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Within a 2-D scattering model, we investigate the vibrational relaxation of an idealized molecule
colliding with a metal surface. Two perturbative nonadiabatic dynamics schemes are compared: (i)
electronic friction (EF) and (ii) classical master equations. In addition, we also study a third approach,
(iii) a broadened classical master equation that interpolates between approaches (i) and (ii). Two con-
clusions emerge. First, even though we do not have exact data to compare against, we find there is strong
evidence suggesting that EF results may be spurious for scattering problems. Second, we find that
there is an optimal molecule-metal coupling that maximizes vibrational relaxation rates by inducing
large nonadiabatic interactions. Published by AIP Publishing. https://doi.org/10.1063/1.5000237

I. INTRODUCTION

Non-adiabatic dynamics are known to play an essential
role in photochemistry, and excited state dynamics play an
essential role in the gas phase and in solution. For such exper-
iments,1–6 it is obvious that photo-excitation is followed by
energetic relaxation as electrons relax and nuclei heat up:
after all, the density of states for nuclear motion is much
larger than the density of states for electronic motion and
thus, after a long time, all electronic energy must be converted
into heat (or nuclear motion). Thus, in solution or gas phase
photochemistry, nonadiabatic dynamics are paramount.

Now, using the same logic, consider the role of nona-
diabatic effects at a metal surface. On the one hand, a bulk
metal carries an enormous density of phonon states; these
states will usually be the final acceptors of any excess energy
and thus act as a driving force for nonadiabatic transitions.
On the other hand, a metal also carries a large density of
electronic states, and thus electronic transitions are possible
(even without nuclear motion). Thus, there is no guaran-
tee that one will observe nonadiabatic dynamics near metal
surfaces, i.e., a nontrivial coupling of nuclear motion with
electronic transitions. In a series of recent papers, however,
the Wodtke group has given very convincing evidence that
nonadiabatic effects are ubiquitous when studying scatter-
ing processes for molecules off of metal surfaces. In the
most famous experiments, the Wodtke group has scattered
NO molecules across Au(111) surfaces7–13 and found clear
evidence that vibrational relaxation is mediated by nonadia-
batic processes (in this case, transient electron transfer). Thus,
there is currently a great deal of interest in the physics and
chemistry communities regarding how to model these difficult
experiments.

Now, obviously, with a metal substrate, a fully quantum
description of the nuclear and electronic degrees of freedom
would be prohibitively expensive.14 For realistic, multi-atom

a)Electronic mail: subotnik@sas.upenn.edu

simulations of the Wodtke experiments, semiclassical treat-
ments are the only possible way forward. And, in this context,
there are two well-known perturbative limits.15 (i) On the
one hand, for weak nonadiabatic effects (i.e., strong metal-
molecule couplings and weak electron-phonon couplings), the
usual semiclassical framework is to assume that the molecu-
lar motion on the metal surface feels the so-called “electronic
friction (EF)” from the bath of metallic electrons. This con-
cept of electronic friction has been used many times in the
past,16–21 most famously by Head-Gordon and Tully to study
the relaxation of CO on a Cu substrate;16 recent work by
Juaristi and Reuter et al. has also successfully investigated
the relaxation behavior for CO on Cu,20 as well as N on
Ag,21 using a local density approximation for the electronic
friction tensor. (ii) On the other hand, for strong nonadia-
batic effects (i.e., weak metal-molecule couplings and strong
electron-phonon couplings), another approach is a classical
master equation (CME), whereby molecules move as if they
are charged or uncharged with stochastic hops between dif-
ferent charge states. This master equation approach describes
the processes known as dynamics induced by multiple elec-
tronic transitions (DIMET) by the surface-science commu-
nity.22,23 In the context of standard electron transfer theory, one
imagines that the former approach should describe the inner-
sphere heterogeneous electron transfer and the latter approach
should describe the outer-sphere heterogeneous electron
transfer.24

Unfortunately, for the case of NO scattering off of gold,
neither EF nor CME may be valid. First, the NO–Au interac-
tion is not small at short distances, and so the CME approach
is likely inapplicable. Second, far from the metal, the NO–Au
interaction is weak, and the Wodtke group has given three
pieces of evidence suggesting that electronic friction is inap-
plicable for scattering problems:7–9

1. For NO incoming in a highly excited state (e.g., nvib = 15),
vibrational relaxation shows no barrier (as one would
expect with adiabatic dynamics). Furthermore, the most
probable exit channel has nvib = 7. However, if the metal
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Au is replaced by an insulator, LiF, a barrier does appear,
and the most probable exit channel is the original vibra-
tional state (and the second most probable exit channel
is the original vibrational state minus one). These data
obviously suggest strong coupling between electronic
transitions in the metal and vibrational transitions in the
molecule, and the resulting dynamics demonstrate sud-
den changes as opposed to gradual changes of state (not
as we would expect with electronic friction).

2. For NO incoming in a highly excited state (e.g., nvib

= 15), one can observe hot electron emission from the
metal at very large kinetic energies. Such emission pre-
cludes simple electronic friction descriptions based on
fast electronic equilibration.

3. For NO incoming in the ground state, Wodtke et al. have
observed that multiple quanta can be excited directly,
which would not agree with a frictional description, i.e.,
a golden-rule picture of the dynamics assuming small
electron-phonon couplings.

Thus, the Wodtke experiments present a clear challenge to
theoretical chemistry and physics. Since the relevant dynam-
ics have strong electron-phonon couplings, and because the
metal-molecule couplings can be weak or strong (depending
on the distance to the metal), and since transient electron trans-
fer cannot be ignored, the Wodtke experiments simply do not
sit in any simple perturbative regime.15 To model these difficult
dynamics, a few years ago, Shenvi et al. suggested discretiz-
ing the metal continuum and they developed the so-called
independent-electron surface hopping (IESH) approach.25,26

Quantum master equations have also been proposed for this
purpose.27,28 More recently, by rederiving the origins of elec-
tronic friction, our research group showed how to extrapolate
between the CME and EF regimes so that one could develop a
universal, semiclassical nonadiabatic dynamics algorithm for
strong or weak coupling near a metal surface. We labeled the
resulting algorithm a broadened CME (BCME) approach.

With this background in mind, we have two goals for the
present article. First, we would like to investigate the conse-
quences and signatures of nonadiabatic effects for a diatomic
molecule scattering off of a metal surface. Experimental sig-
natures of nonadiabatic dynamics have been suggested by
Wodtke et al., and we would like to see how many of these sig-
natures can be studied theoretically. To isolate these dynamical
effects, we will work with a 2D model that will allow a thor-
ough analysis. Second, to guide our understanding of the rele-
vant process, we would also like to compare and contrast three
different nonadiabatic dynamics approaches: (i) EF, (ii) CME,
and (iii) BCME. Because we do not have an exact propagator,
it is essential that we analyze multiple approaches. Naturally,
since the EF and CME algorithms are based on perturbation
theory, these algorithms must be accurate within their own,
respective, parameter regimes. However, in a non-perturbative
regime, it will be crucial to have different approaches so that
we can make the best guess for the correct answer. In the course
of our results, we will point out several surprising features that
arise from these different methods. At present, our hypothesis
is that, of the three methods above, BCME dynamics are the
most reliable.

This paper is organized as follows: in Sec. II, we review
all three dynamics schemes discussed above; in Sec. III, we
define our 2D model Hamiltonian and provide details of the
simulation; in Sec. IV, we show the simulation results for dif-
ferent sets of parameters; in Sec. V, we discuss the results
and highlight why sometimes EF can yield vibrational relax-
ation rates that are too small, while at other times EF can yield
vibrational relaxation rates that are too large; in Sec. VI, we
conclude with a few suggestions for future work.

A. Notation

The notation used in this paper is as follows: bold char-
acters (e.g., r) are vectors, bold characters with a left-right

arrow (e.g.,
←→
Λ ) are tensors, plain characters (e.g., H) are either

scalars or operators; for indices, we use Greek letters (α, β,
etc.) for nuclei and Roman letters (i, j, etc) for electrons; r
and p always represent position and momentum vectors for
molecules, respectively.

II. THEORY

Henceforward, we will consider an idealized molecule
(or impurity) on a metal surface using the Anderson-Holstein
(AH) model in a nuclear D-dimensional space,

H =
D∑
α=1

p2
α

2mα
+ U0(r) + h(r)d†d

+
∑

k

εkc†kck +
∑

k

Vk(r)(d†ck + c†kd). (1)

Here and below, the Fermi level of the metal is always chosen
to be zero. d and d† are annihilation and creation operators for
the impurity site, ck and c†k are annihilation and creation opera-

tors for the kth orbital in the electronic bath. When
〈
d†d

〉
= 1,

the impurity is occupied and we will speak of the molecule as
being an anion; when

〈
d†d

〉
= 0, the impurity is unoccupied

and we will speak of the molecule as being neutral. We define
U i(r) as the potential energy surface for the electronic state
|i〉 at position r so that U1(r) ≡ h(r) + U0(r) is the potential
energy surface for the anion. Vice versa, h(r) ≡ U1(r) � U0(r)
is the energy gap between the anion state and the neutral state.
V k(r) denotes the coupling between the kth bath orbital and the
impurity site. εk is the energy of the kth bath orbital. When-
ever possible, we apply the wide band approximation (WBA)
and assume that the self-energy of the impurity has only an
imaginary part which does not depend on k or ε ,

Σ(ε , r) ≡
∑

k

V2
k (r)

ε − εk + iη

≈ −iπV2(r)ρ(ε) = −i
Γ(r)

2
, (2)

where ρ(ε) is the density of states in the metallic bath.

A. Electronic friction

In this paper, we will study the dynamics of the AH
model using several approaches, especially electronic fric-
tion (EF).21,29–32 According to this model, all nonadiabatic
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effects are wrapped up into stochastic Langevin dynamics on
a potential of mean force. Thus, the equations of motion are

∂tr =
←→
M −1p

∂tp= F(r) −
←→
Λ (r)

←→
M −1p − δf (r, t),

(3)

where
←→
M −1 ≡



m−1
1

m−1
2

..


is the inverse mass tensor,

←→
Λ is the

friction tensor, and δf is the random force. F is the mean force
acting on the nuclear degrees of freedom,

F(r) = −∇U0(r) −
∫ W

−W
K(ε , r)A(ε , r)f (ε)dε (4)

and, for future reference, the potential of mean force is given
by

UPMF(r) = ζ(r0) −
∫ r

r0

F(r′) · dr′, (5)

where ζ(r0) is some arbitrary reference potential.
In Eq. (4), the spectral function A and Fermi function f

are

A(ε , r)≡
1
π

Γ(r)/2

(ε − h(r))2 + (Γ(r)/2)2
,

f (ε)≡
1

eε/kT + 1
.

(6)

The kernel K in Eq. (4) can be easily computed as33

K(ε , r) ≡ ∇h(r) + (ε − h(r))
∇Γ(r)
Γ(r)

. (7)

The reader may be well surprised that the bandwidth W
appears in Eq. (4), given that we would like to take the wide-
band limit. In fact, a finite W is required in this case to make
sure that the integral in Eq. (4) does not diverge, given the
form of K in Eq. (7).34 In practice, we choose W � Γ or, to be
specific, W is at least 10 times larger than Γ0

50 [see Eq. (20)].
For a two-state model, with multiple nuclear degrees of

freedom, the proper electronic friction tensor is33

←→
Λ (r) = −π~

∫
(K(ε , r) ⊗ K(ε , r)) A2(ε , r)f (ε)dε , (8)

where ⊗ denotes an outer product. Equation (8) can be derived
from many different approaches, including perturbation theory
on top of a Meyer-Miller transformation,29 non-equilibrium
Green’s functions,31 path integrals,35 or most generally, a pro-
jection approach applied to the quantum-classical Liouville
equation.36 Although the original Head-Gordon Tully (HGT)
friction model applies only at zero temperature,29,33 Eq. (8) is
equivalent to Tully’s recent extrapolation for friction at finite
temperature.37 Finally, δf (r, t) is the Markovian random force,〈

δf (r, t) ⊗ δf (r, t ′)
〉
= 2kT

←→
Λ (r)δ(t − t ′). (9)

From the expressions above, one immediately finds a
troubling attribute of electronic friction tensors. For some
Hamiltonians, it is possible to encounter geometries where
Γ(r)→ 0 but Oh(r) , 0. In such a case, the corresponding

matrix elements in
←→
Λ (r) [Eq. (8)] will diverge to infinity

because ∫ A2(ε , r)dε ∝ 1
Γ

as Γ → 0 [see Eq. (6)]. To avoid
such a numerical instability, below we will choose a small
artificial parameter Γcutoff for our simulations such that for

Γ(r) < Γcutoff (corresponding to very small molecule-metal
coupling), we will ignore any effect from the electronic bath
and set the friction and random force to 0,

←→
Λ (r) = Eq: (8), Γ(r) ≥ Γcutoff

=
←→
0 , Γ(r) < Γcutoff . (10)

We must always check whether or not our final results depend
on Γcutoff . Unless stated otherwise, all data presented below
are independent of Γcutoff .

B. Classical master equations (CMEs)

Apart from electronic friction, classical master equations
(CMEs) represent an entirely different approach for mod-
eling nonadiabatic dynamics at metal surfaces. The CME
approach38,39 treats electronic states explicitly and proposes
stochastic trajectories. More specifically, nuclear trajectories
are propagated either along U0 or U1 and, for each time step,
the particle may hop from one surface to the other. The prob-
ability to hop is decided by the hybridization function Γ. This
scheme is summed up by the following equations of motion
for the probability densities:

∂tP0(r, p, t)= −
←→
M −1p · ∇P0(r, p, t) + ∇U0 · ∇pP0(r, p, t)

−
Γ(r)
~

f (h(r))P0(r, p, t)

+
Γ(r)
~

(1 − f (h(r)))P1(r, p, t),

∂tP1(r, p, t)= −
←→
M −1p · ∇P1(r, p, t) + ∇U1 · ∇pP1(r, p, t)

+
Γ(r)
~

f (h(r))P0(r, p, t)

−
Γ(r)
~

(1 − f (h(r)))P1(r, p, t).

(11)

Here Pi(r, p, t) denotes the probability density to find a par-
ticle at phase point (r, p) in the electronic state |i〉 at time t.
The CME in Eq. (11) can be derived by assuming (i) a high
temperature such that classical nuclear motion suffices and (ii)
a small hybridization function Γ < kT.

1. Relating classical master equations
to electronic friction

For large enough Γ, with many hops back and forth
between surfaces, Ref. 39 demonstrates that CME dynamics
become equivalent to EF dynamics. Because this equivalence
is key for deriving BCME dynamics (as discussed in Sec. II C),
we will briefly review how such an equivalence can be demon-
strated. First, we change variables to two new densities PA(r,
p, t) and PB(r, p, t) as follows:

P0(r, p, t) = (1 − f (h(r)))PA(r, p, t) + PB(r, p, t),

P1(r, p, t) = f (h(r))PA(r, p, t) − PB(r, p, t)
(12)

or, vice versa

PA(r, p, t) = P0(r, p, t) + P1(r, p, t),

PB(r, p, t) = f (h(r))P0(r, p, t) − (1 − f (r)P1(r, p, t)).
(13)
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Next, if we consider the equation of motion for the total density
PA(r, p, t) and we assume that PB(r, p, t) is changing slowly,
we find

∂tPA(r, p, t) = −
←→
M −1p∇PA(r, p, t)

+ (∇U0(r) + f (h(r))∇h(r))∇pPA(r, p, t)

+
←→
Λ · ∇p

(
←→
M −1pPA(r, p, t)

)
+ kT
←→
Λ · ∇p∇pPA(r, p, t). (14)

According to Eq. (14), the density PA(r, p, t) is effectively
moving on a potential surface with mean force �OU0(r)

� f (h(r))Oh(r) and friction
←→
Λ . For details, see Ref. 39.

C. Broadened classical master equations

Finally, the last dynamics approach studied here will be
an extrapolation of EF and CME dynamics, denoted a broad-
ened CME (BCME)33,40 approach. The BCME approach is
a natural extension of the CME if one wants to study large
Γ. To include the broadening effects, one merely modifies the
potential energy surfaces (PESs) U0 and U1 in Eq. (11) so that,
in Eq. (14), the Fermi population f (h(r)) is replaced with the
correctly broadened population n(h(r)) [for the definition of n,
see Eq. (17)]. Thus, the diabatic surfaces in Eq. (11) will now
depend on both Γ(r) and temperature. Although there is no
single, unique means to modify Eq. (11)—because we specify
only how the equation of motion for PA(r, p, t) should change
and not for PB(r, p, t)—the simplest BCMEs of motion are as
follows:33,40

∂tP0(r, p, t) = −
←→
M −1p · ∇P0(r, p, t)

+
(
∇U0 − ∆FBCME(r)

)
· ∇pP0(r, p, t)

−
Γ(r)
~

f (h(r))P0(r, p, t)

+
Γ(r)
~

(1 − f (h(r)))P1(r, p, t),

∂tP1(r, p, t) = −
←→
M −1p · ∇P1(r, p, t)

+
(
∇U1 − ∆FBCME(r)

)
· ∇pP1(r, p, t)

+
Γ(r)
~

f (h(r))P0(r, p, t)

−
Γ(r)
~

(1 − f (h(r)))P1(r, p, t).

(15)

Here, the diabatic forces have been modified by the following
correction:

∆FBCME(r) = f (h(r))∇h(r)

−

∫ W

−W
K(ε , r)A(ε , r)f (ε)dε

= −∇h(r)(n(r) − f (h(r)))

−

∫ W

−W

(
(ε − h(r))

∇Γ(r)
Γ(r)

)
A(ε , r)f (ε)dε . (16)

The broadened population n(r) is defined as

n(r) ≡
∫ W

−W
A(ε , r)f (ε)dε . (17)

For future reference, the broadened diabatic potentials of mean
force are

Ub
i (r) ≡ Ui(r) −

∫ r

r0

∆FBCME(r′) · dr′ + ζ(r0), i = 0, 1. (18)

In Eq. (16), f is the Fermi function and f (h(r)) represents the
unbroadened, equilibrium population for the impurity site at
position r. By contrast, n represents the correctly broadened
equilibrium population of the impurity site at position r. Thus,
n � f indeed represents a broadening correction. We note that,
for large enough Γ, the total probability density for BCME
dynamics evolves on the same potential of mean force as EF
dynamics [in Eq. (5)].40 In Sec. IV A, we will plot and compare
the unbroadened (U i) and broadened (Ub

i ) diabats.

III. SIMULATION DETAILS

To study the methods above, we will simulate vibrational
relaxation for a model two-dimensional (2D) system. Our 2D
system has been roughly designed to mimic a scattering event,
whereby a diatomic molecule impinges on a metal surface.
The first dimension x corresponds to the vibrational degree of
freedom (DoF) of the molecule, and the second dimension z
is the molecular center-of-mass position. We assume that the
metal surface is located at z = 0 and that an NO molecule
approaches the surface from z = �∞. The energy surfaces we
use are

U0(r) = R0(x) + S0(z),

U1(r) = R1(x) + S1(z),

R0(x) =
1
2

mxω
2(x − x0)2,

R1(x) =
1
2

mxω
2(x − x1)2,

S0(z) = A0(e2C0(z−z0) − 2eC0(z−z0)),

S1(z) =
1
4z

+
1

(z − C1)6
+ B1.

(19)

Here mx is the reduced mass for vibrational motion. The energy
surfaces along the x direction are harmonic wells, where the
eigenfrequency ω is chosen to be the same for |0〉 and |1〉.
A0 represents well the depth of the Morse potential S0, and
following Ref. 41, we fix A0 as 300 meV. B1 is the difference
between the surface work function and NO electron binding
strength, and thus we fix B1 to be 5.55 eV (the work function of
gold is 5.1 eV and the electronic affinity of NO is 0.45 eV41).
x0 and x1 are chosen to mimic the equilibrium bond length
differences between NO (1.15 Å) and NO� (1.25 Å) so that
x1 � x0 = 0.1 Å. Other parameters such as C0, z0, and C1

are chosen such that the potential surfaces look reasonable,
given that the energy surfaces in the z direction (S0(z), S1(z))
resemble the electron mediated model for NO proposed by
Newns.41 The second term in the expression for S1(z) does not
appear in the Newns model but has been added to ensure that
the impinging NO particles scatter back (rather than penetrate
the metal). The metal surface is effectively located around
z = 0.
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TABLE I. Parameters used in the simulation.

Parameter Value (a.u.) Comment

m 55 000 Mass of particle
mx 14 000 Reduced mass
kT 0.001 Temperature
ω 0.008 Harmonic frequency
x0 0 Parameter in Eq. (19)
A0 0.011 Parameter in Eq. (19)
C0 0.64 Parameter in Eq. (19)
z0 �3.5 Parameter in Eq. (19)
B1 0.2 Parameter in Eq. (19)
C1 0.67 Parameter in Eq. (19)
Kg 4 Parameter in Eq. (20)
cg 0.64 Parameter in Eq. (20)
zg 0 Parameter in Eq. (20)
W 1.5 Bandwidth in Eq. (4)

For the hybridization function Γ(r), we choose

Γ(r) = Γ0Q(x)T (z),

Q(x) = 1 + e−Kgx2
,

T (z) =
2

1 + ecg(z−zg)
.

(20)

In the x direction, Γ(r) has a maximum near the equilibrium
position of the |0〉 state (i.e., x0); in the z direction, the cou-
pling Γ(r) decreases exponentially as the distance between the
particle and surface increases, and Γ(r) goes to 0 as z→ �∞.

Almost all of the parameters listed above are defined in
Table I (except for the hybridization function Γ0 and the dis-
placement x1). Note that the temperature here is relatively low
and should not satisfy the “high temperature” prerequisite for
the CME dynamics. That been said, the experiments start in a
hot vibrational state nvib = 15 (which makes the classical vibra-
tional energy Evib� ~ω) such that classical dynamics may well
still be valid. Furthermore, in this paper, we will also study the
dynamics with the BCME to include broadening. In a future
publication, we will consider these dynamics with a broad-
ened version of a quantum master equation (QME) to include
broadening plus nuclear quantum effects. For now, our major

FIG. 2. The CME and BCME surfaces in the z direction. Here x = 0.0 and
Γ0 = 0.03. U i and Ub

i are the CME and BCME surfaces for |i〉, respectively.
UPMF is calculated according to Eq. (5). For a particle incoming from z = �∞,
on the lower surfaces U0, there is an energetic barrier to reach the cross-
ing point. When broadening is taken into account (e.g., through the BCME),
this barrier is lowered. The arrows show the crossing point with or without
broadening.

concern is how will the dynamics depend on different values
of x1 and Γ0 (as well as in the incoming momentum in the z
direction, 〈p0〉).

In Fig. 1, we plot the individual components making up
the diabatic potential energy surfaces in Eq. (19). In Fig. 2, we
plot the total potential surfaces in the z direction (for one fixed
x), and we show the effects of broadening. We also plot the
hybridization function Γ(r).

For each calculation reported below, we have run 5000
trajectories. To roughly simulate the Wodtke experiments,8

each trajectory was initialized to the 15th vibrational state.
In the x direction, trajectories were initialized with a micro-
canonical ensemble: we weighted all (x, px) satisfying
Ex =E0

vib = 15.5~ω equally. In the z direction, trajectories were

FIG. 1. A plot of the 2D model sur-
faces used in our simulation. The energy
surfaces in the x direction (left) are
both harmonic wells. The equilibrium
positions for the neutral state and the
anion state are x0 = 0 and x1 = 0.2
[see Eq. (19)], respectively. In the z
direction (right), there is an energy bar-
rier at z = �1.8 and an energy well at
z = �0.9 (see arrows in the plot), which
can potentially trap incoming particles.
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initialized at position z = �15 and the momentum pz was cho-

sen from a Gaussian distribution with 〈p0〉 and σ =
√

mkT
2 . We

used a time step dt = 0.25 a.u. and propagated trajectories for
2 × 106 steps. Dynamics were carried out with the velocity-
Verlet propagator. Unless stated otherwise, the trapped par-
ticles were not considered, and we analyzed exclusively
reflected particles (which were collected at z = �20).

IV. RESULTS

We will now report our results, focusing mostly on the
overall amount of predicted vibrational relaxation.

A. Dynamics

In Fig. 3, we plot the number of particles collected at
z = �20 as a function of time. In this case, for the CME
dynamics, we find very few particles trapped near the sur-
face. For BCME dynamics, ∼10% of the particles are trapped,
and for EF dynamics, more than 20% of the particles trap in
the well near z = �0.9. In general, we find that this trend holds
for most calculations below with different parameters: the EF
results usually result in far more trapping that CME or BCME
dynamics (see Table II).

B. Vibrational distribution

Let us now discuss the vibrational relaxation of the out-
going particles that are scattered backwards (and ignore all the
trapped particles). With CME or BCME dynamics, because of
the large energy penalty to emerge as an anion asymptotically,
almost all (>99%) the reflected particles are found to lie on
the neutral state |0〉. For this reason, the vibrational state of
each particle can be calculated as follows: (a) we compute the
kinetic energy in the x direction, Ekx = p2

x/2mx, (b) we com-
pute the potential energy in the x direction, Epx = U0(x), and
(c) we compute nvib = (Ekx + Epx)/~ω � 0.5 and round it to
an integer. This procedure can be applied for all the methods
above (CME, BCME, and EF). Note that, for BCME dynam-
ics, we may safely use U0(x) [rather than Ub

0 (x)] because at

FIG. 3. Fraction of scattered particles as a function of t. Here x1 = 0.2,
Γ0 = 0.03,〈p0〉 = 40, Γcutoff = 0.075~ω. Note that the CME dynamics result
in no trapping, the BCME dynamics result in a modest amount of trapping,
and the EF dynamics result in the most trapping (relatively). We have checked
that these reported fractions are unchanged for a long time after t = 49 × 104

such that the percentage of trapped trajectories are very meaningful plateau
values.

z = �20, Γ → 0, and the U0(x) and the Ub
0 (x) surfaces have

negligible differences.

1. Relaxation dependence on Γ0

In Fig. 4(a), we plot the vibrational distributions as a func-
tion of different Γ0 for fixed incoming z momentum 〈p0〉 = 20.
We observe the vibrational relaxation for both EF and BCME
dynamics, while CME dynamics do not yield any relaxation.
From these plots, it is straightforward to see that the CME
dynamics fail for an obvious reason: nearly all particles are
blocked by the energy barrier in the z direction, and they do
not have enough energy to reach the surface crossing seam,
see Fig. 1.

TABLE II. Scattered particle statistics.

Percentage reflected
Parameters Percentage trapped on state |1〉

x1 Γ0 〈p0〉 CME (%) BCME (%) EF (%) CME (%) BCME (%)

0.2 0.01 20 0.02 0.04 0.02 0.04 0.08
0.2 0.03 20 0.02 1.36 0.72 0.14 0.08
0.2 0.05 20 0.02 10.24 17.44 0.06 0.11
0.2 0.08 20 0.04 37.06 55.34 0.08 0.03
0.2 0.03 40 0.08 7.44 20.98 0.06 0.09
0.2 0.03 60 3.60 6.26 18.50 0.10 0.09
0.2 0.03 80 1.22 0.78 0.32 0.06 0.10
0.4 0.01 20 7.98 8.52 2.06 0.04 0.07
0.4 0.03 20 3.26 4.42 2.24 0.10 0.08
0.4 0.05 20 1.34 3.24 31.34 0.14 0.12
0.4 0.08 20 0.34 1.98 7.60 0.08 0.10
0.4 0.03 40 9.38 7.48 23.22 0.09 0.06
0.4 0.03 60 9.68 4.90 8.24 0.04 0.06
0.4 0.03 80 3.74 1.88 5.48 0.04 0.04
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FIG. 4. Vibrational distribution analy-
sis for the scattered trajectories for dif-
ferent metal-molecule couplings. Here
x1 = 0.2 (left), 0.4 (right) [see Eq. (19)].
The incoming z-momentum 〈p0〉 = 20,
Γcutoff = 0.075~ω, Γ0 = 0.01, 0.03,
0.05, 0.08. The CME dynamics give
no relaxation because without broad-
ening, the trajectories never reach the
diabatic crossing point. However, both
EF and BCME give relaxation, and the
methods agree for large Γ0. Note that
both of these methods predict a turnover
in relaxation: vibrational relaxation is
maximized for Γ0 = 0.05. Note also that,
for x1 = 0.4, the BCME gives signifi-
cantly more relaxation than that of EF
when Γ0 is small.

Focusing now on the EF and BCME dynamics, as one
would expect, we find that relaxation becomes stronger as
the molecule-bath coupling increases from zero, reaching a
maximum (〈nvib〉 = 7 − 8) at Γ0 = 0.05. Note, however, that
there is a turnover. As Γ0 increases even more, correspond-
ing to the extreme adiabatic limit, vibrational relaxation slows
down. Such a surprising turnover feature is not found in con-
densed phase electron transfer dynamics where the rate of
electron transfer strictly increases as the molecule-metal cou-
pling parameter Γ grows. See, e.g., Fig. 2 in Ref. 42 and Fig.
10.8 in Ref. 43. And yet this turnover is clearly analogous
to Kramers’ theory,44 whereby the unimolecular escape rate
from a well is maximized for a friction that is not too large or
too small. Even though we are modeling transient vibrational
relaxation (rather than activated nuclear barrier crossings), the
same physics applies.

Regarding reliability, we note that the EF and BCME
relaxation rates agree, especially in the adiabatic limit as
Γ0 increases. Thus, even though we cannot propagate exact
dynamics, we do calculate similar observables with two dif-
ferent and orthogonal methods. Furthermore, recent bench-
marking of the BCME algorithm has suggested that BCME
dynamics should be quite accurate with only two electronic
states.51 For both of these reasons, we have a great deal of
confidence in the data from Fig. 4(a), at least qualitatively. In

Fig. 4(b), however, we plot the same result for the displace-
ment x1 = 0.4, and we show that the agreement between EF
and BCME does not always hold. While both methods predict
more relaxation than the case of x1 = 0.2, the BCME approach
predicts far more relaxation for small Γ0 than does EF. In this
case, because CME dynamics can be derived with perturbation
theory assuming small Γ, it is easy to argue that CME dynamics
(and not EF) must be accurate here for Γ0 = 0.01. Furthermore,
from the fact that BCME dynamics exactly agree with CME
dynamics for small Γ0 and qualitatively agree with EF dynam-
ics for large Γ0, we hypothesize that the BCME dynamics
should be meaningful over a wide range of parameter space.
Our intuition is that EF dynamics will fail for large displace-
ments (x1 � x0) and small or moderately sized hybridization
functions Γ0.

2. Relaxation dependence on incoming momentum

We now study how the incoming momentum affects relax-
ation. In Fig. 5(a), we plot the vibrational distributions for
different 〈p0〉with a fixed value of the hybridization (Γ0 = 0.03)
and x1 = 0.2. Here, for 〈p0〉 ≥ 40, the CME approach finally
gives relaxation [compared against Fig. 4(a)]: there is enough
energy to reach the diabatic crossing point. However, the CME
does not agree with BCME or EF dynamics for small momenta.

FIG. 5. Vibrational distribution analy-
sis for the scattered trajectories for
different incoming momenta. Here
x0 = 0.2 (left), 0.4 (right), Γ0 = 0.03,
Γcutoff = 0.075~ω, 〈p0〉 = 20, 40, 60, 80.
The agreement between EF and BCME
increases as 〈p0〉 increases. When
x1 = 0.4, more relaxation is predicted
for all three schemes.
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FIG. 6. A histogram of hopping energies. Here x1 = 0.2, 0.4, Γ0 = 0.01,
0.05, 〈p0〉 = 20, Γcutoff = 0.075~ω. Positive ∆E means energy transfers from
the metal to a trajectory, while negative ∆E means energy transfers from a
trajectory to the metal. Note that the y axis has different scales for different
subfigures. The plot suggests that, for all 4 cases, most hops have small energy
changes, but a large energy transfer is not prohibited. Note the sensitivity of
the BCME dynamics to x1.

Regarding EF and BCME dynamics, we find that the relax-
ation rates are also in disagreement (though not completely
different) for small incoming momenta.

For large momenta, however, we note that all the dynamic
protocols (EF, CME, and BCME) roughly agree: apparently,
because of the large incoming momenta, there are enough clas-
sical crossings such that friction results become meaningful,
but this kinetic energy is also large enough such that broad-
ening effects on the surface are unimportant. This agreement
between the CME and EF dynamics has been seen before in
1D problems.42

Finally, we consider the same dynamics now for the case
of a larger displacement, x1 = 0.4. Here, we find again that
there is no agreement between any of the methods for small
incoming momentum. Because of the ability to interpolate,
however, we hypothesize that the BCME dynamics are the
most accurate. That being said, at larger incoming velocities,
the methods do become more similar. Interestingly, though, at
very large incoming velocities, all methods become very dif-
ferent again. These features yet cannot be easily explained. In
general, we find that the BCME dynamics consistently predict
more relaxation than the electronic friction as well as slightly
wider vibrational distributions.

C. Electronic energy released and hopping
energy histograms

Recent experiments have measured the distribution of
electronic kinetic energies excited in a metal surface as the
result of molecular scattering.45,46 With this experimental fact
in mind, we plot the energy distribution for hopping according
to the CME/BCME dynamics for the four different simulations
in Fig. 6. Note that such energy distributions cannot easily be
extracted from EF calculations.

The results in Fig. 6 show that, for most hops, energy trans-
fers from the incoming particle to the metal (i.e., the particle
loses energy). Most hops occur near the surface crossing region
with small energy gaps (|∆E| < 0.02). Even so, large energy
transfer events are possible within a single hopping event,
which does explain the “multi-quanta relaxation” observed
in Wodtke’s experiments.9,12 These results are discussed in
Sec. V.

Finally, let us return to the turnover in vibrational rates
as predicted by both EF and BCME dynamics in Fig. 4. To
understand this turnover, Fig. 6 is quite useful. According
to BCME dynamics, energy loss occurs only through hops.
Thus, on the one hand, if Γ0 is small, the absolute number
of hops is small and vibrational relaxation must be slow. On
the other hand, if Γ0 is too large, most hops occur just after

FIG. 7. BCME surfaces in the x direction for x1 = 0.2 (left), 0.4 (right), with a fixed z = �2.0. Here Γ0 = 0.01. The dotted line is the vibrational energy for
particles at nvib = 15, and the shaded areas are the active regions for hopping events |0〉 → |1〉 (darker) and |1〉 → |0〉 (lighter), assuming only downward hops
(suggested by Fig. 6). Because particles move more slowly in the z direction than that in the x direction when nvib = 15, this cartoon representation (with fixed z
position) gives a reasonable explanation for why vibrational relaxation is faster with x1 = 0.4 (as opposed to x1 = 0.2). Obviously, hop1 can be triggered more
easily when x1 = 0.4, and hop1 also releases more vibrational energy to the metal for larger x1.
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particles pass the energy crossing seam, i.e., when downward
hops become energetically preferable. These hops yield very
small energy loss and again vibrational relaxation must be
slow. Thus Fig. 6 offers us some intuition for understanding
the predicted turnover phenomenon.

V. DISCUSSION

Thus far, we have found that both electronic friction and
broadened classical master equations are able to capture many
features of vibrational relaxation, and sometimes these two
methods even agree. At this point, however, there are two key
features which must be discussed in more detail.

A. The BCME is more sensitive to displacement
than EF

From Figs. 4 and 5, we observed that, although EF and
BCME both yield larger relaxation rates when the displace-
ment x1 is increased from 0.2 to 0.4, the BCME approach
is obviously more sensitive to this change in parameter—
especially for small Γ0 and small 〈p0〉 cases. This sensitiv-
ity is obviously important because, for many molecules, the
anionic and neutral potential energy surfaces can be very dif-
ferent. Furthermore, EF should be reliable only when these
differences (i.e., electron-phonon couplings) are relatively
small.

To explain the sensitivity of BCME dynamics, a figure
will be very useful (Fig. 7). Here, we observe that, as the dis-
placement x1 becomes larger, the surface crossing point as
a function of the x coordinate drops in energy. As a result,
if trajectories move along diabats, trajectories with a given
nvib will spend more time in the regions of large hopping
probability. Furthermore, in these very regions, there is the
chance to lose a larger amount of energy in one hop (see also
Fig. 6).

Now, EF dynamics also predict stronger relaxation for
large displacements—after all, the EF friction tensor is pro-
portional to Oh [see Eqs. (7) and (8)]. However, EF dynamics
are not as sensitive to the displacement as are BCME dynamics

TABLE III. Different parameters in the cut-off analysis (compared to
Table I).

Parameter Value (a.u.) Comment

cg 4 Parameter in Eq. (20)
zg �0.55 Parameter in Eq. (20)

because EF dynamics move along the adiabatic surface (rather
than the diabatic surface) and a dramatic, sudden energy loss
is impossible. Indeed, Wodtke and Tully et al. have argued that
EF dynamics cannot produce multi-quanta relaxation because,
by damping the nuclear motion, nuclear velocities change con-
tinuously in time, and thus any quantum mechanical extension
of electronic friction must predict step-by-step dissipation of
vibrational quanta.12,47

B. EF can be sensitive to Γcutoff

The very last feature that must be discussed is the arti-
ficial parameter, Γcutoff , which we have included earlier [in
Eq. (10)], so as to determine when to apply or not apply the
frictional damping and random force. The parameter Γcutoff

can sometimes be crucial because, as explained in Sec. II A,
in certain cases, one can find infinite friction for extremely
small Γ(r). We must emphasize, however, that this diver-
gence of friction is not an artifact. In fact, this divergence
in friction actually forces EF dynamics to recover Marcus’s
theory of electrochemical charge transfer in the nonadiabatic
regime for a one-dimensional quantum Brownian oscillator
model.42 Thus, the friction tensor cannot be improved sim-
ply by smoothing away the divergence.48 And yet, at the same
time, the existence of an infinite frictional tensor must give one
doubt about the overall applicability of EF dynamics. To inves-
tigate the practical consequences of this divergence, we will
now modify the original T (z) model with the new parameters in
Table III; this substitution forces T (z) to be much sharper than
before. x1 is kept at 0.2. The modified parameters are plotted
in Fig. 8. With these new parameters and surfaces, we report
the relaxation rates from scattering simulations as a function
of Γcutoff .

FIG. 8. Modified surfaces used in
Γcutoff analysis (Fig. 9). x1 = 0.2. The
only difference between this figure and
Fig. 1 is the shape of T (z), which is rel-
atively sharper here. Here Γ(r) can be
very small (but still>Γcutoff ) even in the
surface crossing region.
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FIG. 9. Vibrational distribution analy-
sis for the scattered trajectories mov-
ing along the modified parameters in
Fig. 8 (left) and the original surfaces in
Fig. 1 (right). Here x1 = 0.2, Γ0 = 0.03,
〈p0〉 = 40. For all the Γcutoff parame-
ters used here, the cut-off region [where
Γ(r) = Γcutoff ] is to the left of the surface
crossing point. In the original model,
the vibrational distributions from EF are
consistent for different Γcutoff parame-
ters, but for the modified parameters, the
distributions are quite sensitive to the
artificial parameter Γcutoff .

From the data in Fig. 9(a), we find that the EF results are
not equivalent for different values of Γcutoff . Indeed, for these
parameters and such a small value of Γ0, we find that the fric-
tion tensor is extremely large (nearly divergent). Thus, if Γcutoff

is very small, we find that the EF dynamics can actually (and
spuriously) predict more vibrational relaxation than BCME or
CME dynamics. Luckily, this issue should not be important
when Γ(r) is not infinitesimal near a surface crossing region,
as shown in Fig. 9(b).

Note that, except for Fig. 9, all results reported in this
paper using electronic friction can be considered reliable and
converged with respect to Γcutoff (see Figs. 4 and 5). Obvi-
ously, looking forward, the fact that the BCME requires no
such artificial parameter is a huge relative advantage. Unlike
the case of EF, both the BCME and CME dynamics pro-
pose simple smooth dynamics along diabats in regions with
Γ(r)→ 0.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In summary, we have investigated vibrational relaxation
within a 2D scattering simulation where we expect the tran-
sient electron transfer for a variety of different approaches.
Our conclusions are as follows:

• We find that the CME approach is unable to predict
accurate vibrational relaxation probabilities. Whenever
the metal-molecule coupling Γ is large, CME dynam-
ics along the simple diabatic curves are usually not
accurate. In particular, the trajectory often misses the
crossing region entirely. These dynamics usually dis-
agree with BCME and EF dynamics (even for large Γ)
and are a strong reminder that the propagating dynam-
ics on raw diabatic surfaces is dangerous when Γ is
really large.

• We find that EF dynamics give reasonable probabilities
of vibrational relaxation (and thus agree with BCME
dynamics) when Γ(r) is reasonably large in the surface
crossing region. However, there are clearly spurious
effects when Γ becomes too small. We should empha-
size that these effects likely represent the most severe
failures possible for the EF approach. After all, the

EF approach was originally designed to treat small
electron-phonon couplings, whereas here the electron-
phonon couplings can be large. Furthermore, Γ van-
ishes far away from the surface so that the assumption
of large molecule-metal couplings is obviously vio-
lated. To address the shortcoming of the EF approach,
the only future path forward would be to include
non-Markovian effects.49

• Overall, the BCME approach appears to give the most
sensible data. By construction, this algorithm mostly
agrees with the CME algorithm (in the limit of small
Γ) and with the EF algorithm (in the limit of large Γ).
The BCME approach tends to be more sensitive to
electron-phonon couplings, and the BCME approach
usually results in more relaxation and a slightly wider
distribution of vibrational quanta than do EF dynamics.

Finally, perhaps the most surprising conclusion of this
work is the prediction that there is a turnover in the rate of
vibrational relaxation for scattering experiments as a function
of Γ. According to Fig. 4, we predict that the probability for
vibrational relaxation peaks when Γ is neither too small nor too
large. This turnover feature is not found in the condensed phase
dynamics, where the rate of molecule-metal electron transfer
is strictly increasing with the coupling parameter Γ: see Fig. 2
in Ref. 42. Instead it would appear that we have uncovered a
situation where the Kramers’ turnover phenomenon reappears.
As a practical matter, it would be very interesting to identify
a series of different metal substrates with varying degrees of
metal-molecule coupling (Γ) from which this trend could be
confirmed experimentally.

Finally, looking forward, we have two clear next steps.
First, given the simplicity of the BCME approach (which
ignores electronic coherences for a two-state problem), it will
be very interesting to compare the BCME algorithm with
IESH25 (which includes coherences within the framework of
a discretized metal). Such a comparison will tell us a great
deal about when and why the BCME works/fails. Second, in
order to apply the present dynamics to a real (and not model)
system, it will be essential to extract (rather than conjecture)
the relevant parameters from ab initio electronic structure
calculations. This work is ongoing.
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