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ABSTRACT
Although the quantum classical Liouville equation (QCLE) arises by cutting off the exact equation of motion for a coupled nuclear-electronic
system at order 1 (1 = h̵0), we show that the QCLE does include Berry’s phase effects and Berry’s forces (which are proportional to a higher
order, h̵ = h̵1). Thus, the fundamental equation underlying mixed quantum-classical dynamics does not need a correction for Berry’s phase
effects and is valid for the case of complex (i.e., not just real) Hamiltonians, where exotic features can arise in the course of electronic relaxation.
Furthermore, we also show that, even though Tully’s surface hopping model ignores Berry’s phase, Berry’s phase effects are included auto-
matically within Ehrenfest dynamics. These findings should be of great importance if we seek to model coupled nuclear-electronic dynamics
for systems with odd numbers of electrons and spin-orbit coupling, where the complex nature of the Hamiltonian is paramount.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5116210., s

I. INTRODUCTION

Nonadiabatic dynamics are a continuous source of interest and
intrigue in the chemical physics community. On the one hand, the
fast exchange of energy between nuclear and electronic degrees of
freedom violates the Born Oppenheimer (BO) approximation, the
bedrock of modern chemistry.1 When one violates the BO approx-
imation even moderately, one can find many unexpected effects,
the most famous being Berry’s phase effects.2 On the other hand,
because quantum mechanics is so expensive to propagate, there
is a strong impetus to understand nonadiabatic dynamics in a
semiclassical fashion,3–7 focusing on quantum electrons and clas-
sical nuclei. Thus, for many researchers, the nature of nonadia-
batic effects becomes entangled with semiclassical approximations,
which leads to only more questions about the fundamental nature of
nonadiabatic dynamics.

In this paper, we want to directly address one such fundamental
question in nonadiabatic dynamics: the connection between Berry’s

phase2 and the quantum classical Liouville equation (QCLE).8,9 A
few words are now appropriate regarding Berry’s phase, both in the
context of real and complex Hamiltonians. In general, Berry’s phase
effects are usually derived by considering the phase of an electronic
wavefunction in the limit of a very slowly evolving potential that
mixes together different adiabatic states, and the presence of Berry’s
phase can lead to interference effects around degeneracies and con-
ical intersections (e.g., the Aharanov-Bohm effect10,11 and tunnel-
ing suppression12). When the Hamiltonian is real, Berry’s phase is
effectively a generalization of the Longuet-Higgins phase,13–15 and
there is an enormous literature in the chemical physics literature
regarding the role of Berry’s phase effects around conical inter-
sections.16,17 Of note, however, is that for a complex Hamiltonian,
Berry’s phase can yield real effects even without a relevant inter-
section point; the Berry curvature [see Eq. (6)] will be nonzero.18,19

Although this case is not usually addressed in the chemical physics
literature (where we usually assume that the molecular Hamiltonian
is real), the question of curve crossings with complex Hamiltonians
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has been investigated previously,20–23 and Takatsuka and Yonehara
have written extensively about Berry’s “Lorentz-like” forces in the
context of semiclassical, path branching dynamics.24,25

Let us now turn to the QCLE.8,9 The QCLE represents the sim-
plest means to rigorously take the semiclassical limit of coupled
nuclear-electronic systems, treating nuclei classically and electrons
quantum mechanically. The basic premise is to take a partial Wigner
transform over a set of nuclear degrees of freedom and then expand
the total equation of motion in units of h̵. The QCLE includes only
terms on the order of h̵−1 and h̵0 = 1; all terms on the order of
h̵, h̵2, . . ., etc. are ignored. Formally, the resulting dynamics have
some failures—there is no Jacobi identity and correlation functions
will not be invariant to time translation.26 Nevertheless, the dynam-
ics are generally considered to be very accurate. In the context of
the spin-boson model, the QCLE is exact. In this spirit, the QCLE is
the underlying phase space equation against which one would like to
compare all other semiclassical approaches. In almost all cases,27–33

however, the QCLE has been applied to situations where the Hamil-
tonian is real, i.e., the imaginary number i never appears in any
electronic Hamiltonian.

With this background in mind, recent work has identified a
subtle question with regards to nonadiabatic dynamics, namely:
Does the QCLE correctly incorporate Berry’s phase effects in the case
of a complex Hamiltonian (as would be relevant for an odd num-
ber of electrons with spin)?20 On the one hand, one might assume
that Berry’s phase and Berry’s curvature—both proportional to h̵—
can arise only if it goes beyond the QCLE to include all h̵1 terms
in the expansion. Beside this h̵ expansion argument, note also that
Berry’s forces are usually derived by considering the Berry poten-
tial (or Berry connection) Ã ≡ ih̵⟨Φ∣∇Φ⟩ for a nearly adiabatic
state ∣Φ⟩ and, through a gauge transformation acting on the nuclear
space, converting the Berry potential to a magnetic force19 (just as
one changes from the vector potential A to the magnetic field B in
electrodynamics34). Because gauge transformations of the classical
degrees of freedom are not preserved in a quantum-classical treat-
ment, one might assume that Berry’s forces cannot be derived by the
QCLE.

On the other hand, recent work by Dou et al. derived the elec-
tronic friction tensor starting from the QCLE35 and found the same
friction tensor as calculated by a Berry’s phase calculation with a
complex density matrix36,37—suggesting that Berry’s phase should
be derivable from the QCLE. Furthermore, Berry’s phase effects
have already been isolated and studied within the QCLE for real,
spin-boson Hamiltonians38 (where the QCLE is exact). Thus, in this
paper, we seek to tease out the answer to the following question: Are
all of Berry’s phase effects captured by the QCLE, especially for the
case of a complex Hamiltonian? Below, we will show clearly that, yes,
Berry’s phase is derivable from the QCLE through a simple change
of representation, as appropriate in the limit of nearly adiabatic
dynamics. We will also show that, while such Berry’s phase effects
are not captured by surface hopping dynamics, they are captured (at
least partially) by Ehrenfest dynamics.

Our conclusions are important for three reasons. First, because
the QCLE has traditionally been regarded as the benchmark for all
semiclassical algorithms, the present findings are very reassuring:
we may continue to use the QCLE as the gold standard—with real
or complex Hamiltonians. There is no need to improve upon the
QCLE in the presence of complex Hamiltonians, and in particular,

we may rest assure that the electronic friction tensor as developed
in Ref. 35 already includes all appropriate Berry’s phase effects. Sec-
ond, our results should be extremely helpful for understanding and
improving upon mixed quantum classical trajectory techniques.39

Recent work has clearly shown that Tully’s fewest switches surface
hopping (FSSH) algorithm does not include Berry’s forces40 for the
case of imaginary Hamiltonians (although some Berry’s phase effects
can be captured with FSSH for real Hamiltonians with real coni-
cal intersections41). Even though FSSH is already a partial solution
to the QCLE,27,28 the failure of surface hopping to recover com-
plex Berry phase effects sheds light on the approximations made in
Refs. 27 and 28 and thus justifies modifying FSSH to better repro-
duce the QCLE and treat the case of complex Hamiltonians.40 At
the same time, we can also infer that all approximations to the
QCLE based around Ehrenfest trajectories42–47 already include Berry
phase effects and need no such modification. Third and finally, the
present results highlight just how the Berry phase arises for nuclear
motion in the adiabatic limit, starting from a very general nona-
diabatic approach but without needing to discuss closed loops in
any parameter or function space.48,49 Our findings confirm that,
at least semiclassically, Berry’s phase effects can be understood in
terms of well-understood equations of motion already present in the
chemical physics literature and within all regimes—from the highly
nonadiabatic to the highly adiabatic. With that in mind, we should
also be able to learn exactly when Berry’s phase is appropriate—
what terms must be small in order to take the semiclassical adiabatic
limit?

For convenience below, we will use Einstein summation nota-
tion. Electronic states are indexed by 1, 2 and nuclear degrees of
freedom are indexed by Greek letters (α, β, γ).

II. THEORY
Without loss of generality, consider the case of two electronic

states 1 and 2. According to the quantum classical Liouville equation
(QCLE),8 to first order in the electron-nucleus mass ratio (m/M)1/2,
the equations of motion for the partial Wigner transformed den-
sity operator in an adiabatic basis AW

ij are (for the diagonal and
off-diagonal components)

∂

∂t
AW

11(R,P, t) = 2Pα

Mα Re(AW
12d

α
21) −

Pα

Mα
∂AW

11

∂Rα

−Fα
11
∂AW

11

∂Pα − Re(∂A
W
12

∂Pα Fα
21) (1)

and

∂

∂t
AW

12(R,P, t) = −i
h̵
(V11 − V22)AW

12 −
Pα

Mα d
α
12(AW

22 − AW
11)

− Pα

Mα
∂AW

12

∂Rα −
1
2
(Fα

11 + Fα
22)

∂AW
12

∂Pα

− 1
2
Fα

12(
∂AW

11

∂Pα +
∂AW

22

∂Pα ). (2)
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A similar equation holds for AW
22 . Here, Vii(R⃗) are the adia-

batic potential energy surfaces and {Fij(R⃗)} are the set of forces,
Fα
ij(R⃗) ≡ −⟨Φi(R⃗)∣ ∂V∂Rα ∣Φj(R⃗)⟩. {∣Φi(R⃗)⟩} are an adiabatic basis

set of electronic states, and dαij(R⃗) are the derivative couplings,
dαij(R⃗) ≡ Fα

ij(R⃗)/(Vii(R⃗) − Vjj(R⃗)). We note that dij = −d∗ji .
At this point, we assume that all dynamics are being propa-

gated near the adiabatic limit, with the population of state 1 close
to unity (and only barely changing in time). Thus, the coherences
are nearly stationary and (hopefully) not evolving much as well. In
such a case, we can identify the steady state equation of motion
for the coherences in Eq. (2) by ignoring any evolution of the
coherences,35

−i
h̵
(V11−V22)AW

12 −
Pα

Mα d
α
12(AW

22 −AW
11)−

1
2
Fα

12(
∂AW

11

∂Pα +
∂AW

22

∂Pα ) = 0,

(3)

which has the solution AW
12 = ζ, where

ζ ≡
ih̵ Pγ

Mγ d
γ
12(A

W
22 − AW

11)
V11 − V22

+
ih̵
2
dα12(

∂AW
11

∂Pα +
∂AW

22

∂Pα ). (4)

Thereafter, we change variables from AW
12 to BW

12 ≡ AW
12 − ζ.

The equations of motion for the populations are modified as
follows:

∂

∂t
AW

11(R,P, t) = 2Pα

Mα Re((BW
12 + ζ)dα21) −

Pα

Mα
∂AW

11

∂Rα

−Fα
11
∂AW

11

∂Pα − Re
⎛
⎝
∂(BW

12 + ζ)
∂Pα Fα

21
⎞
⎠

= 2Pα

Mα Re(BW
12d

α
21) −

Pα

Mα
∂AW

11

∂Rα − F
α
11
∂AW

11

∂Pα

−Re(∂B
W
12

∂Pα Fα
21) + 2h̵Im(dβ21

Pα

Mα d
α
12)

∂AW
11

∂Pβ . (5)

The equations of motion for the coherences are more involved
and given in the Appendix. If we assume that we are in the adiabatic
limit moving along adiabat 1, noting BW

12 vanishes in the adiabatic
limit, Eq. (5) simplifies to

∂

∂t
AW

11(R,P, t) = − Pα

Mα
∂AW

11

∂Rα −F
α
11
∂AW

11

∂Pα + 2h̵Im(dβ21
Pα

Mα d
α
12)

∂AW
11

∂Pβ .

The total effective force is the usual adiabatic force F⃗11 plus the Berry
magnetic force F⃗B

11,

F⃗B
11 = −2h̵Im(d⃗21

Pα

Mα d
α
12) = 2h̵Im(d⃗12

Pα

Mα d
α
21). (6)

Historically, Eq. (6) was derived only indirectly: one takes the curl
of the Berry connection (Ã ≡ ih̵⟨Φ∣∇Φ⟩) and thereafter finds an
effective magnetic force, leading to Eq. (6) through the Lorentz force

law. Yet, clearly, the QCLE includes such Berry force whenever the
Hamiltonian is complex.

III. DISCUSSION: IMPLICATIONS FOR SEMICLASSICAL
DYNAMICS

Having successfully isolated Berry’s phase within the QCLE, let
us now discuss the implications of our findings for mixed quantum
classical methods. After all, one can view semiclassical nonadiabatic
dynamics methods as approximations to the QCLE, and so one must
wonder: Do the standard semiclassical approaches (surface hopping
and Ehrenfest dynamics) also account for Berry’s phase?

Consider the Hamiltonian that was introduced in Ref. 40,

H = A
⎡⎢⎢⎢⎢⎣

− cos θ sin θeiϕ

sin θe−iϕ cos θ

⎤⎥⎥⎥⎥⎦
, (7)

where θ(x) ≡ π
2 (erf(Bx) + 1), and ϕ(y) ≡Wy.

The Hamiltonian in Eq. (7) represents an avoided crossing
between two diabatic states whose energies change (and cross) as
a function of x; the diabatic coupling between the diabats changes
in magnitude as a function of x and by a phase as a function of
y. For this Hamiltonian, the adiabatic surfaces are completely flat
with energies ±A; we choose this model so that we can cleanly dis-
entangle how wavepackets move nonadiabatically between different
surfaces without any complications from branching and/or decoher-
ence onto different surfaces (as would be caused by different forces
on different adiabatic surfaces).

For an incoming wavepacket on surface 2 beginning at x = −∞
and traveling in the +x direction, the Born-Oppenheimer approxi-
mation would predict that motion remains completely unchanged in
the x-direction, but the exact solution predicts that the wavepacket
should bend upwards. If W is small enough, the asymptotic momen-
tum of the transmitted wavepacket should be W. This behavior fol-
lows by considering Berry’s force. For the Hamiltonian in Eq. (7),
the Berry force is F⃗B

2 = 2h̵Im[d⃗21( P⃗
M ⋅ d⃗12)] =

̵hW
2 ∂xθ sin θ(− Py

M , Px
M ).

When W is small enough, we can assume that Px is roughly constant,
and so we may calculate the final y-direction momentum (at the end
of a scattering event) by integrating the y-component of the Berry
force,

py = ∫
∞

0

h̵W
2

∂xθ sin θ
Px

M
dt = h̵W. (8)

Of course, if W is not small, the result above is invalid; instead,
the wavepacket can actually split apart and a portion of the
wavepacket will reflect —even though the adiabats are completely
flat.

Now, the example above makes very clear (as shown in Ref. 40)
that the FSSH algorithm does not capture Berry’s phase effects in
the case of a complex Hamiltonian.38 FSSH dictates motion along
adiabats and the algorithm will not predict any bending or reflection;
for this reason, in Ref. 40, we have recommended augmenting FSSH
dynamics with the Berry force F⃗B [in Eq. (6)] in order to better agree
with the QCLE and capture the correct quantum dynamics. Clearly,
further benchmarking of such a corrected FSSH approach will be
necessary.
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At this point, it is worthwhile to consider the natural alterna-
tive to FSSH dynamics, namely, Ehrenfest dynamics. Does Ehrenfest
dynamics correctly account for Berry’s phase or does it also require a
Berry phase correction? We will now argue (analytically and numer-
ically) that Ehrenfest dynamics do already include Berry’s phase; for
the Hamiltonian in Eq. (7), in the limit of nearly adiabatic dynamics,
Ehrenfest trajectories will bend the correct amount. Thus, despite
the many failures of Ehrenfest dynamics (i.e., a lack of branching,3

a lack of detailed balance,50,51 and a lack of decoherence52–56), a
correction for Berry’s phase effects is not needed.

To prove this point, consider the propagation of the wave-
function during an Ehrenfest trajectory for the Hamiltonian in
Eq. (7),

ċ1 = −
iE1

h̵
c1 −

P⃗
M
⋅ d⃗12c2,

ċ2 = −
iE2

h̵
c2 −

P⃗
M
⋅ d⃗21c1.

(9)

The time evolution of density matrix element (ρjk ≡ cjc∗k ) is

ρ̇21 = iω12ρ21 + ( P⃗
M
⋅ d⃗21)(ρ22 − ρ11) ≈ iω12ρ21 + ( P⃗

M
⋅ d⃗21). (10)

Here, ω12 ≡ (E1 − E2)/h̵ and the adiabatic limit has been invoked
such that trajectories are moving along surface 2 at all times
(ρ22 ≈ 1). Solving the above ordinary differential equation [Eq. (10)]
with initial condition ρ21(0) = 0, we find

ρ21(t) = eiω12t ∫
t

0
( P⃗
M
⋅ d⃗21)e−iω12τdτ. (11)

For the Hamiltonian in Eq. (7), one can compute d⃗21
= 1

2(−∂xθ, iW sin θ). Thus, for the small W case where Px is con-
stant and Py ≈ 0, we can integrate ρ21(t) by parts (with the fact that
∂kθ
∂tk ∣t=0

= 0 for any order of k assuming that we initially start far
away from the crossing),

ρ21(t) = −
1
2
eiω12t ∫

t

0

∂θ
∂τ

e−iω12τdτ

=−1
2
eiω12t⎛
⎝
− 1
iω12

e−iω12τ ∂θ(τ)
∂τ
∣
t

0
+

1
iω12
∫

t

0

∂2θ(τ)
∂τ2 e−iω12τdτ

⎞
⎠

= 1
2

∞

∑
k=1

1
(iω12)k

∂kθ
∂tk

. (12)

To approximate the above series, we use the definition of θ in Eq. (7).
For the term associated with ∂kθ

∂tk , one can show that the order of
magnitude is ( BPx

ω12M
)k. Thus, if BPx

ω12M
is small, the first term will domi-

nate the series, and the average force (as well as the final momentum)
can be calculated as

⟨Fy⟩(t) = 2Re(Fy
12ρ21(t)) =

h̵W
2

sin θ(t)∂θ
∂t

, (13)

py = ∫
∞

0
⟨Fy⟩(t)dt = h̵W. (14)

From this argument, it is clear that the Berry phase effects are already
included in Ehrenfest dynamics (unlike FSSH) and there is no need
for any additional corrections.

Finally, in order to numerically assess the relative value of
Berry-corrected FSSH and Ehrenfest dynamics, in Fig. 1 we plot
the transmitted y momentum as a function of incoming momen-
tum in both the adiabatic and diabatic regimes for the Hamiltonian
in Eq. (7). For this dataset, we set W = 5, M = 1000, and B = 3.0,
and as far as the FSSH is concerned, we rescale all velocities in the x-
direction whenever a hop occurs. We imagine a particle coming on
adiabat 2 from the left. For comparison, besides Ehrenfest and FSSH,
we also plot results for exact dynamics as well as classical adiabatic
dynamics with Berry’s forces. Reflection is rare and not important
here. As shown in Fig. 1, Ehrenfest outperforms Berry-corrected
FSSH in both the diabatic and adiabatic regimes as far as the

FIG. 1. Transmitted and average y-
momentum as a function of initial
momentum Px

init . Left: A = 0.02, corre-
sponding to the diabatic regime; right:
A = 0.10, corresponding to the adia-
batic regime. Py

init = 0. Little reflec-
tion is observed for both cases. While
FSSH (with an imposed Berry force)
captures the correct trend, it is numeri-
cally outperformed by Ehrenfest dynam-
ics (which naturally accounts for Berry’s
phase). Adiabatic dynamics with a Berry
force works only in the adiabatic regime,
A = 0.1.
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average momentum, indicating that Ehrenfest dynamics work better
than FSSH even after a Berry-phase correction. Clearly, despite its
many failures,3,50–56 Ehrenfest dynamics incorporate Berry’s forces
naturally and work very well for this problem of flat adiabatic sur-
faces; FSSH captures the correct trends but has a relatively larger
error.

Finally, using a Berry force and running purely adiabatic
dynamics can be very accurate in the adiabatic regime, i.e., A = 0.10.
That being said, running adiabatic dynamics with a Berry force is
awful in the diabatic regime, i.e., A = 0.02.

IV. CONCLUSIONS
In this paper, we have demonstrated that, even though the

QCLE arises from a cutoff in h̵ at order 0 from the Wigner distribu-
tion equation of motion, QCLE dynamics do include Berry’s phase
effects (which are of order h̵) which are amplified for a complex
Hamiltonian. As such, even though Berry’s phase effects are not usu-
ally studied explicitly with the QCLE,31–33,38 if classical nuclei are suf-
ficient, one can safely study many physical problems with complex
Hamiltonians and geometric phase using the well-established QCLE
and approximations thereof; of course, the bigger problem remains
how to solve the QCLE in practice. Here, we have shown that Tully’s
surface hopping approximation to the QCLE does not include
Berry’s phase effects (when the Hamiltonian is complex) and we
have recently made the sensible suggestion to simply add in the Berry
force [Eq. (6)].40 At the same time, we have also shown that Ehren-
fest dynamics do contain Berry’s phase and, as such, no extra force is
required.

Looking forward, the keen reader should observe that our
model problem here [Eq. (7)] is an extremely unphysical exam-
ple whereby one can easily isolate Berry’s phase effects. For most
problems with avoided crossings and conical intersections,57 the
adiabatic force difference will not be constant and surface hop-
ping is usually expected to be a better approximation than Ehren-
fest dynamics at recovering long time dynamics (e.g., populations
during electron transfer dynamics58). Further research will need to

assess whether FSSH can still be improved and how to incorporate
decoherence59–71 within a Berry-force modified algorithm. Another
important question is how to choose a momentum rescaling direc-
tion for surface hopping; here, for the Hamiltonian in Eq. (7), we
simply chose x as the rescaling direction but for a more general
Hamiltonian, a better ansatz is needed. Unfortunately, preliminary
evidence suggests that the algorithms in Ref. 40 are not yet opti-
mal; perhaps the different form of the QCLE [as present in Eqs. (5)
and (A1)] will be useful for future derivations. At the very least, the
equations should yield insight into exactly when one can make the
adiabatic approximation and ignore B12.

Finally and most importantly, now that we know that Berry’s
phase dynamical effects are already included within the QCLE, this
paper raises the distinct possibility of using the QCLE (and approx-
imations thereof ) to study coupled nuclear-electronic motion on
the surfaces of topological materials, where the electronic Hamil-
tonian is complex and electronic Berry’s phase effects are already
known to be of crucial importance.72 One must wonder if one
will learn something new about nonadiabatic dynamics in such a
context.

SUPPLEMENTARY MATERIAL

See supplementary material for the detailed derivations of ∂AW
11

∂t

[Eq. (5)] and ∂BW
12

∂t [Eq. (A1)].
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APPENDIX: EXPRESSION FOR ∂BW
12

∂t

After a great deal of algebra (see the supplementary material),
the equation of motion for BW

12 can be shown to be

∂

∂t
BW

12(R,P, t) = −i
h̵
(V11 − V22)BW

12 −
Pα

Mα
∂BW

12

∂Rα −
1
2
(Fα

11 + Fα
22)

∂BW
12

∂Pα (A1)

− ih̵ Pα

Mα
∂dγ12

∂Rα
Pγ

Mγ

(AW
22 − AW

11)
(V11 − V22)

− ih̵ Pα

Mα
dγ12P

γ

Mγ

(AW
22 − AW

11)
(V11 − V22)2 (F

α
11 − Fα

22) −
ih̵Pα

2Mα
∂dγ12

∂Rα (
∂AW

11

∂Pγ +
∂AW

22

∂Pγ )

− ih̵
2
(Fα

11 + Fα
22)

dα12(AW
22 − AW
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+
ih̵
4
dγ12((F
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22
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11
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+
ih̵Pγdγ12
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(4Pα

Mα Re(BW
12d

α
21) +

1
2
(Fα

22 − Fα
11)(

∂AW
22

∂Pα −
∂AW

11

∂Pα )) +
ih̵
2
dα12

Mα (
∂AW

11

∂Rα +
∂AW

22

∂Rα )

+ ih̵dγ12Re( ∂2BW
12

∂Pα∂Pγ F
α
21) +

ih̵Pγdγ12

Mγ(V11 − V22)
[2h̵Im(dα21

Pβ

Mβ d
β
12)(

∂AW
11

∂Pα +
∂AW

22

∂Pα )]

− ih̵dγ12[h̵Im(d
α
12d

γ
21

Mγ )(
∂AW

22

∂Pα −
∂AW

11
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