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We extend the broadened classical master equation (bCME) approach [W. Dou and J. E. Subotnik,
J. Chem. Phys. 144, 024116 (2016)] to the case of two electrodes, such that we may now calculate
non-equilibrium transport properties when molecules come near metal surfaces and there is both
strong electron-nuclear and strong metal-molecule coupling. By comparing against a numerically
exact solution, we show that the bCME usually works very well, provided that the temperature is
high enough that a classical treatment of nuclear motion is valid. Finally, in the low temperature
(quantum) regime, we suggest a means to incorporate broadening effects in the quantum master
equation (QME). This bQME works well for fairly low temperatures. Published by AIP Publishing.
https://doi.org/10.1063/1.4992784

I. INTRODUCTION

Single-molecule junctions have gained a lot of interest
over the past few decades1–3 where many interesting phenom-
ena have been found, such as Coulomb blockades,4–7 Kondo
effects,8–12 and Franck-Condon blockades.13–16 It is now well
known that electron-nuclear couplings can play an important
role in many molecular junction transport processes,17,18 lead-
ing to heating,19–23 nonadiabatic effects,24–27 enhanced current
fluctuations,28–30 hysteresis or switching,31–34 negative dif-
ferential resistance,35–39 and current induced chemistry.40–44

To understand these phenomena, theoretical insight can be
gained from a non-equilibrium Green’s function (NEGF)45–55

formalism, the quantum master equation (QME),39,45,56–58

and semiclassical methods.59–61 At the same time, numer-
ically exact methods including numerical renormalization
group (NRG) theory,62 quantum Monte Carlo (QMC),63–66 the
multilayer multiconfiguration time-dependent Hartree (ML-
MCTDH) approach67,68 and the hierarchical quantum master
equation (HQME)69–71 allow one to benchmark the former
approximate tools.

For the most part, in order to model a realistic molecule
present in a junction or near metal surfaces, many nuclear
degrees of freedom (DoFs) are involved, such that a quan-
tum treatment of all of the nuclear motion is challenging.
That being said, a semiclassical treatment is possible for
a large number of low frequency modes at relatively high
temperature. Motivated by such a consideration, over the
past two years, two of us have investigated a classical mas-
ter equation (CME) approach to describe the semiclassical
dynamics of coupled electron-nuclear motion for molecules
near metal surfaces.72–74 Because it is based on perturbation
theory, a straightforward, undressed CME works well only
for weak molecule-metal couplings. However, this CME can
successfully be then mapped onto a Fokker-Planck (FP)

equation through an adiabatic transformation.75 By compar-
ing the resulting FP equation against the standard form of
Langevin dynamics produced by a non-equilibrium Green’s
function (NEGF) expansion (which is based on the idea of
small nuclear velocities),47 it has been previously demon-
strated that for the case of a single metal surface, one can
modify the potential energy surfaces to incorporate broad-
ening effects in an ad hoc manner. The resulting broadened
CME (bCME) successfully extrapolates between both weak
and strong molecule-metal couplings.76

In the present paper, we will now extend the previ-
ous results to the case of two electrodes so that we may
calculate non-equilibrium transport properties. Following a
similar procedure as for the case of one electrode, we will
derive a Fokker-Planck equation via an adiabatic approxi-
mation. The corresponding friction and random force will
agree with previously published results,47 provided broad-
ening can be disregarded. Note that in the non-equilibrium
case, i.e., the case of two different Fermi levels on the dif-
ferent metals, the friction and random force will not obey
the second fluctuation-dissipation theorem, resulting in heat-
ing of the nuclear modes. A simple broadening scheme will
be introduced to calculate transport properties and we will
benchmark our results against numerically exact results from
the HQME and demonstrate strong agreement across nona-
diabatic and adiabatic regimes (as long as the nuclei are
classical).

To address the low temperature (quantum) limit, a similar
(and simple) broadening scheme for the QME is introduced
(which we will denote as a bQME). The results from the bQME
recover bCME results at relatively high temperature and agree
well with numerically exact HQME solutions at fairly low
temperature. That being said, however, in the case of very low
temperature, both the bCME and the bQME show deviations
from the exact HQME results.
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We organize our paper as follows. In Sec. II, we review the
CME and introduce the bCME. In Sec. III, we briefly review
the QME and introduce the bQME. In Sec. IV, we discuss
the numerical exact solutions from HQME. We plot results in
Sec. V and conclude in Sec. VI.

II. BROADENED CLASSICAL MASTER
EQUATION (bCME)
A. The Anderson-Holstein (AH) model

The model we study in this paper is the general-
ized spinless Anderson-Holstein (AH) model, where one
level d (with creation/annihilation operator d̂†/d̂) couples
both to a manifold of electronic levels indexed by k
(with creation/annihilation operator ĉ†k/ĉk) and to a nuclear
degree of freedom (DoF, with position/momentum operator
x̂/p̂),

Ĥ = h(x̂)d̂†d̂ + U0(x̂) +
p̂2

2m
+

∑
k∈L,R

Vk(ĉ†k d̂ + d̂†ĉk)

+
∑

k∈L,R

εk ĉ†k ĉk . (1)

For such a model, we can define the hybridization function due
to coupling to the left and right leads,

Γ
K (ε) ≡ 2π

∑
k∈K

V2
k δ(ε − εk). (2)

We have introduced the lead index K = L, R (i.e., left and
right). Below, we will assume the wide-band approximation,
such that ΓK is independent of energy. For convenience, we
will further define

Γ ≡ ΓL + ΓR. (3)

B. Classical master equation

In the high temperature limit, i.e., kBT > ~ω (ω is the typ-
ical frequency of the nuclear motion) and kBT > Γ, as shown
in Refs. 72 and 77, we can use a classical master equation
(CME) to describe the dynamics

∂

∂t
ρ0(x, p, t) = −

p
m
∂ρ0

∂x
+
∂U0

∂x
∂ρ0

∂p
−
Γ

~
f̄ (h)ρ0

+
Γ

~
(1 − f̄ (h))ρ1, (4a)

∂

∂t
ρ1(x, p, t) = −

p
m
∂ρ1

∂x
+
∂U1

∂x
∂ρ1

∂p
+
Γ

~
f̄ (h)ρ0

−
Γ

~
(1 − f̄ (h))ρ1, (4b)

where ρ0(x, p) (ρ1(x, p)) is the probability density for the
nuclei to be located in phase space at (x, p) with energy level d
being unoccupied (occupied). In the above equations, we have
defined

U1(x) = U0(x) + h(x), (5a)

f̄ (h) =
1
Γ

(ΓLf L(h) + ΓRf R(h)), (5b)

where f K (h) = (e(h(x )�µK )/kBT + 1)�1 is the Fermi function of
lead K (µK is the corresponding chemical potential). Below,
for brevity, we will abbreviate f̄ (h) as f̄ . Physically, if there is

no nuclear motion, f̄ (h) would be the equilibrium population
of the level at position x.

Note that the CME [Eq. (4)] is valid in the high temper-
ature limit: (1) kBT > ~ω, such that a classical treatment of
the nuclei with the CME is feasible; (2) kBT > Γ, such that
all broadening effects can be disregarded. Below, similar to
Refs. 76 and 78, we will modify our CME to partially incor-
porate broadening effects. To achieve such a modification, we
require an adiabatic transformation.

C. Adiabatic transformation
and Fokker-Planck equation

We start our adiabatic transformation by defining new
density probabilities A(x, p, t) and B(x, p, t),

ρ0(x, p, t) ≡ (1 − f̄ )A(x, p, t) + B(x, p, t), (6a)

ρ1(x, p, t) ≡ f̄ A(x, p, t) − B(x, p, t). (6b)

These new definitions imply that A(x, p) ≡ ρ0(x, p) + ρ1(x, p)
is the total probability density at (x, p) and B ≡ f̄ ρ0− (1− f̄ )ρ1

are the fluctuations from equilibrium. Together with the CME
[Eq. (4)], we can easily recover the equation of motion (EOM)
for A and B,

∂

∂t
A(x, p, t) = −

p
m
∂A
∂x

+ (
∂U0

∂x
+ f̄

∂h
∂x

)
∂A
∂p
−
∂h
∂x

∂B
∂p

, (7a)

∂

∂t
B(x, p, t) = −

p
m
∂B
∂x

+ (
∂U0

∂x
+ (1 − f̄ )

∂h
∂x

)
∂B
∂p

+
p
m

A
∂ f̄
∂x

− f̄ (1 − f̄ )
∂h
∂x

∂A
∂p
−
Γ

~
B. (7b)

As argued in Refs. 75, 76, and 79, in the adiabatic limit,
i.e., when the nuclear motion is slow compared with electronic
transition (Γ > ~ω), we approximate Eq. (7b) as

Γ

~
B ≈

p
m

A
∂ f̄
∂x
− f̄ (1 − f̄ )

∂h
∂x

∂A
∂p

. (8)

When plugging the above equation into Eq. (7a), we get a
closed EOM for A,

∂

∂t
A(x, p, t) = −

p
m
∂A
∂x
− Fpmf (x)

∂A
∂p

+ γe(x)
∂

∂p
(

p
m

A)

+ De(x)
∂2A

∂p2
. (9)

We remind the reader that Eq. (9) is a Fokker-Planck equation
for the total density probability A (i.e., A ≡ ρ0 + ρ1 is the den-
sity for both electronic states combined). The corresponding
mean force Fpmf , electronic friction γe, and correlation of the
random force De are given by

Fpmf (x) = −
∂U0

∂x
−
∂h
∂x

f̄ , (10a)

γe(x) = −
~

Γ

∂ f̄
∂x

∂h
∂x

, (10b)

De(x) =
~

Γ
f̄ (1 − f̄ )(

∂h
∂x

)2. (10c)

We note that if µL = µR, then we have ∂f̄
∂x = −βf̄ (1− f̄ ) ∂h

∂x ,
such that De = kBTγe, i.e., the second fluctuation-dissipation
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theorem is satisfied. By contrast, when a voltage is applied to
the leads, such that µL , µR, De = kBTγe does not hold any
longer. Note also that Eq. (10) agree with other previously pub-
lished results (for example, Ref. 47), when level broadening
can be disregarded (i.e., kBT > Γ).

D. Incorporating broadening effects

In Ref. 47, using a velocity expansion, the NEGF formal-
ism gives a slightly different mean force [versus Eq. (10a)],

F̃pmf (x) = −
∂U0

∂x
−
∂h
∂x

n̄(h), (11)

where we have defined

n̄(h) =
∫

dε
2π

Γ

(Γ/2)2 + (ε − h(x))2
f̄ (ε). (12)

[Again, we will abbreviate n̄(h) as n̄.]
We emphasize that Eq. (11) includes broadening effects.

To incorporate such effects into our EOM, we must replace the
mean force Fpmf [in Eq. (10a)] by the broadened mean force
F̃pmf ,

∂

∂t
A(x, p, t) = −

p
m
∂A
∂x

+ (
∂U0

∂x
+ n̄

∂h
∂x

)
∂A
∂p
−
∂h
∂x

∂B
∂p

. (13)

Now, the key issue becomes if and how to modify the mean
force for B. In Ref. 76, the mean force for B was not altered.
In Ref. 78, in order to make the final bCME simpler (as shown
below), we modify the mean force for B as follows:

∂

∂t
B(x, p, t) = −

p
m
∂B
∂x

+

(
∂U0

∂x
+ (1 + n̄ − 2f̄ )

∂h
∂x

)
∂B
∂p

+
p
m

A
∂ f̄
∂x
− f̄ (1 − f̄ )

∂h
∂x

∂A
∂p
−
Γ

~
B. (14)

Empirically, Eqs. (7b) and (14) [together with Eq. (13)] give
almost identical results for a large regime of parameters.78

Hence, for simplicity, we will use Eq. (14) instead of Eq. (7b).
Finally, using the modified EOM for A and B [Eqs. (13)

and (14)], together with the definitions in Eq. (6), we arrive at
a broadened CME (bCME) for ρ0 and ρ1,

∂

∂t
ρ0(x, p, t) = −

p
m
∂ρ0

∂x
+
∂Ũ0

∂x
∂ρ0

∂p
−
Γ

~
f̄ ρ0 +

Γ

~
(1 − f̄ )ρ1,

(15a)

∂

∂t
ρ1(x, p, t) = −

p
m
∂ρ1

∂x
+
∂Ũ1

∂x
∂ρ1

∂p
+
Γ

~
f̄ ρ0 −

Γ

~
(1 − f̄ )ρ1,

(15b)

where Ũ0 and Ũ1 are broadened diabatic surfaces defined
as

∂Ũ0

∂x
=
∂U0

∂x
+ (n̄ − f̄ )

∂h
∂x

, (16a)

∂Ũ1

∂x
=
∂U1

∂x
+ (n̄ − f̄ )

∂h
∂x

. (16b)

In this paper, our goal is to benchmark Eq. (15). Note the
simplicity of these equations: Such simple equations would

not have resulted if our extrapolation had joined Eqs. (13) and
(7b) together.

The bCME [Eq. (15)] or the CME [Eq. (4)] can be easily
solved using surface hopping procedures: a swarm of tra-
jectories running on the two potential energy surfaces with
stochastic hopping between the two surfaces. Details of the
surface hopping algorithm can be found in Ref. 72.

E. Observables

Below, we will compare steady state current-voltage
characteristics (I-V curves) and phonon excitation for the
bCME/CME against exact HQME results. A few words are
appropriate regarding how we extract observables.

1. I-V curves

For the CME, in the spirit of a master equation,72 the
current is given by

I =
e
~

∫
dxdp

(
Γ

Lf L(h)ρ0(x, p) − ΓL(1 − f L(h))ρ1(x, p)
)

.

(17)

For the bCME, to incorporate broadening effects into the
current, we first define the local Landauer current,

Iloc(x) ≡
e
~

∫
dε
2π

ΓLΓR

(ε − h(x))2 + (Γ/2)2
(f L(ε) − f R(ε)). (18)

The final current is then given by averaging over the phase
space distribution,

I =
∫

dxdp Iloc(x)A(x, p). (19)

Again, A(x, p) ≡ ρ0(x, p) + ρ1(x, p).

2. Phonon excitation

Below, we will assume that the nuclear motion is har-
monic, i.e., U0(x) = 1

2 mω2x2, such that we can compare the
average phonon excitation 〈â†â〉. By definition, ~ω(â†â + 1

2 )

= 1
2 mω2x̂2 + p̂2

2m so that we may calculate average phonon
excitations in the classical regime as follows:

〈â†â〉 =
mω
2~
〈x2〉 +

〈p2〉

2mω~
−

1
2

. (20)

In the CME or bCME, 〈x2〉 and 〈p2〉 are given by averaging
phase space distribution,

〈x2〉 =

∫
dxdp x2A(x, p), (21a)

〈p2〉 =

∫
dxdp p2A(x, p). (21b)

III. QME AND BQME

For the bCME or CME, the nuclear potential U0(x) and
electron-nuclear coupling h(x) are general, but results hold
only at reasonably large temperature. To be able to push our
results into the quantum (low temperature) limit, we will
restrict ourselves to the case of harmonic oscillator and linear
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coupling, such that U0 =
1
2 mω2x2 and h(x) = Ed + g

√
2mω
~ x.

Now we rewrite the Hamiltonian [in Eq. (1)] in terms of rais-
ing and lowering operators (â† and â) instead of position and
momentum operators (x̂ and p̂) and perform a system-bath
partitioning,

Ĥ = ĤS + ĤB + ĤSB (22)

with

ĤS = d̂d̂†Ĥ0 + d̂†d̂Ĥ1, (23a)

ĤB =
∑

k∈L,R

εk ĉ†k ĉk , (23b)

ĤSB =
∑

k∈L,R

(Vk ĉ†k d̂ + h.c.), (23c)

where

Ĥ0 = ~ω(â†â +
1
2

), (24a)

Ĥ1 = ~ω(â†â +
1
2

) + g(â† + â) + Ed . (24b)

In such a case, assuming Γ < kBT , it is straightforward
to derive a quantum master equation for the reduced density
matrix ρ̂0 and ρ̂1,73,77

∂ ρ̂0

∂t
= −

i
~

[Ĥ0, ρ̂0] −
∑

K

∑
k∈K

|Vk |
2

~2

×

∫ ∞
0

dτeiεkτ/~f K (εk)e−iĤ1τ/~eiĤ0τ/~ ρ̂0

− eiεkτ/~(1 − f K (εk)) ρ̂1e−iĤ1τ/~eiĤ0τ/~ + h.c., (25a)

∂ ρ̂1

∂t
= −

i
~

[Ĥ1, ρ̂1] −
∑

K

∑
k∈K

|Vk |
2

~2

×

∫ ∞
0

dτe−iεkτ/~(1 − f K (εk))e−iĤ0τ/~eiĤ1τ/~ ρ̂1

− e−iεkτ/~f K (εk) ρ̂0e−iĤ0τ/~eiĤ1τ/~ + h.c. (25b)

To include broadening within the QME, similar to the
bCME, we replace Ĥ0/Ĥ1 by the corresponding broadened
ˆ̃H0/ ˆ̃H1 in Eq. (25),

∂ ρ̂0

∂t
= −

i
~

[ ˆ̃H0, ρ̂0] −
∑

K

∑
k∈K

|Vk |
2

~2

×

∫ ∞
0

dτeiεkτ/~f K (εk)e−i ˆ̃H1τ/~ei ˆ̃H0τ/~ ρ̂0

− eiεkτ/~(1 − f K (εk)) ρ̂1e−i ˆ̃H1τ/~ei ˆ̃H0τ/~ + h.c.,

(26a)

∂ ρ̂1

∂t
= −

i
~

[ ˆ̃H1, ρ̂1] −
∑

K

∑
k∈K

|Vk |
2

~2

×

∫ ∞
0

dτe−iεkτ/~(1 − f K (εk))e−i ˆ̃H0τ/~ei ˆ̃H1τ/~ ρ̂1

− e−iεkτ/~f K (εk) ρ̂0e−i ˆ̃H0τ/~ei ˆ̃H1τ/~ + h.c. (26b)

Here ˆ̃H0 = Ĥ0 +∆U(x) and ˆ̃H1 = Ĥ1 +∆U(x), where ∆U(x) is
the shift of the two PESs,

∆U(x) =
∫ x

x0

dx′ (n̄(h(x′)) − f̄ (h(x′))
∂

∂x′
h(x′)) (27)

where x0 is some reference point.
Both the bQME and QME can be further simplified using

the eigenbasis of the vibrational states. In the Appendix,
we show how to solve these equations and calculate the
observables in practice.

IV. HIERARCHICAL QUANTUM MASTER
EQUATION (HQME)

In the following, we provide some details regarding the
numerically exact HQME approach which will be used to
benchmark the results of our newly developed methods. The
HQME approach [also known as hierarchical equation of
motion (HEOM) approach] was originally proposed in the con-
text of relaxation dynamics80,81 and later on applied to charge
transport.69–71 We closely follow Ref. 71, where the HQME
approach for a numerically exact treatment of vibrationally
coupled transport was introduced.

Based on the system-bath partitioning in Eq. (22), it
is numerically expedient (see the supplementary material of
Ref. 71 for details) to diagonalize the Hamiltonian of the
reduced system ĤS by employing a small polaron transfor-

mation, ˆ̃H = ŜĤŜ† with Ŝ = exp
(
(g/~ω)

(
â† − â

)
d̂†d̂

)
. The

resulting Hamiltonian is given by

ˆ̃H = ˆ̃HS + ĤB + ˆ̃HSB (28)

with

ˆ̃HS = Ẽd d̂†d̂ + ~ω

(
â†â +

1
2

)
, (29a)

ˆ̃HSB =
∑

k∈L,R

(VkX̂ĉ†k d̂ + h.c.). (29b)

The small polaron transformation leads to a renormalization
of the energy of the electronic state Ẽd = Ed −g2/(~ω) and the
molecule-lead coupling term is dressed by the shift operator
X̂ = exp{(g/~ω)(â − â†)}.

Employing a bath interaction picture, the bath coupling
operators are defined by

b̂σK (t) = exp
(
iĤBt/~

) *
,

∑
k∈K

Vk ĉσk
+
-

exp
(
−iĤBt/~

)
(30)

with σ = ±, ĉ−k ≡ ĉk , and ĉ+
k ≡ ĉ†k . As these operators obey

Gaussian statistics, all information about system-bath coupling
is encoded in the two-time correlation function of the free
bath Cσ

K (t − τ) = 〈b̂σK (t)b̂σ̄K (τ)〉B, where σ̄ ≡ −σ. Via Fourier
transformation

Cσ
K (t) =

1
2π

∫ ∞
−∞

dε eσiε t/~
Γ

K (ε)f [σ(ε − µK )], (31)
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FIG. 1. I-V curves in the classical limit: kBT = 0.01,
~ω = 0.003. The bQME and bCME agree with the
HQME almost exactly, whereas the QME and CME fail
in the limit of large Γ. Other parameters: g = 0.0075,
Ẽd = 0. µL = −µR = Φ/2, ΓL = ΓR = Γ/2.

Cσ
K (t) is related to the spectral density in the leads ΓK (ε)

and the Fermi-Dirac distribution f (ε) = (exp (ε/kBT ) + 1)−1.
To derive a closed set of EOMs within the HQME
method, Cσ

K (t) is expressed by a sum over exponentials,69

Cσ
K (t) =

∑lmax
l=0 ηK ,le−γK ,σ,l t . To this end, the Fermi distribu-

tion is represented by a sum-over-poles scheme employing a
Pade decomposition82–84 and the spectral density of the leads
is assumed to be a single Lorentzian ΓK (ε) = 1

2
ΓW2

(ε−µK )2+W2 . The

bandwidth W is set to be 106 times larger than Γ to effectively
describe the leads in the wideband limit, which implies that
the overall molecule-lead coupling strength is independent of
energy and symmetric, ΓL = ΓR = 1

2Γ.
The HQMEs for vibrationally coupled transport are given

by

∂

∂t
ρ̂(n)

jn · · ·j1
= − *

,

i
~

ˆ̃LS +
n∑

m=1

γjm
+
-
ρ̂(n)

jn · · ·j1
−

i

~2

∑
j

Âσ̄
ρ̂(n+1)

jjn · · ·j1

− i
n∑

m=1

(−)n−mĈjm ρ̂
(n−1)
jn · · ·jm+1jm−1 · · ·j1

, (32)

with the multi-index j = (K, σ, l) and ˆ̃LSÔ= [ ˆ̃HS, Ô].
Here, ρ̂(0) ≡ ρ̂ stands for the reduced density matrix
and ρ̂(n)

jn · · ·j1
(n > 0) denote auxiliary density operators,

which describe bath-related observables such as, e.g., the
current

〈ÎK (t)〉 = i
e
~

∑
l

TrS

{
d̂X̂ ρ̂(1)

K ,+,l(t) − h.c.
}

. (33)

FIG. 2. Phonon excitation-voltage curves in the classi-
cal limit: kBT = 0.01, ~ω = 0.003. bQME and bCME
agree with the HQME almost exactly, whereas the QME
and CME fail in the limit of large Γ. Other parameters:
g = 0.0075, Ẽd = 0. µL = −µR = Φ/2, ΓL = ΓR = Γ/2.
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The superoperators Â and Ĉ read

Âσ̄
ρ̂(n) = d̂σ̄X̂σ̄ ρ̂(n) + (−)n ρ̂(n)d̂σ̄X̂σ̄ , (34a)

ĈK ,σ,l ρ̂
(n) = ηK ,ld̂

σX̂σ ρ̂(n) − (−)nη∗K ,l ρ̂
(n)d̂σX̂σ . (34b)

Note that, above, d̂− ≡ d̂ (and d̂+ ≡ d̂†) are dressed by X̂− ≡ X̂
(and X̂+ ≡ X̂†) due to the small polaron transformation.
According to system-bath interaction, the superoperator Â (Ĉ)
couples the nth level of the hierarchy to the (n + 1)th [(n � 1)th]
level. The coupled set of equations is solved directly for the
steady state by setting ˙̂ρ(n)

jn · · ·j1
(t = ∞) = 0 (n ≥ 0). In the

calculations presented below, the results are quantitatively
converged for a truncation of the hierarchy at level n = 3.

The coupled set of HQMEs in Eq. (32) is evaluated in
the electronic-vibrational product basis, 〈b| 〈i0 | ˙̂ρ(n)

jn · · ·j1
���i
′
0

〉
|b′〉,

where |b〉 ∈ {|0〉 , |1〉} and |i0〉 denote eigenstates of d̂†d̂ and
Ĥ0 [defined in Eq. (24a)], respectively, with b ∈ {0, 1} and
i0 ∈ {0, . . . , imax

0 }. Without performing the small polaron trans-
formation, an identical set of EOMs can be obtained if the
HQMEs are evaluated in the eigenstate-basis of ĤS. This basis
set is given by the product states |0〉 |i0〉 and |1〉 |i1〉, where
|i1〉 with i1 ∈ {0, . . . , imax

1 } denotes the eigenstates of Ĥ1 [cf.
Eq. (24b)].

The results presented in Figs. 3 and 4 are obtained by
the HQME approach outlined above. For the results shown
in Figs. 1 and 2, an alternative HQME approach is applied
where the vibration is treated as part of the bath subspace.
Due to the high average vibrational excitation in the systems
considered in Figs. 1 and 2, a treatment of the vibrational
mode as part of the reduced system would require a huge
vibrational basis set {0, . . . , imax

0 }which is computationally not
feasible.

V. RESULTS

Below, we will restrict ourselves to the symmetric case
with voltage µL = −µR = Φ/2,ΓL = ΓR =

1
2Γ and reorganized

energy level Ẽd ≡ Ed − g2/(~ω) = 0.

A. Classical regime

In this subsection, we look at the classical regime, where
kBT > ~ω, such that a classical treatment of the nuclear motion
is feasible.

For the I-V curves, as shown in Fig. 1, the bCME agrees
almost perfectly with numerically exact results from HQME,
regardless of whether we look at the adiabatic limit Γ > ~ω
or the nonadiabatic limit Γ < ~ω. Not surprisingly, if we do
not incorporate broadening, in the limit that Γ > kBT , both
the CME and the QME fail to recover the correct I-V results.
In this limit (kBT > ~ω), the quantum treatment (the QME)
completely agrees with a classical treatment (i.e., the CME).

In Fig. 2, we show the results for phonon excitation,
which is a property of the nuclear distribution. The agreement
between the bCME and HQME indicates that in the limit of
large Γ, the potential surface has to be broadened in order to
recover the correct phonon distribution. Again, the (b)QME
and (b)CME are completely identical.

To understand why the bCME can capture broadening
effects correctly in the classical limit (kBT > ~ω), we note
that broadening is important only when Γ > kBT , which auto-
matically implies that we are in the adiabatic regime Γ > ~ω.
Furthermore, in such an adiabatic regime, the bCME reduces
to a Fokker-Planck equation with the correct potential of mean
force [Eq. (11)] and a roughly correct friction tensor.47 Thus,
the bCME should be quite valid. That being said, as shown
below, such a broadening scheme will not work perfectly in
the quantum and nonadiabatic regimes, where ~ω > Γ > kBT ,
especially when kBT is very low.

B. Quantum regime

In the highly quantum regime, where ~ω > kBT , Fig. 3
starts to show differences between the (b)QME with (b)CME.
A classical treatment fails in this limit, whereas the bQME
agrees with the numerically exact solution very well. A
straightforward QME shows deviations from the HQME in
the limit of larger Γ.

FIG. 3. Quantum regime: kBT = 0.005, ~ω = 0.02.
In this limit, a classical treatment fails. Over-
all the bQME performs well. Other parameters:
g = 0.03, Ẽd = 0. µL = −µR = Φ/2, ΓL = ΓR = Γ/2.
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FIG. 4. Low temperature: Γ = 0.01, kBT = 0.004. Data from the QME (dashed
lines) and bQME (solid lines) are benchmarked against the HQME (squares,
diamonds, and triangles). The QME data show very sharp step-like features. By
contrast, the bQME data show step-like features that are much less sharp. The
current from the bQME data is in closer overall agreement with the HQME,
but neither the bQME nor the QME is quantitatively accurate here. Ẽd = 0,
µL = −µR = Φ/2, ΓL = ΓR = Γ/2.

Overall, the results in Fig. 3 give us a great deal of confi-
dence that the bQME should work well both in the high tem-
perature (kBT � ~ω) and intermediate temperature regimes
(kBT = ~ω); by contrast, the bCME can be valid only in the
high temperature limit. As discussed above, for broadening to
be important, Γ must be larger than kBT (Γ > kBT ), which
again brings us back to the adiabatic regime (Γ > ~ω), where
the bQME should be valid. As shown in Fig. 3, the bQME
works well even for the nonadiabatic and quantum regimes,
~ω > Γ > kBT , provided that kBT is not very small compared
to ~ω.

Finally, in the highly nonadiabatic and quantum regime
(~ω � Γ � kBT ), Fig. 4 shows that the I-V curves display
step-like features. Compared with numerically exact results,
the QME predicts very sharp step features, which is a signa-
ture of the fact that the QME lacks broadening. By contrast,
the bQME predicts a less obvious step feature, though the
results are not perfect. Looking forward, we cannot be sure our
techniques to incorporate broadening are optimal at very low
temperatures, and the data in Fig. 4 provide one set of bench-
marks for further improvement of semiclassical methods. That
being said, we are also not sure whether such an improved
broadening technique exists given the ad hoc nature of our cor-
rection. For the moment, however, we are reasonably confident
that the bCME/bQME is reliable at reasonable large tempera-
tures. The next step will be to benchmark these techniques with
more than one orbital in the system so that these techniques can
be applied to realistic molecules near surfaces. This work is
ongoing.

VI. CONCLUSION

In this paper, the broadened classical master equation
(bCME) introduced previously76 to treat coupled electron-
nuclear motions at molecule-metal interfaces has been
extended to the non-equilibrium case, whereby two electrodes
surround the molecule and a bias voltage is applied. The bCME
algorithm agrees with the numerical exact solution almost
perfectly in the limit of kBT > ~ω. In the quantum limit,

kBT < ~ω, an analogous broadening strategy is suggested
for the QME, and the resulting bQME strategy works fairly
well. That being said, at very low temperature, the I-V curves
produced by the bQME yield step features that are too soft
compared with exact HQME data, reminding us that there
are clear limits to the validity of semiclassical approaches.
Looking forward, we soon hope to test both the bCME and
bQME for larger Hamiltonians with anharmonic surfaces
and multiple system orbitals (beyond the limit of wideband
coupling) and thus learn much more about when semiclas-
sical dynamics can or cannot be used safely for realistic
systems.
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APPENDIX: THE QME AND BQME

Here we provide details for solving the bQME set of
equations. We first express the operators Ĥ0, Ĥ1,

Ĥ0 = ~ω(â†â +
1
2

), (A1a)

Ĥ1 = ~ω(â†â +
1
2

) + g(â† + â) + Ed (A1b)

in the basis of eigenstates of â†â (referred to as the boson
basis), where

â†â =



0

1

2

. . .



, â + â† =



0 1

1 0
√

2
√

2 0
√

3

. . . . . . . . .



.

(A2)

To build matrices for ˆ̃H0 and ˆ̃H1, we need to express∆U(x̂)

[Eq. (27)] in the boson basis [since ˆ̃H0 = Ĥ0 + ∆U(x̂) and
ˆ̃H1 = Ĥ1 + ∆U(x̂)]. To do so, we diagonalize the position

operator x̂ =
√

~
2mω (â + â†), such that x̂ |xi〉 = xi |xi〉, where in

such a basis, 〈xi |U(x̂) ���xj

〉
= U(xi)δij. We then transform U(x̂)

back to the boson basis.
We next express the bQME [Eq. (26)] in the respective

eigenbases of ˆ̃H0 and ˆ̃H1,

ˆ̃H0 |i0〉 = Ei0 |i0〉 , (A3a)

ˆ̃H1 |i1〉 = Ei1 |i1〉 . (A3b)
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After a secular approximation, the bQME reads

ρ̇0(i0) = −
∑
i1,K

W0→1,K
i0→i1

ρ0(i0) +
∑
i1,K

W1→0,K
i1→i0

ρ1(i1), (A4a)

ρ̇1(i1) =
∑
i0,K

W0→1,K
i0→i1

ρ0(i0) −
∑
i0,K

W1→0,K
i1→i0

ρ1(i1), (A4b)

where

W0→1,K
i0→i1

= |〈i1 |i0〉|
2 Γ

K

~
f K (Ei1 − Ei0 ), (A5a)

W1→0,K
i1→i0

= |〈i1 |i0〉|
2 Γ

K

~

(
1 − f K (Ei1 − Ei0 )

)
. (A5b)

The steady state solution of the above equation is the nontrivial
solution that satisfies ρ̇0 = 0, ρ̇1 = 0. When calculating the
current, we use the expression

I =
e
~

∑
i0,i1

|〈i1 |i0〉|
2
∫

dε
ΓLΓR(

ε − (Ei1 − Ei0 )
)2 + Γ2

× (f L(ε) − f R(ε))(ρ0(i0) + ρ1(i1)). (A6)

For the unbroadened QME, we calculate the current by

I = e
∑
i0,i1

W0→1,L
i0→i1

ρ0(i0) −W1→0,L
i1→i0

ρ1(i1). (A7)

Finally, for calculating phonon excitations 〈â†â〉 within
both QME and bQME, we set

〈â†â〉 =
∑

i0

〈i0 |â
†â|i0〉ρ0(i0) +

∑
i1

〈i1 |â
†â|i1〉ρ1(i1). (A8)

The number of phonon basis states is truncated once the final
results have converged.
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22R. Härtle, R. Volkovich, M. Thoss, and U. Peskin, J. Chem. Phys. 133,
081102 (2010).
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