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ABSTRACT: For a molecule with multiple electronic orbitals and many
nuclear degrees of freedom near a metal surface, there is a natural embedding
of the quantum-classical Liouville equation inside a classical master equation
(QCLE-CME) to model nonadiabatic dynamics (J. Chem. Phys. 2016,
145, 054102). In this paper, we propose a variety of surface hopping
algorithms for solving such a QCLE-CME. We find that an augmented
surface hopping (A-SH) algorithm works well for propagating such
nonadiabatic dynamics (near a metal surface). We expect the present
algorithm will be very useful for modeling electrochemical problems in
the future.

1. INTRODUCTION
Nonadiabatic dynamics near metal surfaces has gained wide
interest across the areas of electrochemistry,1−4 molecular
junctions,5−7 and surface scattering.8−11 For example, in the
area of molecular junctions, coupled electron−nuclear motion
has been found to account for a variety of phenomena,
including heating or cooling,12−14 hysteresis,15−17 instability, or
bistability.18−20 Numerically exact solutions do exist, including
numerical renormalization group (NRG) techniques,21,22

multiconfiguration time dependent Hartree (MC-TDH),23

quantum Monte Carlo (QMC),24,25 and the hierarchical quan-
tum master equation (HQME).26 However, due to the large
number of degrees of freedom (DoFs) needed to model a
metal, exact methods are limited to relatively small systems.
New, inexpensive tools are needed.
To motivate the approach below, on the one hand, consider

a molecule (or molecules) that is out of equilibrium in the
absence of a metal. For such a problem, many semiclassical
methods have been developed to model the nonadiabatic
dynamics in the gas phase or solution, including multiple
spawning,27 frozen Gaussian dynamics,28,29 mean-field dynam-
ics,30,31 semiclassical initial value dynamics,32−34 partially
linearized density matrix dynamics,35 generalized quantum
master equations,36,37 and exact factorization dynamics.38

Tully’s fewest switch surface hopping (FSSH)39 is another
important tool for propagating such dynamics and has been
successfully applied to many systems, including electron
transfer,40 photochemistry,41,42 and proton transfer.30 FSSH
was introduced originally by ansatz alone, and recent work has
shown a connection between FSSH and the quantum-classical
Liouville equation (QCLE).43−45 Meanwhile, much work has
been done over the years to improve decoherence within
FSSH.46−50

Now on the other hand, consider the simplest molecule
possible, a one-level system, near a metal surface. Recently, for
such a case, a classical master equation (CME) was derived to
model the coupled electron−nuclear motion.51,52 Just as above,
this CME can be solved with a surface hopping (SH) algorithm,
that is, classical motion on two different potential energy
surfaces (PESs) with stochastic hops between the PESs.52,53

The main differences between CME-SH and Tully’s FSSH are
that (1) our CME-SH does not propagate a density matrix and
hence we do not have any coherence/decoherence problems,
(2) no momentum adjustment has been introduced for CME-SH
because there are open electronic boundary conditions, and
(3) our CME-SH results recover the correct detailed balance,
with the fluctuation−dissipation theorem satisfied exactly,
whereas Tully’s FSSH recovers detailed balance approxi-
mately.54,55 For completeness, note that ref 56 shows that the
CME can be mapped onto a Fokker−Planck equation with
explicit forms for the friction and random force, and the
resulting friction agrees with the Head-Gordon/Tully result as
well as other previously published results.56−59 In ref 60, we
also suggested a simple way to incorporate the effects of level
broadening, such that we could extrapolate from the limits of
small to large metal−molecule couplings.
Finally, let us return to the case of a realistic molecule on a

metal surface. With more than one orbital on the molecule, we
can embed the quantum-classical Liouville equation (QCLE)
inside a CME (thus forming a QCLE-CME) to account for
both intramolecular and metal−molecule interactions. In ref 61,
we previously analyzed the natural friction from this QCLE-
CME in the adiabatic limit. In this paper, we will now go
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beyond the adiabatic limit and propose a surface hopping
algorithm to approximately solve the full QCLE-CME over a
broad range of parameter space that includes the adiabatic and
diabatic limits. We will not address broadening in this paper;
that topic will be treated in a forthcoming publication. The
present surface hopping scheme extends FSSH naturally to the
case of a dissipative electronic bath, by connecting FSSH with
CME-SH dynamics. As described below, to address decoher-
ence, we will further propose an augmented surface hopping
(A-SH) algorithm, which works well across a large range of
parameter regimes. We expect this final algorithm (A-SH) will
be very useful for modeling realistic systems.
We organize the paper as follows: in section 2, we briefly

introduce the QCLE-CME. In section 3, we propose a couple
of different surface hopping algorithms to solve the QCLE-
CME. We discuss our results in section 4 and conclude in
section 5.
1.1. Notation. Below, we will use a “hat”, for example, Ô, to

denote an operator, either for nuclei or for electrons (or both).
The subscript “el”, for example, ρ̂el(R,P), indicates that the
nuclear DoFs are classical (i.e., parameters instead of opera-
tors). α and β index nuclear vectors (e.g., Rα). Small Roman
letters (n, m, k) exclusively index electronic orbitals. Capital
Roman letters (I, J, K, L) index electronic states.

2. EQUATION OF MOTION
To be self-consistent, we briefly introduce the QCLE-CME for
the coupled electron−nuclear dynamics near metal surfaces.
For more details, see ref 61. We divide the total Hamiltonian Ĥ
into three parts: the system Ĥs, the bath Ĥb, and the system−
bath coupling Ĥc,

̂ = ̂ + ̂ + ̂H H H Hs b c (1)

Ĥs describes a molecule with electronic orbitals with
corresponding creation (annihilation) dn̂

+ (d̂m) operators plus
nuclear degrees of freedom (DoFs, with position operator R̂α

and momentum operators P̂α):

∑ ∑̂ = ̂ ̂ ̂ + ̂ +
̂

α

α
α

+
H h d d U

P
M

R R( ) ( )
2mn

mn m ns

2

(2)

Ĥb describes a metal consisting of a manifold of noninteracting
electrons, ck̂

+ (ck̂):

∑̂ = ϵ ̂ ̂+H c c
k

k k kb
(3)

The coupling between the system and bath, Ĥc, is bilinear

∑̂ = ̂ ̂ + ̂ ̂+ +H V d c c d( )
nk

nk n k k nc
(4)

For the system−bath coupling, we will assume the wide band
approximation, that is, the hybridization function Γmn(ϵ) is
independent of ϵ,

∑π δΓ ϵ = ϵ − ϵ = ΓV V( ) 2 ( )mn
k

mk nk k mn
(5)

Following ref 61, assuming weak system−bath coupling,
we apply Redfield theory to describe the equation of motion
(EOM) for the density matrix of the molecule ρ̂,

ρ ρ ρ∂
∂

̂ = −
ℏ

̂ ̂ − ̂̂ ̂
t

i
H[ , ]s bs (6)

Here, [·, ·] is the canonical commutator, and the superoperator
̂̂
bs is

∫ρ τ τ

ρ ρ

̂̂ ̂ =
ℏ

̂ ̂ −

̂ ⊗ ̂

∞
− ̂ ℏ

̂ ℏ − ̂ ℏ ̂ ℏ

H t H t

t

1
d e Tr ([ ( ),[ ( ),

e ( ) e ]]) e

iH t
Ic Ic

iH t iH t iH t

bs 2 0

/
b

/ /
b
eq /

s

s s s (7)

In the above equation, ρ̂b
eq is the equilibrium density of

states for the electronic bath, Trb means treating the DoFs in
the bath. ĤIc(t) in eq 7 is written in the interaction picture,
ĤIc (t) = ei(Ĥb+Ĥs)tĤc e

−i(Ĥb+Ĥs)t. We refer to eq 6 as a quantum
master equation (QME).
We then proceed to perform a partial Wigner transformation

for the density operator ρ̂ (Nα is the total number of nuclear
DoFs),

∫ρ π ρ̂ ≡ ℏ ⟨ − | ̂| + ⟩− · ℏαR P X R X R X( , ) (2 ) d /2 /2 eN iP X
el

/

(8)

In the above equation, R and P in ρ̂el(R,P) are now interpreted
as position and momentum vectors instead of operators.
After performing a partial Wigner transformation for eq 6

and making the approximation for the classical nuclei (details
can be found in ref 61), we arrive at a quantum-classical Liouville
equation-classical master equation (QCLE-CME),

ρ ρ ρ

ρ ρ

∂
∂

̂ = ̂ ̂ − ̂ ̂

−
ℏ

̂ ̂ − ̂̂ ̂

t
t H H

i
H t

R P R P R P

R

( , , )
1
2

{ ( , ), }
1
2

{ , ( , )}

[ , ] ( ) ( )

el s
el

el el s
el

s
el

el bs

el

el (9)

Here, {·,·} is the Poisson bracket,

∑= ∂
∂

∂
∂

− ∂
∂

∂
∂α

α α α α⎜ ⎟⎛
⎝

⎞
⎠A B

A
R

B
P

A
P

B
R

{ , }
(10)

and Ĥs
el is the partial Wigner transformation of Ĥs

∑ ∑

∑

̂ = ̂ ̂ + +

≡ ̂ +

α

α
α

α

α
α

+
H h d d U

P
M

V
P
M

R P R R

R

( , ) ( ) ( )
2

( )
2

mn
mn m ns

el
2

2

(11)

The superoperator ̂̂ R( )bs

el
in eq 9 is now

∫
ρ

τ τ

ρ ρ

̂̂ ̂

=
ℏ

̂ ̂ −

̂ ⊗ ̂

∞
− ̂ ℏ

̂ ℏ − ̂ ℏ ̂ ℏ

t

tr H t H t

t

R R P( ) ( , , )
1

d e ([ ( ), [ ( ),

e ( ) e ]]) e

iH t
Ic Ic

iH t iH t iH t

bs

el

el

2 0

/
b

el el

/
el

/
b
eq /

s
el

s
el

s
el

s
el

(12)

In the above equation, ĤIc
el(t) = ei(Ĥb+Ĥs

el)t Ĥc e−i(Ĥb+Ĥs
el)t. We

give a simplified form for the Redfield operator ̂̂ R( )bs

el
in

Appendix A.62

Equation 9 reads naturally in a diabatic basis. For surface
hopping, however, it is useful to express the QCLE-CME in an
adiabatic basis |ΨI

ad(R)⟩, where

̂ |Ψ ⟩ = |Ψ ⟩V ER R R R( ) ( ) ( ) ( )I I I
ad ad ad

(13)
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In such an adiabatic basis, the QCLE-CME (eq 9) can be
written as

∑

∑

∑ ∑

ρ ρ

ρ ρ

ρ ρ

ρ
ρ

∂
∂

= −
ℏ

−

− −

−
∂

∂
+

∂
∂

−
∂

∂
−

α

α

α
α α

α

α
α α

α

α

α

α α

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

t
t

i
E E

P
M

d d

F
P P

F

P
M R

t

R P R R

R R

R R

R

( , , ) ( ( ) ( ))

( ( ) ( ))

1
2

( ) ( )

( ) ( )

IJ I J IJ

K
IK KJ IK KJ

K
IK

KJ IK
KJ

IJ

KL
IJ KL KL

ad,el ad ad ad,el

ad,el ad,el

ad,el ad,el

ad,el

,
ad,el,bs ad,el

(14)

Here we have defined the force ≡ −⟨Ψ | |Ψ ⟩α ∂ ̂

∂ αF I
H
R JIJ

ad ads
el

, and the

derivative coupling dIJ
α ≡ FIJ

α/(EI
ad − EJ

ad). In Appendix A, we

give an explicit form for the Redfield operator ̂̂
bs

ad,el
in an

adiabatic basis.
Notice that the only difference between the QCLE-CME and

the usual QCLE is the Redfield operator ( ̂̂
bs

el
) in the latter

which exchanges electrons between the molecule and the metal.
Because the electron number in the molecule is not conserved,
the QCLE-CME must be solved in a many-body (Fock) basis.
Below we will use trajectory-based algorithms to solve the
QCLE-CME approximately.

3. SURFACE HOPPING ALGORITHMS
Here we propose a surface hopping algorithm to solve the
QCLE-CME approximately. This surface hopping algorithm
is a natural extension of Tully’s FSSH such that we now
incorporate the exchange of electrons between molecule and
metal. Just as FSSH represents very approximate solutions to
the QCLE,44 this surface hopping algorithm represents a very
approximate solution to the QCLE-CME.
Similar to FSSH, for each trajectory, we propagate the

density matrix σ̂ according to

∑

∑

σ σ σ

σ σ

̇ = − −

−
ℏ

− −

α

α

α
α αP

M
d d

i
E E

R R

R R R

( ( ) ( ))

( ( ) ( )) ( )

IJ
K

IK KJ IK KJ

I J IJ
KL

IJ KL KL

ad ad ad

ad ad ad
,

ad,el,bs ad

(15)

as well as position and momentum (R and P) on the active
potential surface (donated as λ),

̇ =α
α

αR
P
M (16)

̇ =α
λλ
αP F (17)

Now we have to decide the hopping rates between PES’s.
In the spirit of Tully’s surface hopping, the nuclei hop from
population to population. The total change of the population
on state J is

∑

∑

σ σ σ

σ

̇ = − −

−
α

α

α
α αP

M
d dR R

R

( ( ) ( ))

( )

JJ
I

JI IJ JI IJ

KL
JJ KL KL

ad ad ad

,
ad,el,bs ad

(18)

The first term on the right-hand side (RHS) of the above
equation indicates hopping due to derivative coupling, dIJ

α.
Following FSSH, we define the hopping rate from I to J to be

∑
σ

σ
= Θ − ℜ

α

α

α

α

→

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟k

P
M

d
2I J

d JI IJ

II

ad

ad
(19)

Here the Θ function is defined as

Θ =
≥
<

⎧⎨⎩x
x x

x
( )

, if 0

0, if 0 (20)

The second term on the RHS of eq 18 gives an extra hopping
due to molecule−metal interaction. This term can be divided
into diagonal and off-diagonal contributions:

∑ ∑ ∑σ σ σ− = − −
≠KL

JJ KL KL
I

JJ II II
K L

JJ KL KL,
ad,el,bs ad

,
ad,el,bs ad

,
ad,el,bs ad

(21)

Just as in any master equation, the diagonal contribution
implies a hopping rate from population I to J of the form

= −→kI J JJ II
on

,
ad,el,bs

(22)

To deal with the off-diagonal contribution in eq 21, we will
apply a global flux surface hopping (GFSH) scheme,63 where
we denote

∑ σ= −
≠

bJJ
K L

JJ KL KL,
ad,el,bs ad

(23)

such that the hopping rate from I to J is given by

σ=

−

∑ Θ
> <

→

⎧
⎨⎪

⎩⎪
k

b b

b
b b

( )
, if 0 and 0

0, otherwise
I J

II JJ

II K KK
JJ IIoff ad

(24)

Again, the definition of Θ function is given in eq 20. The need
for a GFSH hopping rate might well appear superfluous and
unjustified here. To that end, we emphasize that there are many
other possible rates for the hopping rate here beyond GFSH.
In other words, since ∑J bJJ = 0, the best approach would really
be to investigate the functional form of JJ KL,

ad,el,bs and pair up all
hopping terms so that final sum vanishes. With such a pairing
in hand, one could construct more natural hopping rates
accordingly. However, constructing such positive and negative
pairs is tedious; see, for example, eqs 54−57 in Appendix B, and
now imagine we had N ≫ 4 possible charge states and M ≫ 2
orbitals! Furthermore, in model problems studied thus far, we
find that implementing a more rigorous hopping rate yields
nearly identical results as the GFSH rates. Thus, for now, we
simply use the GFSH rates to hop between surfaces.
Finally, combining the diagonal and off-diagonal contribu-

tions, we find the hopping rate induced by ̂̂
bs

el
is then

= +→ → →k k kI J I J I J
on off

(25)

For convenience, we define the total hopping rate

= +→ → →k k kI J I J I J
total d

(26)

In eq 26, we add up hopping rates as induced by the derivate
coupling operator (kd) and the Redfield operator (k ). Just as
in the CME,52 when hop occurs due to k , we postulate that
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there should be no momentum adjustment. However, if hop
occurs due to kd, we rescale momenta on the direction of
the derivative coupling to conserve energy, just as in FSSH.44

As such, one has constructed a SH scheme that reduces
correctly to both FSSH and CME-SH.
Now we can formalize our protocol explicitly:

1. Prepare the initial σ̂, R, and P. Choose the active PES
(say λ = I).

2. Evolve σ̂, R, and P according to eqs 15−17 for a time
interval Δt on the active PES (λ = I).

3. Calculate the hopping rate kI→K
d and →kI K for all K,

according to eqs 19 and 25 (eq 22 plus eq 24). Generate
a random number ξ ∈ [0,1]. We now define SI

J = ∑K = 1
J

kI → K
total

• If ξ > SI
NΔt (here N is the total number of PESs),

the nuclei remain on surface I.

• Else if ξΔ < < + Δ− −
→S t S k t( )I

J
I
J

I J
1 1 , the nuclei

hop to surface J (λ = J), without momentum
rescaling.

• Else if ξ+ Δ < < Δ−
→S k t S t( )I

J
I J I

J1 , the nuclei
hops to PES J (λ = J), with momentum rescaling
along the direction of the derivative coupling:

κ= + | |P P d d/IJ IJ
new

(27)

which satisfies

∑

∑

+

= +

α

α

α

α

α

α

P
M

E

P
M

E

R

R

( )
2

( )

( )
2

( )

J

I

,new 2
ad

2
ad

(28)

Among the two roots satisfying eq 28, the root
with smaller |κ| is chosen.

4. Repeat step 2 and 3 for the desired number of time steps.

3.1. Secular Surface Hopping (sec-SH). The scheme
above can be simplified through a secular approximation. In a
sec-SH, the GFSH is turned off, that is, koff = 0 in eq 24.
Otherwise, the SH algorithm above is unchanged. To motivate
why a secular approximation is appealing, consider the long
time dynamics of a master equation. Without any nuclear
motion, it is well-known that secular master equations
must recover the correct equilibrium long time populations.64

To understand this unique long-time equilibrium feature of
secular master equations, note secular master equations set all
coherences to zero (in an adiabatic basis) and thus can
be written down in a Lindblad form.65 By contrast, for a
nonsecular master equation, again in the adiabatic basis, the
correct equilibrium distribution can be achieved only if the
coherence vanishes naturally at long times; in other words, a
nonsecular master equation can behave correctly at long times
only if decoherence is treated properly. Thus, there is a natural
trade-off. On the one hand, the secular approximation can
recover the correct equilibrium but gives the wrong short time
dynamics. On the other hand, the nonsecular approximation
gives the correct short time dynamics, but achieving the correct
equilibrium is not guaranteed.
Now, we have shown previously that, for the specific

Hamiltonian in eqs 1−4, without any nuclear motion, both the
nonsecular and secular approximation recover the correct equi-
librium populations.61 Unfortunately, as will be shown below,
this feature disappears when nuclear motion is introduced, and

only the secular approximation succeeds for long time popula-
tions. In particular, with nuclear motion, we will show that the
off-diagonal matrix elements do not always decohere to zero
according to nonsecular trajectories, and hence the latter can
destroy the long-time equilibrium density matrix.

3.2. Augmented Surface Hopping (A-SH). Because
nuclear motion can destroy the long time population of an
electronic master equation, below, it will be useful to introduce
an augmented surface hopping (A-SH) scheme that inter-
polates between the usual SH and sec-SH approach. That is, at
short times, A-SH should recover SH, while at longer times,
A-SH should reduce to sec-SH. To connect these two limits, we
will hypothesize that the time scale for turning off GFSH is the
decoherence rate, that is, the rate of coherence loss lifetime of
electronic states as dictated by nuclear motion. Thus, for A-SH,
similar to the A-FSSH algorithm in ref 66, we propagate
moments δR̂ and δP̂,

∑δ
δ

δ δ

δ

∂
∂

= − −

−
ℏ

−

α
α

α
α

α

α
α α α α

α

t
R

P

M
P
M

d R R d

i
E E R

R R

R R

( ( ) ( ))

( ( ) ( ))

IJ
IJ

K
IK KJ IK KJ

I J IJ
ad ad

(29)

∑

∑

δ δ σ σ δ

δ

δ δ

∂
∂

= +

−
ℏ

−

− −

α α α

α

α

α

α
α α α α

t
P F F

i
E E P

P
M

d P P d

R R

R R

1
2

( )

( ( ) ( ))

( ( ) ( ))

IJ
K

IK KJ IK KJ

I J IJ

K
IK KJ IK KJ

ad ad

ad ad

(30)

We have defined δFKJ
α = FKJ

α − Fλ,λ
α δKJ. Then, the final

decoherence rate is defined as (just as in ref 44)

∑
τ

δ δ= − −
α

α α α αF F R R
1 1

2
( )( )

K L K K L L K K L L( , ) , , , ,
(31)

In A-SH, eq 31 is used to turn off the GFSH hopping
contributed from off-diagonal matrix elements of K, L. To be
explicit, we define

∑ σ ζ̃ = −
≠

bJJ
K L

JJ KL KL
K L

,
ad,el,bs ad ,

(32)

Here ζK,L is either 0 or 1. The hopping rate from off-diagonal
matrix elements is

σ̃ =

− ̃ ̃

∑ Θ ̃
̃ > ̃ <

→

⎧
⎨
⎪⎪

⎩
⎪⎪

k

b b

b
b b

( )
, if 0 and 0

0, otherwise

I J

II JJ

II K KK
JJ IIoff ad

(33)

If ζK,L = 1 for all K ≠ L, kÎ→J
off = kI→J

off (eq 24), such that A-SH
recovers SH. If ζK,L = 0 for all K≠ L, kÎ→J

off = 0 and A-SH reduces
to the sec-SH.
For convenience, we denote

̃ = + ̃
→ → →k k kI J I J I J

on off
(34)

̃ = + ̃
→ → →k k kI J I J I J
total d

(35)

We are now prepared to formalize the A-SH protocol. Note
that the interpolation in eqs 31−33 is rather ad hoc for now.
Our rational for invoking a A-SH decoherence rate will be
partially explained below. Our A-SH algorithm is as follows.
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1. Prepare initial σ̂, R, and P. Choose the active potential
surface (say λ = I). Set δR̂ = 0, δP̂ = 0, ζK, L = 1 (for all
K ≠ L).

2. Evolve σ̂, R, and P according to eqs 15−17 for a time
interval Δt on the active potential surface. For any
K ≠ L, if ζK, L = 1, propagate δR̂ and δP̂ according to
eqs 29 and 30.

3. Calculate the hopping rate kI→K
d and ̃

→kI K according to
eqs 19 and 34 (eq 22 plus eq 33). Generate a random
number ξ ∈ [0,1]. Define S ̃IJ = ∑K = 1

J kÎ → K
total

• If ξ > S ̃INΔt (here N is the total number of PESs),
the nuclei remain on surface I.

• Else if ξ̃ Δ < < ̃ + ̃ Δ− −
→S t S k t( )I

J
I
J

I J
1 1

, the nuclei
hops to surface J, without momentum rescaling.
Set δP̂ = 0.

• Else if ξ̃ + ̃ Δ < < ̃ Δ−
→S k t S t( )I

J
I J I

J1
, the nuclei

hops to PES J, with momentum rescaling along the
direction of the derivative coupling.

κ= + | |P P d d/IJ IJ
new

(36)

∑

∑

+

= +

α

α

α

α

α

α

P
M

E

P
M

E

R

R

( )
2

( )

( )
2

( )

J

I

,new 2
ad

2
ad

(37)

Among the two roots satisfying eq 37, the root
with smaller |κ| is chosen. Set δP̂ = 0, δR̂ = 0.

4. For all K≠ L, if ζK, L = 1, calculate the decoherence rates

τ
1
K L( , )

and generate a new random number ξ ∈ [0,1].

If ξ>
τ

Δt
K L( , ) , set ζK, L = 0 and set (for all J = 1,...,N)

δ δ̂ = ̂ =R P 0K J K J, , (38)

δ δ̂ = ̂ =R P 0J K J K, , (39)

δ δ̂ = ̂ =R P 0L J L J, , (40)

δ δ̂ = ̂ =R P 0J L J L, , (41)

5. Repeat steps 2 through 5 for the desired number of time
steps.

3.3. Electronic Friction−Langevin Dynamics (EF-LD).
In the adiabatic limit, where nuclear motion is slow relative
to electron transfer, the QCLE-CME can be mapped onto an
electronic friction−Langevin dynamics (EF-LD),61

∑ γ δ̈ = − ̇ +α α α

β

αβ β αM R R tR R( ) ( ) ( )
(42)

Here the mean force and electronic friction are given by

σ= −
∂ ̂

∂
̂α

α

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟tr

H
R

R( ) e
s
el

eq
(43)

γ
σ

= −
∂ ̂

∂
̂̂ ∂ ̂

∂
αβ

α β

−⎛
⎝
⎜⎜

⎞
⎠
⎟⎟tr

H
R R

R( ) e
s
el

el

1 eq

(44)

In the above equations, tre implies a trace over the electronic

DoFs in the molecule, and σ ̂ = − ̂e
Z

H kT
eq

1 /( )s
el

(Z = tre e
−Ĥs

el/(kT)).

̂̂
−

el

1
is the inverse of ̂̂

el , which is defined as ̂̂ · ≡ ̂̂ · + ̂ ·ℏ H( ) ( ) [ , ]i
el bs

el

s
el

.

δ α is a random force with a correlation function that is
Markovian:

δ δ δ⟨ ′ ⟩ = − ′α β αβt t D t tR( ) ( ) 2 ( ) ( ) (45)

where the correlation function is

σ σ

σ σ

=
∂ ̂

∂
̂̂ ∂ ̂

∂
̂ + ̂
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∂
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∂
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α β β
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H
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H
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2

2

e
s
el

el

1
s
el

eq eq
s
el

e
s
el

eq eq

(46)

Note that the friction (plus random force) given in eq 44
(plus eq 46) is not exactly equal to the standard form of
electronic friction by von Oppen et al.58 The difference
between our friction here and the results from von Oppen58 is
that we do not take level broadening into account in eq 44,
due to our approach based on a perturbative treatment of
the system−bath coupling. That being said, we have shown
previously61 that the difference between the QCLE-CME
friction (in eq 44) and the friction in ref 58 is small for the case
of not very strong system−bath coupling and high temperature,
such that the two sets of Langevin dynamics should be very
similar. For very large system−bath couplings, one must invoke
the von Oppen results,58 which are accurate to infinite order in
the system−bath coupling parameter. See also Appendix D.

4. RESULTS AND DISCUSSION
To test our SH algorithms above, we use a donor−acceptor−
metal model. The system Hamiltonian is

ω

̂ = ̂ ̂ + ̂ ̂ + ̂ ̂ + ̂ ̂

+ +

+ + + +
H x E x d d E x d d W d d d d

m x
p
m

( ) ( ) ( ) ( )

1
2 2

s
el

D D D A A A D A A D

2 2
2

(47)

In the donor−acceptor−metal model, we have
Γ = Γ Γ = Γ = Γ =, 0AA DD DA AD (48)

We will further set = + ϵω
ℏ

E x( ) gx m
D

2
D and EA(x) = 0.

In Appendix B, we express the Redfield operator explicitly in
the adiabatic basis for this two-level model. We prepare the
nuclei with a Boltzmann distribution on the donor (i.e., the
acceptor is empty). We use the scheme in ref 67 to convert
between the diabatic and adiabatic states. In Appendix C, we
show how to calculate the diabatic population ⟨dD̂

+ d ̂D⟩ for
SHs and EF-LD. We will compare our results against the QME
(see Appendix D).
In Figure 1, we work in the regime where W is relatively

larger than Γ. We see good agreement between the QME and
all SH algorithms (SH, sec-SH, and A-SH), for both diabatic
population and kinetic energy. When W and Γ are both large
(which is the adiabatic limit, W = 0.04, Γ = 0.01), EF-LD works
well for longer dynamics yet fails to recover the correct initial
conditions for diabatic population. This failure arises because,
according to EF-LD, we assume local equilibrium for electronic
states; the transformation for calculating diabatic populations is
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provided in Appendix C. In the nonadiabatic limit (smaller Γ),
EF-LD fails completely.
Now we turn to the decoherence issue as implemented in

A-SH and to which we alluded in section 3.2. In Figure 2, we

plot results for the case that W is relatively small compared
with Γ. Now we see differences in the performances of the
different SH protocols. Standard SH works well for short time
dynamics yet fails to recover the correct equilibrium (either for
the diabatic population or the kinetic energy). In fact, the
system reaches a different temperature from the bath (as shown
by the kinetic energy in Figure 2). Conversely, sec-SH fails at
short times but does recover the correct equilibrium at long
times. Overall, A-SH agrees best with the QME. Again, EF-LD
works best in the adiabatic limit (when W and Γ are both
large).

To understand the origin of this behavior (especially for
surface hopping), note that in this parameter regime, the GFSH
hopping rate (which accounts for the off-diagonal elements of
the electronic density matrix σ̂) is rather large. Now, according
to eq 59, if all matrix elements of Γpq and if all of the Fermi
functions do not fluctuate, it follows at long times that, σKL → 0
(K ≠ L). See the discussion below eq 59. That being said,
however, these matrix elements will fluctuate because of nuclear
motion, and thus, in practice, we may not find that σKL → 0.
And thus, the large GFSH rate can destroy long time detailed
balance because of an inexact treatment of the coherence in σ̂.
To address this deficiency, we have hypothesized in this paper

that, just as the FSSH algorithm lacks decoherence and cannot
properly follow the QCLE without a decoherence correction, so
too the FSSH-CME-SH algorithm lacks some decoherence and
cannot follow the QCLE-CME. Because this decoherence is neces-
sarily tied to the effect of nuclear motion on electronic dynamics,
we therefore propagate nuclear moments (just as in A-FSSH)
and turn off GFSH accordingly. Empirically, in Figures 1 and 2,
we find that the resulting A-SH algorithm yields very strong
results, as A-SH recovers relatively accurate short time dynamics
and finds the correct detailed balance at longer times.
That being said, the A-SH algorithm that we introduced in

section 3.2 is only a preliminary algorithm, and it is very
possible that further improvements can and will be made; in
particular, our understanding of decoherence at a metal surface
is not yet fully clear or complete (unlike the case in solution).
Future work is required to test and improve the A-SH
algorithm across many model problems, especially for the case
of more than two molecular orbitals in the molecule (where
electronic coherence terms can be coupled with each other).
Finally, in the future, it will also be very interesting to test the

SH algorithms in an environment where extra phonon friction
appears and the correct temperature is maintained: how will A-
SH, SH, and sec-SH compare with each other?

5. CONCLUSIONS

We have proposed several efficient algorithms to solve the QCLE-
CME, which models the nonadiabatic dynamics for a molecule
near a metal surface. These algorithms (i) generalize Tully’s FSSH
to incorporate the exchange of electrons between molecule and
metal and also (ii) generalize the CME-SH to the case of multiple
levels in the molecule. Among all the surface hopping algorithms
tested here, an augmented surface hopping (A-SH) thus far
performs best in most regimes. Further research must strenuously
test the algorithms in the condensed phase, especially when extra
friction is presented from phonons. The role of decoherence also
requires further investigation in the QCLE-CME. Overall, we
expect this surface hopping algorithm or variants thereof to be
very useful for modeling realistic electrochemical systems and
nonadiabatic scattering of molecules off metal surfaces.

■ APPENDIX A. THE REDFIELD OPERATOR

In the Appendix of ref 61, we have written the Redfield
operator in the diabatic basis,

∑ ∑

∑ ∑

ρ ρ ρ

ρ ρ

̂̂ ̂ =
Γ

ℏ
̂ ̂ ̃ ̂ ̂ +

Γ
ℏ

̂ ̂ ̂ ̂

−
Γ

ℏ
̂ ̂ ̂ ̂ −

Γ
ℏ

̂ ̂ ̂ ̃ ̂

+

+ + + +

+ + + +

 

 

d S S t d S S t

d t S S d t S S

h c

2
( )

2
( )

2
( )

2
( )

. .

mn

mn
m n

mn

mn
m n

mn

mn
m n

mn

mn
m n

bs

el

el el el

el el

(49)

Figure 1. Diabatic electronic population on the donor (⟨dD̂
+ d̂D⟩) and

the kinetic energy (Ek) as a function of time. The QME results can be
considered nearly exact (see Appendix D). All the SH algorithms (SH,
sec-SH, A-SH) agree well with the QME. In the adiabatic limit (large
W and Γ), EF-LD works for long-time dynamics. kT = 0.01, ℏω =
0.003, g = 0.0075, ϵD = 2Er, and Er = g2/(ℏω).

Figure 2. Diabatic electronic population on the donor (⟨dD̂
+ d̂D⟩) and

the kinetic energy (Ek) as a function of time. SH fails to recover the
correct equilibrium. Sec-SH does recover the correct equilibrium but
fails for early dynamics. Overall, A-SH performs the best among
different SH methods. kT = 0.01, ℏω = 0.003, g = 0.0075, ϵD = 2Er,
and Er = g2/(ℏω).
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Here S ̂ is the matrix that diagonalizes the system Hamiltonian
Ĥs

el, with adiabatic PESs EI
ad, I = 1, ..., N (N is total number of

PESs). We have defined ̃ ≡ ̂ ̂ ̂ − −+
 S d S f E E( ) ( ) (1 ( ))n IJ n IJ J I

ad ad

and ≡ ̂ ̂ ̂ −+
 S d S f E E( ) ( ) ( )n IJ n IJ J I

ad ad . f(E) = 1/(eE/(kT) + 1) is a

Fermi function. ̃ + + /n n is the Hermitian conjugate of ̃ /n n.
The above equation can be rewritten in an adiabatic basis

(noting ρ̂el
ad = S+̂ρ̂elS ̂),

∑

∑

∑

∑

ρ ρ

ρ

ρ

ρ

̂̂ ̂ =
Γ

ℏ
̂ ̂ ̂ ̃ ̂
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−
Γ

ℏ
̂ ̂ ̂ ̂

−
Γ

ℏ
̂ ̂ ̂ ̂ ̃ +

+ +

+ +
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+ +
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(50)

■ APPENDIX B. THE REDFIELD OPERATOR FOR
DONOR−ACCEPTOR METAL MODEL

Now we apply the results above to the two-level model in
section 4. We write the diabatic system Hamiltonian in a Fock
space,

ω̂ =

+

+ + ̂

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

⎛
⎝⎜

⎞
⎠⎟H

E W

W E

E E

m x
p
m

I

0

1
2 2s

el D

A

D A

2 2
2

el

(51)

Here Iêl is an (electronic) identity matrix. The annihilation
operators d ̂D and dÂ are

̂ =
−

̂ =

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

⎛

⎝
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⎞
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d d

0 1 0 0
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,

0 0 1 0
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(52)

The S ̂ matrix that diagonalizes Ĥs
el takes the form

θ θ
θ θ

̂ =
−

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
S

1
cos sin

sin cos
1 (53)

For simplicity, below we denote f(EI
ad−EJad) = f IJ (I,J = 1, ..., 4).

We further denote Γaa = Γ sin2 θ, Γbb = Γ cos2 θ, and Γab = −Γ
cos θ sin θ. Now we can write the Redfield operator explicitly
for the two-level system in the adiabatic basis,

ρ ρ ρ

ρ ρ ρ
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The coherence term is

ρ χ

ρ

− = ϱ −
ℏ

Γ + Γ + Γ

+ Γ

f f f

f

( ) ( )
1

2
(

)

bs
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23 aa 12 bb 13 bb 42

aa 43 23
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(58)

with the complex conjugate ρ ρ= *( ) ( )bs
ad,el

el
ad

32 bs
ad,el

el
ad

23.
The second term on the RHS of eq 58 is a natural decoherence
term. We have defined χ(ϱ) in eq 58 as

χ ρ ρ

ρ ρ

ϱ =
Γ
ℏ

+ − −

− − − +

f f f f

f f f f

( )
2

(( ) ( )

( ) ( ) )
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31 21 11
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12 42 22
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13 43 33
ad,el

24 34 44
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(59)

If Γpq (p,q = a,b) and the Fermi function f IJ do not fluc-
tuate, eqs 54−58 have a simple steady states solution,

ρ δ= −eIJ Z IJ
E kTad,el 1 /( )I

ad
(Z is the normalization factor). We

note that, at steady states, χ(ϱ) = 0 and ρ23
ad,el = 0.

■ APPENDIX C. DIABATIC POPULATION
In a surface hopping scheme, when calculating the diabatic
population, we must transform from the adiabatic basis to a
diabatic basis. Following ref 67, the diabatic population ⟨d ̂D+d ̂D⟩
is given

∑ θ δ θ δ

θ θ σ δ

⟨ ̂ ̂ ⟩ = +

+ ℜ +

λ λ

λ

+

=
d d

N
1

(cos sin
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D D
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N

l l

l l l

tra 1

2
2,

2
3,

,23
ad,el

4,

l l

l

tra

(60)

Here, l is an index for trajectories, Ntra is total number of
trajectories, and λ is the active potential energy surface.
The only difference between eq 60 and eq 11 in ref 67 is that,
whereas ref 67 treats a two-state system, formally we are now
treating a four-state system in Fock space. Furthermore, note
that for state 4, both donor and acceptor are occupied (see the
system Hamiltonian, eq 51). As a result, we include the term
δ4,λl on the right-hand side of eq 60.
In a EF-LD, ⟨dD̂

+d ̂D⟩ is given by averaging local equilibrium
population:

∑ σ⟨ ̂ ̂ ⟩ = ̂ ̂ ̂+

=

+
d d

N
tr d dR

1
( ( ) )D D

l

N
l

tra 1
e eq D D

tra

(61)
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■ APPENDIX D. DETAILS FOR THE QME
CALCULATIONS

We write the QME again,

ρ ρ ρ∂
∂

̂ = −
ℏ

̂ ̂ − ̂̂ ̂
t

i
H[ , ]s bs (62)

For the model we chose in section 4 (eq 47), the
corresponding system Hamiltonian with quantum nuclear
DoFs is

̂ = ϵ ̂ ̂ + ϵ ̂ ̂ + ̂ ̂ + ̂ ̂+ + + +
H d d d d W d d d d( )s D D D A A A D A A D (63)
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In the exciton basis, we can express the system Hamiltonian
as

̂ =
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and

̂ = ̂ = ̂H H WI23 32 n (70)

In̂ is the nuclear identity operator. The phonon operator is
given by

̂ ̂ = ̂ + ̂ =+ +
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We will truncate the number of the dimension to Nph. For the
parameters we used in the main body of the text, we found
good convergences with Nph = 40.
The superoperator in eq 62 can be simplified after we

diagonalize the system Hamiltonian Ĥs.
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Here Û is the matrix that diagonalizes the system Hamiltonian
Ĥs, with energy levels ϵi̅ (i = 1, ..., 4Nph). We have defined

̃ ≡ ̂ ̂ ̂ − ϵ̅ − ϵ̅
+

 U d U f( ) ( ) (1 ( ))n ij n ij j i and ≡ ̂ ̂ ̂ ϵ̅ − ϵ̅
+

 U d U f( ) ( ) ( )n ij n ij j i .
A few more words are appropriate regarding the validity of

the QME. In the regime where the temperature is fairly large,
QME dynamics should be relatively reliable, except for
broadening effects. For the donor−acceptor−metal model in
section 4 (eqs 47 and 48), we see that nuclear motion is
coupled only to the donor, whereas any broadening effects on
the donor should be relatively small (because the donor is
coupled only indirectly to the continuum through the
acceptor). Thus, overall, we expect the QME should be
quantitively accurate. Furthermore, in the same vein, the
electronic friction in eq 44 should also be accurate here, in
complete agreement with the von Oppen friction.
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(11) Saalfrank, P.; Füchsel, G.; Monturet, S.; Tremblay, J. C.;
Klamroth, T. Theory of Non-adiabatic Molecular Dynamics at
Surfaces. In Dynamics of Gas-Surface Interactions: Atomic-level Under-
standing of Scattering Processes at Surfaces; Díez Muiño, R., Busnengo,
H. F., Eds.; Springer: Berlin Heidelberg, 2013; pp 323−348.
(12) Kaasbjerg, K.; Novotny,́ T.; Nitzan, A. Charge-carrier-induced
frequency renormalization, damping, and heating of vibrational modes
in nanoscale junctions. Phys. Rev. B: Condens. Matter Mater. Phys. 2013,
88, 201405.
(13) Koch, J.; von Oppen, F.; Oreg, Y.; Sela, E. Thermopower of
single-molecule devices. Phys. Rev. B: Condens. Matter Mater. Phys.
2004, 70, 195107.
(14) Arrachea, L.; Bode, N.; von Oppen, F. Vibrational cooling and
thermoelectric response of nanoelectromechanical systems. Phys. Rev.
B: Condens. Matter Mater. Phys. 2014, 90, 125450.
(15) Galperin, M.; Ratner, M. A.; Nitzan, A. Hysteresis, Switching,
and Negative Differential Resistance in Molecular Junctions: A
Polaron Model. Nano Lett. 2005, 5, 125.
(16) Wu, S. W.; Ogawa, N.; Nazin, G. V.; Ho, W. Conductance
Hysteresis and Switching in a Single-Molecule Junction. J. Phys. Chem.
C 2008, 112, 5241.
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