the hop is not
allowed. If Pnew is real, a hop is allowed and the active
surface is changed (in this case, to j).

5. (From SL) For a general Hamiltonian, the electronic bath
might couple to an arbitrary electronic state of the system—
which might be an adiabatic or diabatic state (or some
other entirely different state). Assuming that the bath is
coupled to a diabatic system state, we calculate the diabatic
population n(diab)

i on each state i; for now, this is done using
only the active surface (which is labeled to Method #1 in
Ref. 77; see below for a few details). Then, we calculate the
probability Li(R) of leaking out of the system from state i
to its corresponding bath (the same as in the SL algorithm):

Li(R) = Γi(R)∆t
~

. (15)

Finally, the new and reduced population remaining on sys-
tem state is updated

N (new)
sys = N (old)

sys
*
,
1 −


i

n(diab)
i Li(R)+

-
. (16)

Return to step 2.

At the end of the calculation, all trajectories must be
summed and weighted with Nsys, which must be in the range
[0,1]. Because Nsys does not have any feedback into the FSSH
dynamics, SL-FSSH is very easy and straightforward to imple-
ment. Note here that, by ignoring the hopping from the bath
back to the system, we are assuming that the bath is infinitely
wide. In Sec. IV C, we will discuss the use of SL-FSSH beyond
the wide band approximation.

One word is now in order about how to calculate diabatic
populations assuming that the bath is coupled to the diabatic
populations. In this case, Ref. 77 shows that there are three
straightforward means to extract diabatic populations: one can
use either (i) the active electronic surface, (ii) the electron
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amplitudes ci, or (iii) a combination of both active surface
and amplitudes. While the third option is the most rigorous,77

unfortunately, such an option also requires that all trajectories
be coupled to each other in real time, and thus is not prac-
tical for large systems. At the same time, option (ii) simply
cannot recover correct long time populations.77 Thus, option
(i) is likely the only possible balance between accuracy and
scalability.

III. RESULTS

To investigate the algorithm presented above, we will
study a set of system-bath interaction models, all restricted to
one nuclear degree of freedom. The electronic system is one
or two discrete states, and the bath in principle represents a
continuum of states. In practice, the bath is discretized into a set
of 501 parallel states for the exact scattering calculations (see
Appendix for the algorithm). The coupling between system
and bath is position dependent and there is no intra-bath inter-
action. All simulations begin with one system state populated,
followed subsequently by a combination of interstate transfer
and/or relaxation into the bath. For our scattering calcula-
tion, we examine transmission and reflection probabilities. We
will investigate two extreme cases: (i) a primary system state
crosses a bath of parallel electronic states; (ii) a primary system
state is parallel to a set of bath states. See Fig. 1 for the diabatic
PESs for the three model problems we will study.

A. Model #1: One system state couples to a set
of nonparallel bath states

Model #1 is the simplest Hamiltonian we consider. This
model can be treated easily with the surface-leaking algorithm
alone (without invoking FSSH). There is only one system state

Vsys(x) = A tanh(Bx), (17)

where A = 0.01 a.u. and B = 1.6 a.u. The set of bath states take
the following form:

Vbath(x) = −Vsys(x) + ∆, (18)

where ∆ is a shift in energy (which can be either positive or
negative). A set of diabatic PES are shown in Fig. 1(a) for five
different energy offsets, ∆ = 0.008,0.004,0,−0.004,−0.008,
all in atomic unit.

The diabatic coupling between system and bath is given
by Vsb:

Vsb(x) = C exp(−Dx2), (19)

where D = 1.0 a.u. To make the definition of C consistent with
an infinite set of bath states, C is defined as

C ≡


Γ(0)
2πρ

(20)

in agreement with Eq. (8). Thus, Γ(0) is our free parameter of
choice (not C). For our exact scattering calculation where the
bath is discretized, the density of states of bath ρ is simply

ρ =
Nbath

∆Ebath
. (21)

Here, Nbath is the number of states in bath and ∆Ebath is the
energy range of the bath.

The model problem above is particularly simple because
we have only one system state. As such, there are no coherent
processes and every trajectory with the same incoming energy
gives exactly the same result. In other words, Model #1 can be
considered deterministic, so that one trajectory result is suffi-
cient. At the beginning of the SL simulation, we set n(diab)

i (x) in
Eq. (16) to be 1 for all x. Let us now explore the transmission
and reflection probabilities, first for the bath states and then for
the system state.

1. Dynamics of the bath

To explore the distribution of population on the bath states,
we run a set of surface-leaking calculations whereby each
trajectory is initialized with an incoming particle on left mov-
ing along the system state. We consider two different cases with
different incoming kinetic energies: (i) the incoming velocity is
large enough to transmit along the system state; (ii) the incom-
ing energy is small enough that there will be reflection along

FIG. 1. Three model problems mentioned in this manuscript. The diabatic coupling is not shown. The solid curves are the system states and dash curves are
the bath states (of variable width). Note that, as drawn, the Hamiltonians appear to have only 4-5 bath states. In truth, more than 500 bath states were use for
the quantum scattering calculations; for the SL-FSSH calculation, the bath is a truly infinite continuum of states. (a) Model #1: one donor state coupled to a
nonparallel set of bath states. (b) Model #2: one donor state coupled to one acceptor state while the donor state is coupled to a set of nonparallel bath states. (c)
Model #3: one donor state coupled to one acceptor state while the donor state is coupled to a set of parallel bath states.
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the system diabat, with the possibility for multiple crossing.
To explore the problem in the fully classical limit, we set the
nuclear mass to be 100 000 a.u. We set Γ(0) = 10−4 a.u. to
ensure that we are in the weak coupling regime.

In Fig. 2, we plot the transmission probability density for
the different bath states as a function of outgoing kinetic en-
ergy, according to both exact dynamics and the surface-leaking
algorithm.78 These distributions are obtained by calculating
how much population is leaked by each trajectory into the bath
at every time step, visualizing the bath state that crosses the sys-
tem state instantaneously, and then recording the asymptotic
potential energy of that crossing bath state. By conservation of
energy, we can make a histogram of the distribution of outgoing
kinetic energies. For Fig. 2, the incoming kinetic energy is
large, 0.025 a.u., so there need not be any reflection. In fact, we
find no reflection, so we plot only transmission. Note that larger
outgoing kinetic energies correspond to transmission through
lower energy channels.

According to Fig. 2, there is a strong overall agreement
between surface-leaking and exact results. All SL errors lie on
the edges of the kinetic energy distribution. Our strong feeling
is that these errors must be caused by nuclear quantum effects,
e.g., tunneling. In Sec. IV B, we will redraw Fig. 2 for a particle
of smaller mass to reinforce this hypothesis.

In Figs. 3 and 4, we treat a slightly more difficult case. For
this calculation, the incoming kinetic energy is 0.015 a.u. In
this case, the nucleus has too little energy to transmit forward
along the system state, and there will be population reflecting
backwards. In Fig. 3, we plot transmission; in Fig. 4, we plot
reflection. According to Fig. 4, the SL probability of reflection
is in good agreement with exact quantum dynamics; how-
ever, there are clear discrepancies in transmission between SL
and exact quantum dynamics. On the one hand, according to

FIG. 2. Model #1: Transmission probability density for the bath states as a
function of outgoing kinetic energy according to both exact dynamics and
the surface-leaking algorithm. The incoming kinetic energy is 0.025 a.u., the
nuclear mass is 100 000 a.u., and Γ(0) is 10−4 a.u. Note the good agreement.

FIG. 3. Model #1: Transmission probability density for the bath states as a
function of outgoing kinetic energy according to both exact dynamics and
the surface-leaking algorithm. The incoming kinetic energy is 0.015 a.u., the
nuclear mass is 100 000 a.u., and Γ(0) is 10−4 a.u. The differences between
exact dynamics and SL will be explored in Sec. IV B.

exact dynamics, we observe oscillations in probability between
0.005 and 0.2 a.u. of kinetic energy. On the other hand, SL
predicts a sudden drop in transmission as the outgoing kinetic
energy grows and passes 0.02 a.u. At the same time, the exact
dynamics predict a smooth peak in population at outgoing en-
ergy ∼0.006 a.u., while SL predicts a sharp peak in population
at the smallest outgoing kinetic energy allowed (0.005 a.u.).
These differences will be explored in detail in Sec. IV A but,
for now, we comment that these differences should not limit

FIG. 4. Model #1: Reflection probability density for the bath states as a
function of outgoing kinetic energy according to both exact dynamics and
the surface-leaking algorithm. The incoming kinetic energy is 0.015 a.u., the
nuclear mass is 100 000 a.u., and Γ(0) is 10−4 a.u. Note the good agreement.
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the accuracy of the SL algorithm. Overall, the SL algorithm
performs well for this trivial problem.

2. Dynamics of the system state

Having investigated the dynamics of the bath states, we
now turn our attention to transmission and reflection along
the system state. Fig. 5 explores the performance of surface-
leaking over a wide range of incoming kinetic energies (plot-
ting transmission and reflection probability on the system state,
Γ(0) = 10−4 a.u.). Fig. 6 plots transmission and reflection as a
function of Γ(0) (keeping the incoming kinetic energy equal to
0.025 a.u.). In both figures, surface-leaking agrees with exact
quantum dynamics, further confirming that surface-leaking is
the correct approach for this class of problems. As a point of
comparison, in Fig. 5 we also plot results from a full FSSH
simulation with 10 discretized baths states (as averaged over
2000 trajectories). With only 10 bath states, the FSSH results
agree with exact quantum results and surface-leaking results
for large incoming kinetic energy where only transmission is
significant, but FSSH cannot recover the correct branching
ratios for small incoming kinetic energy with only 10 bath
states. Instead of a monotonic decline, notice the interesting
oscillations in the FSSH reflection probabilities as a function
of incoming kinetic energy. These FSSH oscillations can be
understood as follows. First, if a frustrated hop is encountered,
an incoming FSSH trajectory will follow the active adiabatic
PES and “leak” into the bath and produce a small reflection
probability. Second, while frustrated hops correspond to ener-
gies with too small a reflection probability, there are other
energies for which FSSH predicts a reflection probability that

FIG. 5. Model #1: Surface-leaking and exact transmission and reflection
probabilities on the system state as a function of incoming kinetic energy. Γ(0)
is 10−4 a.u. Note the good agreement. In this figure, we also plot results using
the FSSH algorithm for a bath of 10 electronic states. In the inset, we plot
reflection data for FSSH with 10 states. Clearly, at low velocity, SL-FSSH
outperforms a full FSSH calculation with only 10 states. See text for more
detail.

FIG. 6. Model #1: Surface-leaking and exact transmission and reflection
probabilities on system state as a function of Γ(0). The incoming kinetic
energy is 0.025 a.u. Note the good agreement.

is too large—these overestimates must be caused by the over-
coherence of FSSH. With this rationale in mind, one would
expect to find sharp oscillations in FSSH reflection branching
ratios as a function of incoming kinetic energy no matter how
many bath states are assumed. As such, beyond computational
efficiency, the surface-leaking algorithm has some obvious
advantages over FSSH when dealing with a true continuum of
electronic states.

B. Models #2 and #3: Two system states with one
couples to a set of bath states

Having investigated the bare surface-leaking model, let
us now consider the SL-FSSH model and add another system
state to the Hamiltonian in Model #1. This change will allow
for the possibility of some coherent non-adiabatic dynamics
in addition to electronic relaxation. The Hamiltonians for two
new models (#2, #3) are as follows:

V11(x) = A tanh(Bx), (22a)
V22(x) = −V11(x), (22b)

V21(x) = V12(x) = C exp(−Dx2), (22c)
U(x) = 0.5K (tanh(x + 15) + tanh(15 − x)) , (22d)

where A = 0.01, B = 1.6, C = 0.005, D = 1.0, and K is a
constant defined in the same manner as C in Eq. (20), and all
in atomic units.

For both model problems, the system consists of two
diabatic states: a donor state (Eq. (22a)) and an acceptor state
(Eq. (22b)), and the coupling between them is Eq. (22c). For
both model problems, the donor state is coupled to a set of bath
states, and the system-bath coupling is shown in Eq. (22d). The
manifold of bath states will be different for the two models. For
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Model #2, the set of bath states is

V (2)
bath(x) = V22(x) = −A tanh(Bx) (23)

while for Model #3, the set of bath states is

V (3)
bath(x) = V11(x) = A tanh(Bx). (24)

Thus, one can think of Model #2 as the donor state coupled to
a set of nonparallel bath states, while the set of bath state is
parallel to the donor state in Model #3. A set of 6 total diabatic
PESs are shown in Figs. 1(b) and 1(c) for Models #2 and #3,
respectively.

For these simulations, following Tully’s original paper,42

the mass of the nucleus is set to 2000 a.u. and the simulation
is incoming from the left on V11. To keep the calculations as
simple as possible (without worrying representation unneces-
sarily), we will focus on the system populations only and we
will not calculate bath distributions. Finally, it is important
to note that, in the wide band limit, Models #2 and #3 are
effectively identical; indeed, the SL calculations are exactly
identical. For this reason, we will show only results from Model
#3 in this section. To explore the differences between Models
#2 and #3, see Sec. IV C where we report results beyond the
wide band approximation.

Fig. 7 shows the FSSH (with no bath), SL-FSSH, and
exact results for transmission probability along the system state
as a function of incoming kinetic energy. Γ(0) is 10−4 a.u.
The overall agreement between SL-FSSH and exact dynamics
is excellent over a wide range of incoming kinetic ener-
gies. The fact that SL-FSSH and FSSH have the same over-
all shape seemingly confirms the notion that the relaxation
into the bath does not change the nature of the surface hop-
ping. Notice that, as the incoming kinetic energy grows, the
fraction of population remaining in the system increases, as

FIG. 7. Model #3: FSSH, SL-FSSH, and exact results for transmission prob-
ability on the system state as a function of incoming kinetic energy. Γ(0) is
10−4 a.u. Note the good agreement.

it must (since the particle spends less time leaking into the
bath).

Fig. 8 plots transmission as a function of Γ(0). The incom-
ing kinetic energy is 0.2 a.u. Note here that, for FSSH (as
opposed to SL-FSSH) calculations, the system is not coupled
to a bath, so that all FSSH results are independent of Γ(0).
The agreement between SL-FSSH and exact dynamics is again
excellent. As one would expect, transmission on both system
states decreases as Γ(0) increases—because larger Γ(0) leads
to more relaxation into the bath. When Γ(0) is large enough, no
population survives on the system before the nucleus transmits
to the right. One interesting feature of Fig. 8 is the competition
between surface hopping and surface leaking. When Γ(0) is
small, the transmission on the upper system state is larger than
that on the lower system state. As Γ(0) increases, however,
the transmission on the upper system state decreases faster
than on the lower system state, and around Γ(0) = 10−3 a.u.,
the transmission on the upper system state surprisingly be-
comes smaller than transmission on the lower system state.
This relative change in branching ratios occurs because it is the
population on diabat 1 alone that leaks into the bath. Thus, on
the one hand, the wavepacket transmitting on the upper state
is always moving approximately along V11 and is constantly
decaying; on the other hand, the wavepacket that transmits on
lower state moves approximately along V22 after it leaves the
coupling region, so that decay ceases in time.

Overall, the excellent agreement in both figures between
SL-FSSH and exact dynamics suggests the SL-FSSH algo-
rithm is viable in dealing with both irreversible electronic
relaxation and short-time coherent non-adiabatic processes.

IV. DISCUSSION

There are now a few items above worth discussing in
detail.

FIG. 8. Model #3: FSSH, SL-FSSH and exact results for transmission prob-
ability on the system state as a function of Γ(0). The incoming kinetic energy
is 0.2 a.u. Note the good agreement.
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A. Decoherence: Averaging over an initial Wigner
wavepacket

Recall the oscillations in transmission probabilities in
Fig. 3. The oscillations exist for outgoing kinetic energy less
than 0.02 a.u. A transmission kinetic energy of 0.02 a.u. is
special because, if one follows the corresponding diabatic
bath for x → −∞, one finds that the corresponding reflecting
wavepacket should have outgoing kinetic energy equal 0 a.u.
Thus, this is a special bath state. (See Fig. 9 for a schematic
view of the relevant wavepacket dynamics.) For bath states
below this special bath state (with less potential energy),
reflection is energetically allowed. But for bath states above
this special bath state (with more potential energy), reflection
is not energetically allowed. So any wavepacket attempting to
reflect on such a diabat asymptotically must turn around and
transmit to the right instead. In such a case, for a wavepacket
wide enough in position space, one expects to find interference
between directly transmitting wavepacket and the wavepacket
that bounces back and forth. Such interference leads to the
oscillations in Fig. 3.

The physics described above has an analogue in the sur-
face-leaking algorithm, but in a slightly different form. Because
Γ does not keep track of the coherence between wavepackets
on different diabats, one does not find the oscillations in
transmission in Fig. 3. However, one does find a big step
function at the 0.02 a.u. kinetic energy threshold. (The peak
in SL transmission in Fig. 3 at 0.005 a.u. kinetic energy is the
result of the classical nucleus slowing down as it turns around
to reflect; during this long time period, there is a lot of leakage
into the bath.)

Now, in principle, the transmission oscillation in Fig. 3
should vanish if we average over a wavepacket that is wide
enough in momentum space. Such initial conditions corre-

FIG. 9. Model #1: Schematic figure showing the dynamics of population
leaking associated with a nucleus whose incoming kinetic energy is 0.015 a.u.
The blue paths denote rightward wavepackets and the red paths denote left-
ward wavepackets. The dash red path for reflection (at potential energy equals
0.005 a.u.) signifies that the asymptotic outgoing kinetic energy is 0 a.u.

spond to an incoming wavepacket that is narrow in position
space and therefore the two transmitting wavepackets will exit
the coupling region at different times with no interference.
In such a case, the SL should be able to recover the exact
results because there is no coherence in the dynamics—unlike
FSSH,79 SL has no decoherence or multiple crossing problem.

To prove this point, see the averaged results in Fig. 10. For
the exact quantum calculation, we calculate results for plane
waves with different incoming momenta and we average all
resulting data over a Gaussian distribution

|tl |2 =

p

|tl(p)|2 N exp
(
− (p − p0)2

2σ2

)
∆p. (25)

Here, l is the index for a bath transmission channel, N is a
normalization constant, p is the incoming momentum, p0 is
the average momentum of the wavepacket, σ is the width of
wavepacket in momentum space, and |tl(p)|2 represents the
result transmission probability on state l when the incoming
momentum is p. For the surface-leaking algorithm, we sample
the initial momentum from the same Gaussian distribution as
in Eq. (25). We invoke 2000 trajectories and set σ = 1. Note
that, after averaging, surface-leaking and exact dynamics are in
quite good agreement. (There is still a small disagreement in
the peak position; we suspect this is a nuclear tunneling effect.)

B. The mass dependence of the bath dynamics

In Sec. III, we saw that the surface-leaking recovers exact
quantum dynamics for system population when the mass of
nucleus is either 2000 a.u. or 100 000 a.u. However, as the
mass of nucleus becomes smaller, quantum effects (especially
tunneling) become important when we calculate the population

FIG. 10. Model #1: Transmission probability density for the bath states
as a function of potential energy of outgoing channels according to both
exact dynamics and surface-leaking algorithm. The incoming kinetic energy
for surface-leaking is 0.015 a.u., the mass of nucleus is 100 000 a.u. and
Γ(0) is 10−4 a.u. Both exact and surface-leaking results are averaged over
an incoming Gaussian wavepacket distribution (according to Eq. (25) with
σ = 1). Note the good agreement.
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distribution in the bath states. In Fig. 11, we replot the calcu-
lation from Fig. 2, only now we change the nuclear mass to
2000 a.u. For comparison, we include data from mass equals
100 000 a.u. (Fig. 2). Even though the overall shape still
matches, it is evident that the SL errors become larger as the
mass decreases.

C. Wide band approximation

In all the SL-FSSH simulations above, we have assumed
that the energy range of the bath is infinite so the relaxation
process follows Fermi’s Golden Rule with rate Γ. Correspond-
ingly, for the exact dynamics calculations, we have always
included enough bath states so that the system is completely
embedded in a broad bath. While these approximations are
useful and lead to simple physics, the wide band approximation
is not always true, and it will be interesting to see what happens
if we go beyond the wide band approximation.

When the wide band approximation breaks down, Fermi’s
Golden Rule is no longer valid, and the system does not decay
exponentially into the bath. Instead, only a fraction of the
system decays into the bath as determined by the projection of
the system state into the eigenstates of the Hamiltonian. This
projection can be calculated from the imaginary part of the
Green’s function, also known as the spectral density.

The Green’s function can be written as

G(E) = 1
i~

lim
ε→0

 ∞

0
dt ⟨ψ(0)|ψ(t)⟩ exp (i(E + iε)t/~) . (26)

Let the wave function |ψ(0)⟩ be expressed in an adiabatic basis
as

|ψ(0)⟩ =

j

cj |φ⟩ , (27)

FIG. 11. Model #1: Transmission probability density for the bath states as
a function of outgoing kinetic energy according to exact dynamics and the
surface-leaking algorithm. The incoming kinetic energy is 0.025 a.u., Γ(0)
is 10−4 a.u. and the mass of nucleus is 100 000 a.u. or 2000 a.u. (For mass
equals to 100 000 a.u., the data are the same as in Fig. 2.) As mass is reduced,
surface-leaking results differ more and more from the exact results.

where cj are the amplitudes. The Green’s function becomes

G(E) = 1
i~

lim
ε→0

 ∞

0
dt


j

�
cj

�2

× exp
�
−iE jt/~ + i(E + iε)t/~�

=
1
i~

lim
ε→0


j

�
cj

�2 −~
i(E − E j + iε)

= lim
ε→0


j

�
cj

�2

E − E j + iε

= PP
 ∞

−∞
dE ′

ρ(E ′)|c(E ′)|2
E − E ′

− iπ
 ∞

−∞
dE ′ρ(E ′)|c(E ′)|2δ(E − E ′)

= PP
 ∞

−∞
dE ′

ρ(E ′)|c(E ′)|2
E − E ′

− iπρ(E)|c(E)|2. (28)

Here, PP means the Cauchy principal value and the following
two transformations have been used:

j

→


dEρ(E), (29)

lim
ε→0

1
x + iε

→ PP
1
x
− iπδ(x). (30)

Thus, the spectral density is

ρ(E)|c(E)|2 = −Im(G(E))
π

. (31)

For a model—with one discrete state (E0) coupled linearly
to a set of bath states—the Green’s function is

G(E) = 1

E − E0 −


k
|V |2

E−Ek

. (32)

The self-energy in the above equation can be calculated as
k

|V |2
E − Ek

= lim
ε→0


k

|V |2
E − Ek + iε

= PP
 w

−w
dEk ρ(Ek) |V |2

E − Ek
− iπ |V |2ρ(E)

=
Γ

2π
ln

(
E + w
w − E

)
− iΓ

2
(33)

where w is the half-width of bath and Γ = 2πρ(E)|V |2. Thus,
the relative proportion of the system state inside of the band is

Finside ≡ −
 w

−w

Im(G(E))
π

=
1
π

 w

−w
dE

2Γ

4
�
E − E0 − Γ

2π ln
�
E+w
w−E

��2
+ Γ2

. (34)

For SL-FSSH, to account for the band width, Eq. (15) should
be rewritten as

Li(R) = FinsideΓi(R)∆t
~

. (35)

In Fig. 12, we plot the transmission probability for system
states as a function of bath width for Model #2. Γ(0) is 10−4 a.u.
and the incoming kinetic energy is 0.2 a.u. We plot exact
scattering results with and without the bath states, as well as
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FIG. 12. Model #2: Transmission results for the system channels as a func-
tion of bath width. The incoming kinetic energy is 0.2 a.u., the nuclear mass
is 2000 a.u., and Γ(0) is 10−4 a.u. SL-FSSH results are averaged over 40 000
trajectories. Note that SL-FSSH agrees with exact dynamics in the limit of
very wide and very narrow band, but the crossover is not quantitative at all.

SL-FSSH. SL-FSSH converges to the exact results in the limit
of very wide and very narrow bands. However, in between
these two limits, SL-FSSH cannot recover the correct gradual
transition; instead SL-FSSH predicts a steep jump. This failure
indicates that our approximation for dynamics beyond the wide
band limit is still too extreme to be quantitative accurate.

Results for Model #3 are shown in Fig. 13. Γ(0) is 10−4 a.u.
and the incoming kinetic energy is 0.2 a.u. Just as we saw

FIG. 13. Model #3: Transmission results for the system channels as a func-
tion of bath width. The incoming kinetic energy is 0.2 a.u., the nuclear mass
is 2000 a.u., and Γ(0) is 10−4 a.u. SL-FSSH results are averaged over 40 000
trajectories. Note that SL-FSSH agrees with exact dynamics in the limit of
very wide and very narrow band, but the crossover is not quantitative at all.

for Model #2, we recover the correct dynamics in the two
extreme limits: very wide and very narrow bands. However,
for intermediate value of Γ, the agreement between SL-FSSH
and exact dynamics is far worse for Model #3 than for Model
#2. This failure can be explained by the length of time (T) spent
by the donor system state interacting with the bath. For Model
#2, the crossings are sharper and T is smaller; for Model #3, the
bath follows the donor state and T is large. In the future, Model
#3 will be a good test case for benchmarking an improved SL-
FSSH scheme that goes beyond the wide band limit.

V. CONCLUSION

In this paper, we have proposed a simple surface-leaking
fewest-switches surface hopping (SL-FSSH) algorithm that
combines Tully’s FSSH and Preston’s SL algorithms. We have
benchmarked SL-FSSH on three similar but different system-
bath model problems with various parameters. By comparing
SL-FSSH results versus exact scattering quantum calculations,
we have shown that the algorithm works well over a wide range
of nuclear velocities and system-bath coupling strengths in the
wide band limit. When we go beyond the wide band approxi-
mation, we find only partial success and further improvements
to the algorithm will be needed in order to recover the details of
the transition between a wide and narrow band of bath states.
Corrections should be possible in the future. Considering the
low cost of the SL-FSSH algorithm, the prevalence of wide
bands, and the ubiquitousness of both relaxation and short-time
coherent non-adiabatic processes, SL-FSSH should be useful
in a wide variety of applications. In particular, one obvious
application would be molecular processes on weakly coupled
metal surfaces.80
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APPENDIX: EXACT QUANTUM CALCULATION

Let us now describe how we have calculated exact quan-
tum scattering results with∼1000 electronic states.81 Our nota-
tion will be as follows. For indices of electronic states, α is
an index for reflecting states, β is an index for transmitting
states, and ε is an index for either. For quantity labeling, a
superscript of (r) refers to reflections related quantities and
(t) for transmission, superscript of (left) and (right) are for
quantities evaluated on the left and right sides of the region
of interest, respectively, a subscript of inc refers to quantities
attached to the incoming electronic state. For physical quan-
tities, H denotes the Hamiltonian, |φ⟩ is diabatic electronic
state, k is a wave number, and V is the potential energy.

Exact quantum results are calculated by solving equation

(H − E0) |ψ(x)⟩ = 0, (A1)
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where H is the Hamiltonian, E0 is initial total energy, and
|ψ(x)⟩ is the wave function defined in three regions. Region
I is on the left of region of interest, Region II is the region
of interest, and Region III is on the right of region of interest.
(The region of interest is where all coupling occurs.) The wave
function can be written as

|ψ(x)⟩ =



eikincx |φinc⟩ +


α
rαe−ik

(r )
α x |φα⟩ Region I,

ε
cε(x) |φε⟩ Region II,

β
tβeik

(t )
β

x �
φβ

�
Region III.

(A2)

Here, kinc =


2M(E0 − V (left)

inc )/~where M is the nuclear mass,

k (r )
α =


2M(E0 − V (left)

α )/~, and k (t)
β =


2M(E0 − V (right)

β )/~.
rε and tε are reflection and transmission amplitudes, respec-
tively, on state ε, and cε(x) are amplitudes for the wave func-
tion in the interior region of interest (region II). The sum over α
(β) includes all electronic states such that the k (r )

α (k (t)
β ) are real,

i.e., those electronic states that are energetically accessible.
Clearly, the wave function |ψ(x)⟩ has four parts: (1) an

asymptotically incoming wave, (2) an asymptotically reflect-
ing wave, (3) an asymptotically transmitting wave, (4) an inte-
rior wave function. The first three components are localized
plane waves. For a fixed incoming wave, the challenge is to
compute the other 3 unknown variables by solving Eq. (A1).

We solve Eq. (A1) using a grid in position space with the
kinetic operator in Hamiltonian expressed by a 5-stencil finite
difference matrix. Eq. (A1) is then rearranged into the form

(H − E0)(|ψ(x)⟩ − |ψinc(x)⟩) = −(H − E0) |ψinc(x)⟩ , (A3)

where |ψinc(x)⟩ is the known incoming wave and |ψ(x)⟩
− |ψinc(x)⟩ is the unknown vector that must be solved.

We use a two-dimensional basis for the Hamiltonian, |ε, x⟩
= |φε⟩ ⊗ |x⟩. Here, ε labels each diabatic electronic state, ε
= 1,2, . . . ,Nε where Nε is the total number of electronic states.
We set x as the index for a grid in position space, x = −2,−1,
. . . ,Nx + 2,Nx + 3 where Nx is the total number of grid point

in the region of interest. The bra space of the Hamiltonian is
defined as

�⟨1,1| ,⟨1,2| , . . . ,⟨1,Nx | ,⟨2,1| ,⟨2,2| , . . . ,⟨Nε,Nx | ,
⟨1,0| ,⟨2,0| , . . . ,⟨Nα,0| ,⟨1,Nx + 1| ,

⟨2,Nx + 1| , . . . ,
Nβ,Nx + 1
�	
. (A4)

The ket space of the Hamiltonian is defined as
�|1,1⟩ , |1,2⟩ , . . . , |1,Nx⟩ , |2,1⟩ , |2,2⟩ , . . . , |Nε,Nx⟩ ,

|r1⟩ , |r2⟩ , . . . , �rNα

�
, |t1⟩ , |t2⟩ , . . . , ���tNβ

	
. (A5)

Here, Nα and Nβ are the total number of states that are ener-
getically allowed for reflection and transmission, respectively.
|rε⟩ is a basis function for a reflecting state defined as

|rε⟩ ≡ e2ik (r )ε ∆x |ε,−2⟩ + eik
(r )
ε ∆x |ε,−1⟩ + |ε,0⟩ , (A6)

where ∆x is the bin size of position grid. Similarly, |tε⟩ is a
basis function for a transmitting state defined as

|tε⟩ ≡ |ε,Nx + 1⟩ + eik
(t )
ε ∆x |ε,Nx + 2⟩

+ e2ik (t )ε ∆x |ε,Nx + 3⟩ . (A7)

Note that the bra and ket spaces are the same for the first
NεNx dimensions but different for the last Nα + Nβ dimen-
sions. While the ket basis contains transmitting and reflecting
wave, the bra basis contains the grid points ⟨0| and ⟨Nx + 1| to
encode the boundary.

In the basis above, the Hamiltonian is not symmetric and
can be broken down by region as

H =
*....
,

HII,II HII,I HII,III

HI,II HI,I 0

HIII,II 0 HIII,III

+////
-

. (A8)

HII,II is the Hamiltonian for the region of interest while other
blocks involve the boundary. HII,II has dimensionality of
NεNx × NεNx and the ket space is the same as bra space. The
matrix elements of HII,II are defined as

⟨ε1, x1| HII,II |ε2, x2⟩ = C
(

5
2
+

Vε1(x1)
C

)
δx1,x2 −

4
3
δx1,x2±1 +

1
12
δx1,x2±2


δε1,ε2 +Uε1,ε2(x1)δx1,x2. (A9)

Here, δ is the Kronecker delta, Uε1,ε2 is the electronic coupling between states ε1 and ε2, and the constant factor C = ~2/(2M∆x2),
where M is the nuclear mass. HI,I, HII,I, and HI,II are the matrix elements at the boundary for the reflecting wave and have
dimensionality of Nα × Nα, NεNx × Nα, and Nα × NεNx, respectively. HI,I is defined as

⟨ε,0| HI,I |rα⟩ = C
(

1
12

e2ik (r )ε ∆x − 4
3

eik
(r )
ε ∆x +

5
2
+

Vε(0)
C

)
δε,α. (A10)

HII,I is defined as

⟨ε, x | HII,I |rα⟩ = C
(

1
12

eik
(r )
ε ∆x − 4

3

)
δx,1 +

1
12
δx,2


δε,α. (A11)

HI,II is defined as

⟨ε1,0| HI,II |ε2, x⟩ = C
(
−4

3
δx,1 +

1
12
δx,2

)
δε1,ε2. (A12)



084109-12 Ouyang, Dou, and Subotnik J. Chem. Phys. 142, 084109 (2015)

HIII,III, HII,III, and HIII,II are the matrix elements at the boundary for the transmitting wave and have dimensionality of Nβ × Nβ,
NεNx × Nβ, and Nβ × NεNx, respectively. HIII,III is defined as

⟨ε,Nx + 1| HIII,III
�
tβ
�
= C

(
1

12
e2ik (t )ε ∆x − 4

3
eik

(t )
ε ∆x +

5
2
+

Vε(Nx + 1)
C


δε,β. (A13)

HII,III is defined as

⟨ε, x | HII,III
�
tβ
�
= C

(
1
12

eik
(t )
ε ∆x − 4

3

)
δx,Nx +

1
12
δx,Nx−1


δε,β. (A14)

HIII,II is defined as

⟨ε1,Nx + 1| HIII,II |ε2, x⟩ = C
(
−4

3
δx,Nx +

1
12
δx,Nx−1

)
δε1,ε2. (A15)

The incoming wave function is chosen as

|ψinc(x)⟩ = e−2ikinc∆x |inc,−2⟩ + e−ikinc∆x |inc,−1⟩ + |inc,0⟩ . (A16)

The elements of (E0 −H) |ψinc(x)⟩ are evaluated as

⟨ε, x | (E0 −H) |ψinc(x)⟩ = C
(
−5

2
+

4
3

e−ikinc∆x − 1
12

e−2ikinc∆x +
E0 − Vinc

C

)
δx,0 +

(
4
3
− 1

12
e−ikinc∆x

)
δx,1 −

1
12
δx,2


δε,inc.

(A17)

This completes our description of how the Hamiltonian
is constructed. In practice, Eq. (A3) is solved numerically by
using Intel MKL PARDISO82 solver which is a parallel direct
sparse solver. Taking advantage of the large sparsity of the
Hamiltonian, the sparse solver minimizes the memory needed
to storing the matrix as well as the CPU time for solving
Eq. (A3). As such, the sparse solver makes it possible to include
thousands of electronic states in the bath and grid points in
position space and solve Eq. (A3) in a reasonable time. For
instance, the calculation associated with results in Fig. 13 has
501 discretized electronic states in the bath combined with
6000 grid points in region II ([−30,30]) a.u., and the CPU time
is less than 4 min (the real time is 1 min by running in parallel
with 4 cores).

Reflection probabilities are then found by renormalizing
the amplitudes of every channel n according to

���r
(norm)
n

���
2
=

k (r )
n

kinc
|rn |2. (A18)

Transmission amplitudes are renormalized analogously.
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