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ABSTRACT
We present a strategy for mapping the dynamics of a fermionic quantum system to a set of classical dynamical variables. The approach is based
on imposing the correspondence relation between the commutator and the Poisson bracket, preserving Heisenberg’s equation of motion for
one-body operators. In order to accommodate the effect of two-body terms, we further impose quantization on the spin-dependent occupation
numbers in the classical equations of motion, with a parameter that is determined self-consistently. Expectation values for observables are
taken with respect to an initial quasiclassical distribution that respects the original quantization of the occupation numbers. The proposed
classical map becomes complete under the evolution of quadratic Hamiltonians and is extended for all even order observables. We show that
the map provides an accurate description of the dynamics for an interacting quantum impurity model in the coulomb blockade regime, at
both low and high temperatures. The numerical results are aided by a novel importance sampling scheme that employs a reference system to
reduce significantly the sampling effort required to converge the classical calculations.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5099987

I. INTRODUCTION

Molecular simulation is an indispensable tool for understand-
ing many-body quantum systems driven away from equilibrium.
Describing the dynamics of molecular and mesoscopic electron-
ics on time and length scales relevant to experiments, however,
is challenging. In recent years, significant progress has been made
by introducing numerically converged techniques, such as meth-
ods that rely on real-time diagrammatic sampling techniques,1–9

wave function-based approaches such as numerical renormal-
ization group techniques10–12 and multilayer multiconfiguration
methods,13–15 or reduced and hierarchical density matrix
approaches.8,16 While significant progress has been made using these
methods to understand the transport in various correlated scenar-
ios,17–19 their application to more realistic systems is still limited.

An alternative approach to these numerically converged tech-
niques is based on approximate methods that are more flex-
ible in describing realistic complex scenarios but often intro-
duce simplifications leading to uncontrolled errors. Among the
more popular methods are master equations (QME) and their
generalizations20–26 and approaches based on the nonequilibrium
Green’s function methods with specific closures for the self-
energy.27–32 More recently, quasiclassical mapping techniques33–43

have been developed that cast the many-body quantum prob-
lem onto a set of classical dynamical variables and describe the
transport in extended systems coupled to complex nonlinear envi-
ronment, with varying coupling strengths. Such classical mapping
procedures further admit the use of advanced sampling techniques
of rare fluctuations44 developed for classical molecular dynamics
simulations.
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Previous attempts to map the dynamics of fermionic systems
onto a set of classical dynamical variables failed to reliably reproduce
correlation effects, such as the Coulomb blockade staircase.37,39–41

This is mainly due to the lack of quantization of the number oper-
ators in the classical map, leading to a continuous increase in the
current with an increase in bias or gate voltage, in a quantum point-
contact setup. Moreover, the description of the dynamics of observ-
ables that depend nonlinearly on a pair of creation and annihilation
operators, for example, in those involved shot-noise measurements,
has not received any attention. As shown below, a naïve and straight-
forward application of the classical maps to such observables leads to
significant errors, even for the noninteracting model Hamiltonian,
where the map generates the exact dynamics.

In this study, we develop a new strategy to map the dynam-
ics of an open quantum system driven away from the equilib-
rium onto a set of classical dynamical variables. The method maps
a pair of creation or annihilation fermionic operators to phase-
space variables in Cartesian coordinates that satisfies a correspon-
dence relation between the commutator and the Poisson brackets.
In order to accommodate the effect of two-body terms (electron-
electron interactions), we further impose quantization rules on
the spin-dependent occupation numbers in the classical equations
of motion, with parameter that is determined self-consistently.
Combining this map with the initial value representation45–47 that
incorporates the discrete nature of quantum mechanics results in
a robust description of the dynamics on diverse time scales, as
illustrated for the Anderson impurity model48 for a wide range
of temperatures and the on-site electron-electron repulsion term.
We further show that for quadratic Hamiltonians, higher order
fermionic operators can be mapped accurately as a consequence
of completeness, providing a framework to study the fluctua-
tions and high order correlations within this mapping approach.
Finally, we develop a reference sampling approach to reduce signif-
icantly the number of trajectories required to converge expectation
values.

II. ANDERSON IMPURITY MODEL
For concreteness, throughout this manuscript, we consider the

evolution of observables for the Anderson impurity model. This
model is defined by the Hamiltonian H = HS + HB + V, where

ĤS = ∑
σ=↑,↓

εσd̂†
σd̂σ + Ud̂†

↑
d̂↑d̂†

↓
d̂↓ (1)

describes the impurity (or dot), referred to simply as the “system
Hamiltonian;”

ĤB = ∑
σ=↑,↓
k∈L,R

εkĉ
†
kσĉkσ (2)

describes the noninteracting fermionic baths (or leads); and

V̂ = ∑

σ=↑,↓
k∈L,R

tkd̂
†
σĉkσ + h.c. (3)

describes the hybridization between the system and the leads. Here,
d†
σ (dσ) are the creation (annihilation) operators of an electron on

the dot with spin σ = ↑, ↓ with a one-body energy εσ. U is the on-
site Hubbard interaction, ĉ†kσ (ĉkσ) are the creation (annihilation)

operators of an electron in mode k of the leads with energy εk, and
tk is the hybridization between the dot and mode k in the lead.
The coupling to the quasicontinuous leads is modeled in the wide
band limit. The spectral function of the left (` = L) or right (` = R)
lead is

J`(εk) =
Γ`

(1 + eA(εk−B/2))(1 + e−A(εk+B/2)
)

, (4)

where Γ` determines the coupling strength to the `-lead, B is the
width of the spectral function, and A determines the sharpness of
the cutoff. The coupling tk between the dot and the kth mode is
expressed in terms of the spectral function as tk∈` =

√

J`(εk)∆ε/2π,
where ∆ε = 2εmax/(N`/2 − 1) is the discretization of the leads energy
spectrums, N` is the numbers of modes in the `-lead, and 2εmax is
the energy range in the leads. To model accurately the wide band
limit, one should consider sufficiently large values for B such that
the energy scale of the system is encompassed inside the spectrum of
the leads and that the modes in the leads are dense enough, i.e., ∆ε
is sufficiently small. In the simulations below, each lead consists of
N` = 600 modes, where half are with spin up and the other half are
with spin down. For the parameters considered in this work, the
number of bath modes is sufficiently large to converge the steady-
state currents and populations on time scales shorter than the recur-
rence time. Throughout, we take ̵h, kB, and the charge of the electron
e to be 1.

To assess the accuracy and robustness of the quasiclassical map-
ping procedure, we focus on the Coulomb blockade effect that is
manifested by a staircase structure of the current vs voltage, as
shown in Fig. 1. When the bias voltage is not sufficiently large to
overcome the on-site repulsion energy, only one conductance chan-
nel is open. When the bias becomes sufficiently large compared
to U, an additional conducting channel opens up, and the current
increases to its maximal value of a two-channel quantum point-
contact. In Fig. 1, we show the results of two quasiclassical mapping
procedures. The mapping approach that is isomorphic to quater-
nions [Li-Miller map (LMM)]39 provides an accurate description
of the I-V characteristics at low and high bias voltages (VSD) but

FIG. 1. The steady-state current from the left lead (⟨IL⟩) as a function of the bias
voltage (VSD). The black symbols are the results from the QME approach. The
blue and red curves correspond to the LMM and CQM, respectively. Parame-
ters used are Γ = 2ΓL = 2ΓR = 1, ε↑ = ε↓ = 10Γ, T = 4Γ, U = 40Γ, ∆σ = 0.32,
Ntr = 3 × 104, and µL = −µR = V /2.
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fails to reproduce the Coulomb blockade staircase. On the other
hand, the current complete quasiclassical map (CQM) provides a
qualitative description across all values of VSD. In particular, it cap-
tures the staircase structure characteristic of the Coulomb Block-
ade effect. We will return to discuss the CQM results after we
introduce the strategy of mapping quantum to classical degrees of
freedom.

III. COMPLETE QUASICLASSICAL MAP (CQM)
For an operator Â, in the Hilbert space of the Anderson impu-

rity model, the Heisenberg equation of motion reads

dÂ
dt

= i[Ĥ0, Â] + iU[n̂↑, Â]n̂↓ + iUn̂↑[n̂↓, Â], (5)

where Ĥ0,

Ĥ0 = ∑
σ=↑,↓

εσd̂†
σd̂σ + ∑

σ=↑,↓
k∈L,R

εkĉ
†
kσĉkσ + ∑

σ=↑,↓
k∈L,R

tkd̂
†
σĉkσ + h.c. (6)

is the one-body, noninteracting part of the Hamiltonian. We wish
to find a map for Â to a function of classical phase-space variables,
A[R⃗], that would preserve the dynamics ⟨Â(t)⟩ = ⟨A(t)⟩c, where
⟨Â(t)⟩ = Tr(ρ̂Â(t)) and

⟨A(t)⟩c = ∫ dR⃗ ρ0(R⃗)A[ ⃗R(t)] (7)

is the classical expectation value with respect to the initial probabil-
ity distribution ρ0 of the total system. We do this in two parts. First,
we construct a complete map for quadratic Hamiltonians, which is
extendable to any even order operator and valid for noninteracting
fermionic systems. Then, we propose a strategy for mapping Hamil-
tonians of higher order containing onsite Hubbard interactions. In
all the simulations, the equations of motion are solved numerically
using an adaptive Runge-Kutta method. The number of trajecto-
ries, Ntr, used to converge the results is specified below for each
case study. For the steady-state results, additional time averaging is
considered.

A. Noninteracting fermions
We first consider the case of noninteracting fermions, U = 0,

described by a Hamiltonian that depends quadratically on the cre-
ation and annihilation operators, Ĥ0. To reproduce the dynamics
of the expectation value of quadratic operators under the evolution
describe in Eq. (5), we require the following:

(a) For any quadratic operator Â, and its classical counterpart A,
the commutator and the Poisson bracket satisfies the corre-
spondence relation i[Ĥ0, Â] = {A,H0}.

(b) For any quadratic expectation value, the initial probability
distribution ρ0 must satisfy ⟨Â(0)⟩ = ⟨A(0)⟩c and respect the
quantum discrete nature of the occupations.

It is straightforward to show that condition (a) is satisfied by map-
ping a pair of creation and annihilation operators to a phase space of
conjugated variables, R⃗ = (x, px, y, py), as

â†
nân ↦ xnpy,n − ynpx,n,

â†
nâm ↦m≠n

1
2
[i(xnpx,m − px,nxm + ynpy,m − py,nym)

+(xnpy,m − px,nym + xmpy,n − px,myn)],
(8)

â†
nâ

†
m ↦

1
2
[i(xnpx,m − px,nxm − ynpy,m + py,nym)

−(xnpy,m − px,nym − xmpy,n + px,myn)],

ânâm ↦
1
2
[i(xnpx,m − px,nxm − ynpy,m + py,nym)

+(xnpy,m − px,nym − xmpy,n + px,myn)] .

This identifies positions, (x, y), and their conjugate momenta, (px,
py), and the Poisson bracket can be used to check that this map
returns the quantum commutator of any pair of quadratic cre-
ation/annihilation operators. Because any quadratic Hamiltonian
with a set of quadratic operators constitutes a closed Lie algebra of
quadratic operators, condition (a) insures a loyal representation of
the dynamics in terms of Hamilton’s equations. We note in passing
that we subtracted 1/2 from the classical map of n̂i ≡ â†

i âi to include
a Langer-like correction.49

For leads that are in thermal equilibrium and the uncorrelated
initial state, condition (b) can be satisfied by setting the initial occu-
pation of each mode in the left and right leads to a value 0 or 1 such
that the expectation value, averaged over the set of initial conditions,
satisfies the Fermi-Dirac distribution.37 Operationally, we choose a
random number ξkσ ∈ [0, 1] and then select the occupation of mode
kσ of the `-lead according to

nkσ =
⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

0 ξkσ > (1 + eβ`(εk−µ`))
−1

1 ξkσ ≤ (1 + eβ`(εk−µ`))
−1

,
(9)

where β` = 1/kBT` and µl are the inverse temperature times
Boltzmann’s constant and chemical potential of the `-lead, respec-
tively. The Cartesian coordinates are then sampled according to40

xkσ=cos(θkσ), px,nσ = −nkσ sin(θkσ),

ykσ=sin(θkσ), py,nσ = nkσ cos(θkσ),
(10)

where θkσ is chosen randomly in the interval [0, 2π] and
nkσ = xkσpy ,kσ − ykσpx ,kσ satisfies Eq. (9), resulting in ⟨n̂kσ⟩ = ⟨nkσ⟩c
= (1 + exp[β`(εk − µ`)])−1 at the initial time. By construction,
the expectation value at the initial time is ⟨a†

nam⟩c = ⟨a†
na†

m⟩c
= ⟨anam⟩c = 0, as expected for averages taken with respect to uncor-
related thermal distribution. The sampling choice in Eq. (10) is not
unique, but it does provide an efficient averaging of the expecta-
tion values with respect to the number of trajectories.40 In a similar
manner, one can set the initial occupation of the dot.

Comparing the proposed CQM given by Eq. (8) to the LMM,
we find that the mappings of the diagonal term â†

nân and of the lin-
ear combination â†

nâ†
m + â†

mâ†
n are identical in both maps, but the

remaining terms in Eq. (8) cannot be expressed using the LMM (see
Appendix A for more information). This leads to the Hamiltonian
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being expressed identically in both maps,

H0 = ∑
σ=↑,↓

εσ(xσpy,σ − yσpx,σ) + ∑
σ=↑,↓
k∈L,R

εk(xkσpy,kσ − ykσpx,kσ)

+ ∑
σ=↑,↓
k∈L,R

tk(xσpy,kσ − yσpx,kσ + xkσpy,σ − ykσpx,σ). (11)

For this noninteracting Hamiltonian, mapping H0 and then deriv-
ing Hamilton’s equations of motion for the phase space variables are
identical to deriving Heisenberg’s equation of motion for the bilinear
operators and then mapping the results using Eq. (8).

We can also map other quadratic observables, such as the
current from the left lead

ÎL = −
d
dt ∑σ=↑,↓

k∈L

ĉ†kσĉkσ ↦ ∑
σ=↑,↓
k∈L

tk(yσpy,kσ − py,σykσ + xσpx,kσ − px,σxkσ).

(12)

As a diagonal term, the above form is also identical to the expression
obtained by the LMM.40 In the upper panel of Fig. 2, we compare
the results for the left current generated by the CQM (which in this
case are equivalent to the LMM) with exact quantum mechanical
results for a noninteracting model Hamiltonian. As expected, the
agreement between the CQM (or the LMM) and exact quantum

FIG. 2. Upper panel: the average left current for spin up (⟨IL↑(t)⟩) as a function
of time for a noninteracting model Hamiltonian. The solid black line represents the
exact quantum mechanical result37 and the red symbols are the result of the CQM.
Lower panel: the average left current squared for spin up (⟨I2

L↑(t)⟩) as a function
of time. In addition to the exact quantum mechanical (solid black curve) and CQM
(red symbols) results, we also show the individual terms ⟨I2

L,1(t)⟩ (blue), ⟨I2
L,2(t)⟩

(cyan), and ⟨I2
L,3(t)⟩ (green). Parameters used are Γ = 2ΓL = 2ΓR = 1, ε↑ = ε↓

= −Γ, T = Γ
5 , U = 0, Ntr = 105, and µL = −µR = 6Γ.

mechanical results is excellent. In Sec. III B, we show that for the
CQM these results can be extended to higher-order operators.

B. Higher order operators
Mapping higher order operators, operators that involve more

than one pair of creation/annihilation operators, is more difficult
due to the nonlocal character of fermions arising from their exclu-
sion statistics. Ignoring the fermionic nature does not seem to make
any significant difference for a single pair of creation/annihilation
operators,37,40 but for higher order operators, the anticommutation
of the creation/annihilation fermionic operators plays a significant
role and describing quantum fluctuations such as shot noise requires
a careful consideration of this effect.

For example, consider a map for the operator Â = a†
nama†

mak.
Using the anticommutation nature of {â†

n, ân} = 1, we can express
the expectation value of Â using four different terms that are iden-
tical quantum mechanically, but differ when mapped onto classical
phase space variables. Specifically, expanding ⟨Â⟩

⟨â†
nâmâ

†
mâk⟩ = C1⟨(â†

nâm)(â
†
mâk)⟩ + C2⟨(â†

nâk)

−(â†
nâ

†
m)(âmâk)⟩ + C3⟨(â†

nâk)(âmâ
†
m)⟩

+C4⟨δnk(âmâ
†
m) − (âkâm)(â

†
mâ

†
n)⟩, (13)

we find that there are four unique combinations of operators, which
generically have coefficients, Ci. To determine the best choice of Ci,
we impose conditions (a) and (b) of Sec. III A on the time evolution
of Â and require that the time evolution of Â be exact for a quadratic
Hamiltonian, i.e., that i[Ĥ, Â] = {A, H} and that ⟨Â(0)⟩ = ⟨A(0)⟩c.
For an uncorrelated initial thermal state, the values that satisfy these
conditions are C1 = 1, C2 = −1, C3 = 1, and C4 = 0. Note that Eq. (13)
contains pairs of creation or annihilation operators (a†

na†
m or anam),

which cannot be described within the LMM.
Applying this procedure to the second moment of the left cur-

rent for the noninteracting Hamiltonian yields a simple expression
for ⟨Î2

L⟩ = ⟨Î2
L,1⟩ − ⟨Î2

L,2⟩ + ⟨Î2
L,3⟩, where

⟨Î2
L,1⟩ = ∑

σ=↑,↓
j,k∈L

tjtk⟨(ĉ
†
jσd̂σ)(d̂

†
σĉkσ) + (d̂†

σĉjσ)(ĉ
†
kσd̂σ)⟩,

⟨Î2
L,2⟩ = ∑

σ=↑,↓
j,k∈L

tjtk⟨(ĉ
†
jσĉkσ) − (ĉ†jσd̂

†
σ)(d̂σĉkσ)

+ δjk(d̂
†
σd̂σ) − (d̂†

σĉ
†
kσ)(ĉjσd̂σ)⟩, (14)

⟨Î2
L,3⟩ = ∑

σ=↑,↓
j,k∈L

tjtk⟨(ĉ
†
jσĉkσ)(d̂σd̂

†
σ) + (d̂†

σd̂σ)(ĉjσĉ
†
kσ)⟩.

As can be shown explicitly, this mapping of the second moment of
the left current operator satisfies both conditions (a) and (b).

In the bottom panel of Fig. 2, we show the time evolution of ⟨Î2
L⟩

for a quadratic Hamiltonian where U = 0. The agreement between
the exact quantum mechanical result and the CQM is excellent. We
also plot the individual terms ⟨Î2

L,1⟩, ⟨Î2
L,2⟩, and ⟨Î2

L,3⟩ (dashed lines).
Only the proper combination of all three terms yields an accurate
description of ⟨Î2

L⟩. We note that the LMM can only be used to map
the first term, but not the other two that contribute to ⟨Î2

L⟩.
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C. Interacting fermions
The on-site interaction, Un̂↑n̂↓, that manifest the Coulomb

blockade effect, is a four index term that is outside the space defined
by the CQM. In order to account for this two-body interaction term,
we map the two terms proportional to U in Eq. (5) according to

iU[n̂↑, Â]n̂↓ ↦ U{A,n↑}θ(n↓ − ∆↓),

iUn̂↑[n̂↓, Â]↦ U{A,n↓}θ(n↑ − ∆↑),
(15)

where θ is the Heaviside step function. The idea behind this choice
is that the term Un̂↑n̂↓ contributes to the dynamics only when both
electrons with spin up and spin down occupy the site. Classically,
the occupation number admits a continuous value, which implies
that the Hubbard term can become significant for fractional popu-
lations of the two spin-channels. Much like a mean-field approxi-
mation, these fraction contributions of the Hubbard term will smear
the Coulomb blockade effect. By introducing the step function, we
impose that contributions to the dynamics from the Hubbard term
arise only in trajectories for which n↑(↓) > ∆↑(↓). The parameter
∆↑(↓) is determined according to the distribution of n↑(↓) and will
be discussed in detail below. We note that the classical expression
in Eq. (15) neglects explicitly derivatives of the step function that
would come from an effective Hamiltonian that governs the mapped
dynamics (see Appendix B for more details). As such, the equations
of motion do not conserve the energy associated with this effec-
tive Hamiltonian or the norm of phase space. However, we have
checked that over the time scales considered here, the drift in the
effective Hamiltonian is small and accumulates to less than 0.05%
of the total effective energy as the system relaxes to steady-state (see
Appendix B).

Considering the Anderson impurity model, the equations of
motion for the Cartesian variables for the lead degrees of freedom
are

ẋjσ = − εjyjσ − tjyσ,
ẏjσ = εjxjσ + tjxσ,

ṗx,jσ = − εjpy,jσ − tjpy,σ,
ṗy,jσ = εjpx,jσ + tjpx,σ,

(16)

and those for the system’s degrees of freedom are

ẋσ = − εσyσ − ∑
k∈L,R

tkykσ −Uyσθ(nσ̄ − ∆σ̄),

ẏσ = εσxσ + ∑
k∈L,R

tkxkσ + Uxσθ(nσ̄ − ∆σ̄),

ṗx,σ = − εσpy,σ − ∑
k∈L,R

tkpy,kσ −Upy,σθ(nσ̄ − ∆σ̄),

ṗy,σ = εσpx,σ + ∑
k∈L,R

tkpx,kσ + Upx,σθ(nσ̄ − ∆σ̄),

(17)

where σ̄ =↓, ↑ is the opposite spin to σ = ↑, ↓.
In Fig. 1, we plot the I-V curve obtained by the CQM and com-

pare it to the QME in Ref. 50 and to the results obtained by the LMM.
We consider the limit of the weak system-bath coupling and high
temperature where the QME provides a good approximation for the
dynamics of the system. The LMM provides a good description of
the I-V characteristics at low and high bias voltages, but it fails to
capture the staircase structure reminiscent of the Coulomb blockade.
The CQM reproduces the QME results quantitatively; specifically, it
captures the staircase structure due to the Coulomb blockade effect.

In this high temperature regime, the agreement between the CQM
and the quantum mechanical results is observed for a wide range
of the onsite Hubbard repulsion term and also for the quantum dot
population.

Next, we consider a regime where the QME breaks down,
namely, the low temperature regime. For simplicity, we focus on
the equilibrium case where µL = µR = 0. In this regime, solutions
for the population as functions of the gate voltage (ε = ε↑ = ε↓) are
readily available using the numerical renormalization group (NRG)
technique.51 In the left panel of Fig. 3, we plot the quantum dot
total population (⟨n↑ + n↓⟩) as a function of the gate voltage. The
NRG results show a staircase shape which is a manifestation of the
Coulomb blockade effect. The CQM agrees quantitatively with the
NRG results over a wide range of gate voltages. Specifically, it cap-
tures both the position of the blockade as well as its width. The
QME approach, however, captures only the position of the res-
onances; the broadening of the transitions is missing completely.
This qualitative difference between the CQM and QME approaches
signifies the advantages of the quasiclassical mapping techniques
over the commonly used QME approach for a broad range of
temperatures.

The mapping of the Hubbard term in Eq. (15) introduces a
parameter, ∆σ, which is determined self-consistently. The basic idea
is simple: the occupation of the dot nσ outside the commutator is
substituted with a step function θ(nσ − ∆σ) for the interaction term
only to mimic the quantization of the population. To fix ∆σ, we
consider a set of parameters where the value of the steady state popu-
lation ⟨n̂σ⟩ = 1/2 (high bias or particle-hole symmetric point for the
current model) and determine self-consistently the value of ∆σ such
that classically ⟨θ(nσ − ∆σ)⟩ = 1/2. Then, for nσ > ∆σ, the dot is con-
sidered classically occupied and the interaction term influences the
dynamics.

For the results shown in Fig. 3, we use a single value for ∆σ =
0.18, determined by considering the particle-hole symmetric point,
where ε↑ = ε↓ = −U/2 = −5Γ. At the symmetric point, the steady
state value of the average dot populations is ⟨n̂σ⟩ = 1/2. We then set
∆σ to the median of the distribution of nσ (see Appendix C). This
ensures that the Hubbard terms in Eq. (15) are significant only when
nσ > ∆σ. In the right panel of Fig. 3, we show the results obtained

FIG. 3. Left panel: the steady-state quantum dot population as a function of the
gate voltage ε = ε↑ = ε↓ under equilibrium conditions (µL = µR = 0). Right panel:
the dependence of the steady-state dot population on the choice of the value of
∆σ [cf., Eq. (15)]. Parameters used are Γ = 2ΓL = 2ΓR = 1, T = Γ/100, U = 10Γ,
Ntr = 3 × 104, and, for the left panel, ∆σ = 0.18.
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FIG. 4. Comparison of the dot population (⟨n↑ + n↓⟩) derived from the memory-
kernel formalism7 (solid lines) and the CQM approach (dot symbols) for an initially
unoccupied dot for two values of the interaction energy (U = Γ and U = 6Γ). Param-
eters used are Γ = 2ΓL = 2ΓR = 1, T = Γ, µL = −µR = Γ/2, ε↑ = ε↓ = −U/2, and Ntr

= 6 × 104, and for the CQM results, ∆σ = 0.24 for U = 6Γ and ∆σ = 0.31 for U = Γ.

for the total dot occupation for different values of ∆σ. Only 3 iter-
ations are required to converge the results for ∆σ within the noise
level of our simulations. To do this, we start with an initial guess of
∆σ = 0.34. In the next iteration, we set ∆σ to the new median of the
distribution of nσ, in this case ∆σ = 0.24. We then repeat this pro-
cedure until convergence of the median (only one more iteration is
required in this present case). We then use the value of ∆σ found
for the symmetric point for other model parameters. The results in
the right panel of Fig. 3 clearly indicate that the average dot pop-
ulation is not very sensitive to small variations in the value of ∆σ,
but the converged results provide the best agreement with the NRG
calculations.

The agreement between the CQM and the quantum mechan-
ical results are not limited to steady-state properties. In fact, our
mapping also captures quantitatively the hallmarks of the Coulomb
blockade in the relaxation toward the steady state. Shown in Fig. 4 is
the time dependence of the dot occupation for two different values
of U, with a bias voltage of VSD = µL − µR = Γ and temperature T = Γ.
Here, we compare the CQM to numerically converged real-time
stochastically sampled diagrammatic techniques applied within the
reduced density matrix formalism.7 For both values of U, we find
that the full time dependence is in good agreement with the numer-
ically converged data. In each case, the dot population increases
monotonically and the time scales required to reach the long time
limit are comparable.

IV. REFERENCE DYNAMICS FOR STATISTICAL
CONVERGENCE

When evaluating the classical expected value Eq. (7), the inte-
gral over the initial distribution is replaced by averaging over dif-
ferent initial configurations of the leads that satisfy the Fermi-Dirac
distribution. For a large number of initial conditions, Ntr, the pro-
cedure converges to the desired distribution and to the exact expec-
tation value. However, the low dimensional nearly harmonic system
generically requires a large number of initial conditions to statisti-
cally converge the result. To reduce the number of initial conditions
for a given statistical error, we introduce a reference system whose

expectation value can be determined exactly and inexpensively.
Specifically, the expectation value of an observable A is calculated
according to

⟨A⟩ = ⟨Ar − Ar + A⟩ = Ār + ⟨∆A⟩, (18)

where Ar is an observable used as the reference and Ār is the
exact expectation value of Ar evaluated using a different inexpen-
sive method. In the limit Ntr →∞, we have ⟨Ar⟩ → Ār and ⟨A⟩ will
approach the real expectation value. However, for a finite Ntr, and a
smart choice of Ar, one can reduce significantly the statistical error
of this estimator. This is clarified by considering the variance using
the reference system

Var(∆A) = Var(A) + Var(Ar) − 2Cov(A,Ar). (19)

IfA andAr are correlated, it is possible to have Var(∆A) <Var(A). As
we are now propagating both A and Ar, to reduce the computational
effort, we desire that

Var(∆A)
Var(A)

<
1
2

. (20)

Given that the sample variance reduces as 1/Ntr, to obtain computa-
tional superiority, the ratio in Eq. (20) is bounded by 1/2. However,
improvement in the computational effort can already be seen for
ratios that are above this factor since typically propagation of the
reference system is not as costly as of the system of interest. Nonin-
teracting or mean-field Hamiltonians that can be solved analytically
serve as examples of reference systems that can reduce noise for the
dynamics of interacting systems. Other possibilities include consid-
ering dynamics that are generated from some effective Hamiltonian
with the same initial configurations.

Shown in Fig. 5 are two examples, one in which the reference
system method works well and one in which it fails. On the left
panel, we plot the ratio of the variances of the left current with spin
up as a function of time, and on the right, we plot the correspond-
ing currents. The reference considered here is the current calculated
for noninteracting systems where an exact solution can be obtained
by direct diagonalization of the single-particle Hamiltonian. We see
that when the reference current, Īr, becomes very different from the
real current, Īr + ⟨∆I⟩ (for U = 6Γ in the figure), the ratio of the

FIG. 5. Left panel: the ratio of the variances of the left currents for spin up as
a function of time. The red line is for U = 6Γ and the blue for U = Γ/2. Compu-
tational superiority is observed below the threshold ratio 1/2 noted by the black
dashed line. Right panel: the black line is the exact reference current (U = 0),
and the red and blue line are the currents obtained using a reference system for
U = 6Γ and U = Γ, respectively. The parameters are Γ = 2ΓL = 2ΓR = 1, T = 0.5Γ,
ε↑ = ε↓ = 2Γ, Ntr = 3 × 104, and µL = −µR = 2Γ.
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variances at steady-state exceeds its bound 1/2. However, when the
reference and the real currents are proximate but still quite different
(for U = Γ/2 in the figure), we see that the ratio of the variances is
reduced significantly as a consequence of correlations between the
trajectories of the currents.

We note that for the parameter regime where the reference and
real currents almost coincide, the fluctuations drastically decreased,
and the ratio of the variances at the steady state reached as low as
∼10−4. This implies that for a fixed statistical convergence threshold,
the number of initial conditions decreases by two orders of mag-
nitude since each estimate is statistically independent. One can also
note that at short times, the reference system always reduces the fluc-
tuations significantly. The reason is that we used an uncorrelated
initial condition and thus the short time behavior is set by ∼Γ−1. It
takes a certain amount of time for correlations to build up and for the
interacting part in the Hamiltonian to influence the dynamics, yield-
ing a statistical benefit for short times even when the steady-state
result is far from the noninteracting limit.

The idea of using a reference system can be extended beyond
the description above. For example, if one wishes to calculate the
current as function of U, one can start the evaluation for small U
and increase it “adiabatically.” For each calculation of the current,
the previous current (with smaller U) can be used as the reference
system. Of course, the exact term in Eq. (18) is no longer exact and
carries with it some error, but this can still be beneficial, as trajecto-
ries of the different currents are likely to be correlated given that the
change in U is small.

V. CONCLUSIONS
We have presented a quasiclassical method to simulate

nonequilibrium dynamics of interacting fermions. We have con-
structed this map using the correspondence relation between the
commutator and the Poisson bracket, in order to preserve Heisen-
berg’s equation of motion for one-body operators. We have shown
that this classical map is complete for quadratic expectation val-
ues under quadratic Hamiltonians and it can be extended to higher
moments accurately. This feature makes the study of fluctuations
and higher-order correlations accessible.

For interacting systems, the dynamics is approximated by map-
ping the equation of motion and enforcing a quantization rule that
determines for which values of nσ the dynamics is influenced by
the Hubbard term. This, together with a quasiclassical initial dis-
tribution, provides a quantitative agreement with other methods
in regimes where those other methods are known to be accurate.
Thus, a quantitative description of nonequilibrium currents in the
Anderson model, including their steady-state behavior as illustrated
by the presence of the Coulomb blockade, their fluctuations as
encodes in the second moment of the current, and the relaxation
of each to their steady state, can be obtained.

We have also shown a way to enhance the statistical conver-
gence of this method by introducing a reference system, whose
dynamics can be computed exactly, and averaging the difference
between the reference system and the system of interest. Provided
that the reference system is correlated with the system of interest,
fluctuations are reduced in the averaging procedure, and we have
shown that this can increase the computational efficiency by up to
2 orders of magnitude over naïve sampling. Together, these results

make the quasiclassical method appealing for studying nonequilib-
rium phenomena in complex chemical systems. Indeed, realistic sys-
tems of molecular junctions routinely operate at low effective tem-
peratures, and finite interaction strengths render other low scaling
approximate approaches inaccurate. The method we have presented
here is capable of probing these regimes, at a small computational
cost that scales linearly in the system degrees of freedom. This should
enable studies in correlated transport behavior in high dimensional,
molecular systems, far from equilibrium.
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APPENDIX A: RELATION TO QUATERNION MAPS
The LMM39,40 is based on expressing the fermionic creation and

annihilation operators in terms of a set of quaternions

â†
=

1
2
(

√

−1 î − ĵ),

â =
1
2
(

√

−1 î + ĵ).
(A1)

The quaternions operators î, ĵ, and k̂ satisfy the anticommutation
relation

î̂j = −ĵ̂i = k̂, ĵk̂=−k̂ĵ = î, k̂î = −îk̂ = ĵ,

î2
= ĵ2

= k̂
2
= −1.

(A2)

Using the relations in Eqs. (A1) and (A2), quadratic creation and
annihilation operators can be expressed as

â†
nân =

1
2

+
√

−1
2

în ĵn,

â†
nâm =

1
4
(−în îm − ĵn ĵm +

√

−1 (în ĵm + îm ĵn)),

â†
nâ

†
m =

1
4
(−în îm + ĵn ĵm −

√

−1 (în ĵm − îm ĵn)),

ânâm =
1
4
(−în îm + ĵn ĵm +

√

−1 (în ĵm − îm ĵn)).

(A3)

The commutation relation of two elementary quaternions are then
mapped to a cross product of vectors in phase space,

√

−1
2

î→ r = (
x
y),

√

1
2

ĵ→ p = (
px
py

). (A4)

The CQM replaces the map in Eq. (A4) with

√
√

−1
2

î→ u = (
x
px

),

√
√

−1
2

ĵ→ v = (
y
py
). (A5)
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This choice implies that
√

−1
2

în ĵm → un × vm = xmpym − pxnym,

√

−1
2

în îm → un × um = xmpxm − pxnxm, ∀n ≠ m,

√

−1
2

ĵn ĵm → vn × vm = ympym − pynym, ∀n ≠ m,

(A6)

and
√

−1
2 î̂i =

√

−1
2 ĵ̂j = −

√

−1
2 for n = m. The LMM given by Eq. (A4)

can be used to map the terms â†
nân and â†

nâm + â†
mân. The CQM

extends this to terms like â†
nâ†

m, ânâm, and â†
nâm.

APPENDIX B: ENERGY CONSERVATION
To study the energy conservation, we consider the

Hamiltonian

Ĥ = ∑

σ=↑,↓
εσd†

σdσ + ∑
σ=↑,↓
k∈L,R

εkc
†
kσckσ + ∑

σ=↑,↓
k∈L,R

tkd
†
σckσ + h.c.

+U(n↑θ(n↓ − ∆↓) + n↓θ(n↑ − ∆↑)). (B1)

This Hamiltonian is a close analog to what would be the constant
of motion for the dynamics we employ. The contribution of the
last term in the Hamiltonian to the equation of motion is given
by

U({A,n↑}θ(n↓ − ∆↓) + {A,n↓}θ(n↑ − ∆↑))
+U({A, θ(n↓ − ∆↓)}n↑ + {A, θ(n↑ − ∆↑)}n↓). (B2)

The terms in the second line of Eq. (B2) are proportional to the
Dirac delta function δ(nσ − ∆σ) and are neglected in the dynami-
cal map. In Fig. 6, we plot the ratio ∣⟨∆H(t)⟩∣

∣⟨H(0)⟩∣ , where ∆H(t) = H(t)
− H(0). We find that the accumulated drift of the H is less than
0.05% of the total energy. We show this for both low and high tem-
peratures and similar results were observed for small and large bias
voltages.

FIG. 6. The drift of the energy in time for different temperatures and source-drain
voltages. The parameters are U = 10Γ, ε = −5Γ, and Γ = 2ΓL = 2ΓR = 1.

FIG. 7. The normalized distribution of the occupation number n↑ at steady-state,
for different values ∆↑. The distributions correspond to the data presented in Fig. 3
at the particle-hole symmetric point ε = −5Γ.

APPENDIX C: STEADY-STATE DISTRIBUTION
OF THE OCCUPATION NUMBER

Figure 7 presents the normalized distribution of n↑ at steady-
state. The three distributions correspond to the procedure of deter-
mining ∆σ at the particle-hole symmetric point as explained in
Sec. III C.
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