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ABSTRACT
We develop a stochastic resolution of identity representation to the second-order Matsubara Green’s function (sRI-GF2) theory. Using
a stochastic resolution of the Coulomb integrals, the second order Born self-energy in GF2 is decoupled and reduced to matrix prod-
ucts/contractions, which reduces the computational cost from O(N5) to O(N3) (with N being the number of atomic orbitals). The current
approach can be viewed as an extension to our previous work on stochastic resolution of identity second order Møller-Plesset perturbation
theory [T. Y. Takeshita et al., J. Chem. Theory Comput. 13, 4605 (2017)] and offers an alternative to previous stochastic GF2 formulations
[D. Neuhauser et al., J. Chem. Theory Comput. 13, 5396 (2017)]. We show that sRI-GF2 recovers the deterministic GF2 results for small
systems, is computationally faster than deterministic GF2 for N > 80, and is a practical approach to describe weak correlations in systems with
103 electrons and more.
Published under license by AIP Publishing. https://doi.org/10.1063/1.5108840., s

I. INTRODUCTION

To understand the fundamental chemistry and physics that
drive emergent phenomena in complex chemical systems under
real-world conditions requires an accurate description of the ground
and excited electronic states. However, such a task poses unique

challenges. First, quantitative electronic structure calculations for
realistic chemical systems can be prohibitively expensive due to the
system size and poor scaling of current methods. Second, com-
plex chemical systems with multiple components lead to situa-
tions where electron correlation and excited states must be accu-
rately described throughout multiple phases and at their interfaces.
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Finally, it is insufficient to study these systems at equilibrium as a
great deal of important chemistry emerges under nonequilibrium
conditions.

For weakly correlated systems, the many-body perturbation
theory (MBPT) within the Green’s function (GF) method pro-
vides an accurate framework to describe ground state properties
beyond mean field density functional theory (DFT)1–5 and Hartree-
Fock (HF)6–8 and has been proven extremely fruitful.9–21 These
post DFT/HF techniques allow for the inclusion of electron correla-
tion in a controlled and systematic fashion through approximations
of the self-energy and have been used to accurately describe total
ground state energies, quasiparticle excitations, lifetimes, etc.22–30

However, their steep computational scaling and costs restrict their
use to small molecular systems or to bulk materials with a small unit
cell.

A particularly interesting implementation is the self-consistent
GF approach based on the second-order approximation to the elec-
tron self-energy (GF2), which is experiencing a renaissance.30–36

Modern implementations of the finite temperature GF2 (FT-GF2)
method have calculated accurate ionization potentials35–38 and total
energies for organic molecules as large as C6H6 as well as transi-
tion metal containing triatomics.39,40 Recently, GF2 has been applied
to capture static correlation, producing potential energy curves of
a symmetrically stretched H6 ring that are in qualitative agreement
with truncated configuration interaction results.41

Although the results of recent studies are extremely promising,
the GF2 approach suffers from a prohibitively high computational
cost, scaling as O(N5) (N is the number of orbitals used). Thus, GF2
methods have yet to be applied to molecular systems of experimen-
tally relevant sizes. It would be extremely advantageous if methods
with inherent and systematic structure, e.g., GF methods, were to
become a viable option and can be performed routinely for complex
chemical systems. This is especially true of the largely unexplored
set of chemical systems that lie in the intermediate regime between
small molecules and the bulk limit.

Recently, a stochastic method was developed that reduces the
scaling of the ground state and thermal GF2 using a stochastic
decomposition of the imaginary time Green’s function. The method
was tested successfully on long linear hydrogen chains.42

In this work, we introduce an alternative stochastic orbital
approach to reduce the scaling of the GF2 methods that would
lend itself very simply to higher-order approximations to the self-
energy and for going beyond limited to the ground state and ther-
mal calculations. Unlike the stochastic GF2 method developed in
Ref. 42 which uses random variables to represent the GF, the current
approach builds upon our recently developed stochastic orbital elec-
tron repulsion integral (ERI) method43 that decouples the 4-index
ERIs.

Decoupling the indices of a “core element” in electronic struc-
ture theory enables the derivation of new systems of equations that
can be solved at a fraction of the computational cost of the determin-
istic methods. As a result, large and accurate basis sets, traditionally
considered impractical, can be used to perform electronic structure
calculations within the framework of GF2 at a similar formal scal-
ing to DFT and HF for systems that are impractical in deterministic
calculations by introducing a controlled error.

The manuscript is structured as follows: Sec. II describes the
GF2 approach and provides two alternative implementations, one

based on going between imaginary time and frequency and the
other solely in the imaginary time domain. We also review the
stochastic representation of the resolution of identity and apply
the formalism to the GF2 self-energy. In Sec. III, we compare the
frequency and imaginary time domain approaches for a hydrogen
chain as well as provide results for the total correlation energy and
the scaling of the stochastic vs deterministic approaches. Section IV
concludes.

II. THEORY
Matsubara, or finite-temperature imaginary time, Green’s func-

tion methods are well suited for the study of complex chemical
systems as they enable us to evaluate equilibrium thermodynamic
properties. In practice, the temperature is selected such that the
Matsubara GF technique is better thought of as a ground state elec-
tronic structure method. In the following subsections, we outline
the Matsubara GF method and the corresponding stochastic orbital
implementation.

A. Matsubara Green’s functions
The Matsubara GF method provides a self-consistent solution

to the Dyson equation in imaginary frequency (we use atomic units
where h̵ = 1 throughout the paper, unless otherwise noted),

G̃(iωn) =
1

[G̃0(iωn)]−1 − Σ̃(iωn)
, (1)

where iωn = i(2n + 1) πβ is the Matsubara frequency (β the
inverse temperature), G̃(iωn), G̃0(iωn), and Σ̃(iωn) are the single-
particle Green’s function of the interacting system, the single-
particle Green’s function of the Hartree-Fock reference system, and
the self-energy, respectively. In the second order approximation, i.e.,
GF2, the self-energy is given by

Σij(τ) = ∑
klmnpq

Gkl(τ)Gmn(τ)Gpq(β − τ)vimqk(2vlpnj − vnplj). (2)

Here, Σ(τ) and G(τ) are the imaginary time self-energy and Green’s
function, respectively. Here, we have restricted ourselves to the
closed shell case. vijmn is the 4-index electron repulsion integrals
(ERIs),

vijmn = (ij∣mn) =∬ dr1dr2
χi(r1)χj(r1)χm(r2)χn(r2)

r12
, (3)

where χi is the atomic orbital. Equations (1) and (2) need to be
solved self-consistently since the self-energy depends on Green’s
function.

We present two methods to obtain the self-consistent solution
to Eq. (1), the first follows the procedure of Ref. 42 which builds
on the techniques developed in Refs. 34, 40, and 39, and the sec-
ond, developed in this work, is based on an imaginary time prop-
agation technique. The self-consistent procedure of Ref. 42 may be
summarized in the following steps:
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1. Initialize G̃(iωn) = G̃0(iωn) = [(μ + iωn)S − F]−1, where S
is the overlap matrix and F is the Fock matrix from a con-
verged Hartree-Fock calculation, and μ is the chemical poten-
tial, initialized at the middle point between the highest occu-
pied molecular orbital (HOMO) and the lowest unoccupied
molecular orbital (LUMO).

2. Perform a discrete Fourier transform (FT) to obtain Green’s
function in imaginary time, G(τ) = 1

β ∑n e
−iωnτG̃(iωn). To

reduce the number of time and frequency points, we use the
approach developed in Ref. 42.

3. Construct Σ(τ) from G(τ), and then perform a FT to the
imaginary frequency space to obtain Σ(iωn).

4. Solve the Dyson equation G̃(iωn) = [(G̃0(iωn)−1)−Σ̃(iωn)]−1.
5. Update the Fock matrix, Fij = hij +∑ab Pab(vijab− 1

2vibaj), using
the relation G(τ = β) = − 1

2P, where P is the density matrix.
6. Tune the chemical potential, μ, so that the total number of

electrons, Ne = Tr[PS], is conserved.
7. Repeat steps 2–6 until self-consistency is reached.

Step 3 in the above algorithm is the computational bottleneck,
i.e., the evaluation of Σ(τ). The computational cost of the second-
order Born approximation to the self-energy, Σ(2)(τ) [see definition
in Eq. (2)], scales as O(N5) (N is the number of basis functions) and
must be done for all Nτ imaginary time points.

Alternatively, one can solve the Dyson equations in the time
domain, rather than going back and forth between imaginary time
and Matsubara frequency domains. In this case, the complication
associated with the FT is replaced with an imaginary time integration
and imposing the boundary condition such that P = −2G(τ = β):

1. Initialize G(τ) = G0(τ) = Xe−τ(F̄−μI)[ θ(−τ)
1+eβ(F̄−μI) −

θ(τ)
1+e−β(F̄−μI) ]X

T ,

where X satisfies XXT = S−1 and F̄ = XTFX is the Fock matrix
in orthogonal basis. Again, F is initialized from a converged
Fockian, and μ is initialized at the middle point of the HOMO-
LUMO gap.

2. Construct Σ(τ) from G(τ) using Eq. (2).
3. Solve the Dyson equation in the imaginary time to obtain new

Gnew(τ),

Gnew(τ) = G0(τ) + ∫dτ′dτ′′G0(τ − τ′)Σ(τ′ − τ′′)G(τ′′).

Imaginary time integral gets solved using a proper quadra-
ture.30 To be specific, we use 1000 Legendre polynomials. The
Legendre quadrature points are cubic splined from 256 Cheby-
shev grid points of imaginary time. To reduce the computa-
tional cost, the double integral is decoupled into two separated
integrals. Furthermore, to make the most use of the spline, the
integral is evaluated for the spline coefficient, such that we only
do the quadrature integral once.

4. Update the Fock matrix Fij = hij+∑mn Pmn(vijmn− 1
2vinmj) using

the new Green’s function, Gnew(τ = β) = − 1
2P.

5. Tune the chemical potential, μ, so that the total number of
electrons, Ne = Tr[PS], is conserved.

6. Use the new Gnew(τ) to calculate the self-energy and repeat
steps 2–5 until self-consistency is reached.

Again, the computational bottleneck is in Step 2 of calculat-
ing the self-energy. In Sec. III, we will compare the two algorithms,
i.e., imaginary time and imaginary frequency Green’s function

methods and discuss the computational complexity of each
approach. Before this is done, we first turn to describe a stochastic
formulation for the self-energy that reduces the scaling of obtaining
the self-energy to O(N3).

B. Stochastic resolution of identity
To address the high computational cost of Matsubara GF2 cal-

culations, we begin by noting that a significant reduction in the
computational prefactor may be achieved by approximating the
4-index electron repulsion integrals (ERIs), vijmn, in Eq. (3) in terms
of the 2- and 3-index integrals. This is the resolution of the identity
(RI) or density fitting approximation.43 The 3- and 2-index ERIs are
defined as

(αβ∣A) = ∫ ∫ dr1dr2
χα(r1)χβ(r1)χA(r2)

r12
(4)

and

VAB = ∫ ∫ dr1dr2
χA(r1)χB(r2)

r12
. (5)

In the above equations, we use the usual notation: the AO Gaussian
basis functions are represented by χα(r) and Greek indices α, β, γ, δ,
. . ., while the auxiliary basis functions are represented by the indices
A, B, . . .. Finally, the total number of AO basis functions, auxiliary
basis functions, are NAO and Naux, respectively. Furthermore, both
Naux and NAO are proportional to the system size with Naux typically
3–6 times NAO.

The approximate 4-index RI-ERIs are then expressed symmet-
rically in terms of the lower-rank integrals according to

(αβ∣γδ) ≈
Naux

∑
AB
(αβ∣A)[V−1]AB(B∣γδ)

=
Naux

∑
Q
[
Naux

∑
A
(αβ∣A)[V−

1
2 ]

AQ
][

Naux

∑
B
[V−

1
2 ]

QB
(B∣γδ)]. (6)

Defining

KQ
αβ ≡

Naux

∑
A
(αβ∣A)V−

1
2

AQ , (7)

yields

(αβ∣γδ) ≈
Naux

∑
Q

KQ
αβK

Q
γδ . (8)

The stochastic orbital implementation of the RI approxima-
tion43 utilizes the same set of 2- and 3-index ERIs while introducing
an additional set of Ns stochastic orbitals, {θξ}, ξ = 1, 2, . . ., Ns.
Stochastic orbitals are arrays of length Naux with randomly selected
elements θξA = ±1 and have the following property:43

⟨θ⊗ θT⟩
ξ
= I, (9)

where we have denoted the stochastic average over Ns stochas-
tic orbitals by ⟨⟩ξ . Inserting the stochastic identity matrix into the
deterministic RI-ERIs in Eq. (6), we obtain the expression for the
sRI-ERIs,
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(αβ∣γδ) ≈
Naux

∑
PQ

Naux

∑
AB
(αβ∣A)V−

1
2

AP IPQV
− 1

2
QB (B∣γδ)

=
Naux

∑
PQ

Naux

∑
AB
(αβ∣A)V−

1
2

AP (⟨θ⊗ θT⟩
ξ
)
PQ
V
− 1

2
QB (B∣γδ)

=⟨[Naux

∑
A
(αβ∣A)

Naux

∑
P

V
− 1

2
AP θP]

⎡⎢⎢⎢⎣

Naux

∑
B
(B∣γδ)

Naux

∑
Q

θTQV
− 1

2
QB

⎤⎥⎥⎥⎦⟩ξ ,
(10)

where (⟨θ⊗ θT⟩ξ)PQ is the PQth element of the stochastic identity

matrix. We now define the ξth elements of the stochastic average as

Rξ
αβ =

Naux

∑
A
(αβ∣A)[

Naux

∑
P
[V−

1
2

AP θ
ξ
P]] ≡

Naux

∑
A
(αβ∣A)LξA. (11)

With this definition, the ERI in the AO basis [Eq. (10)] is now given
by a stochastic average, an O(NsN4

AO) step,

(αβ∣γδ) ≈ 1
Ns
∑
ξ
Rξ
αβR

ξ
γδ ≡ ⟨RαβRγδ⟩ξ . (12)

The introduction of the stochastic identity matrix decouples
the index Q in Eq. (6). Previous work has shown that the trade-
off between decoupling this index and the introduction of stochastic
noise allows for a reduced overall scaling and computational time.43

It was also shown that the stochastic error of the elements of the
identity matrix and therefore the error of the ERIs is governed by
the number of stochastic orbitals, Ns. This is due to the fact that it is
the length of stochastic arrays, Naux, that increases with the system
size, not the number of stochastic orbitals.

C. Stochastic resolution of identity second-order
Born self-energy

In this section, we demonstrate how the sRI-ERIs may be
applied to the second-order approximation to the self-energy to
reduce the overall scaling of computing Σ(τ) [cf., Eq. (2)]. Using the
stochastic resolution of identity of ERIs [Eq. (12)], the second-order
Born self-energy in Eq. (3) can be represented by

Σ(τ)ij = ⟨ ∑
klmnpq

−Gkl(τ)Gmn(τ)Gpq(β− τ)RikRmq(2R′ljR′pn − R′njR′lp)⟩
ζ,ζ′

= ⟨ ∑
klmnpq

−2Gkl(τ)Gmn(τ)Gpq(β − τ)RikRmqR′ljR
′
pn

+Gkl(τ)Gmn(τ)Gpq(β − τ)RikRmqR′njR
′
lp⟩

ζ,ζ′

= ⟨ ∑
klmnpq

−2Σdir(τ) + Σex(τ)⟩
ζ,ζ′

. (13)

We note that, in the above equations, R and R′ matrices use differ-
ent sets of stochastic orbitals. In the above equations, we have also
defined

Σdir
ij (τ) = ⟨ ∑

klmnpq
−2Gkl(τ)Gmn(τ)Gpq(β − τ)RikRmqR′ljR

′
pn⟩

ζ,ζ′
,

Σex
ij (τ) = ⟨ ∑

klmnpq
Gkl(τ)Gmn(τ)Gpq(β − τ)RikRmqR′njR

′
lp⟩

ζ,ζ′
.

(14)

In the above equations, the evaluation of Σdir
ij (τ) and Σex

ij (τ) is done
now simply by matrix products (or matrix contractions), which scale
as O(N3), as long as the number of stochastic orbitals does not
change with the size of the system. It should also be noted that
sRI-ERIs can also be used to reduce the scaling to O(N3) when eval-
uating the third order or higher self-energy for all contractions in
self-energy are now matrix products. That being said, for now, we
limit ourselves to the second order Born self-energy.

III. RESULTS AND DISCUSSION
To study the observed scaling, stochastic errors, and the impact

of the prefactors, Ns and Nt , on the sRI-GF2 method, we test the
approach on a hydrogen dimer chain Hn with sto-3g basis, with n
being the number of H atoms. In such a hydrogen dimer chain, the
distance between two hydrogen atoms within a dimer is 0.74 Å, and
the distance between two H atoms over the nearest hydrogen dimers
is 1.26 Å. For such a system, we use cc-pvdz as a fitting basis set (we
use cc-pvdz-jkfit for Fock Matrix elements and cc-pvdz-ri for self-
energy). In addition, we restrict ourselves to closed shell calculations.
This system served as a test bed for other GF2 implementations as
well as for the stochastic approach of Ref. 42.

We do not take advantage of the locality of the atomic basis and
the resulting sparsity of the ERIs which makes the current applica-
tions more realistic for 3D structures, where sparsity often occurs at
much larger system sizes. We note in passing that using the sparsity
of the 4-index ERIs would further reduce the cost of computing the
self-energy.

A. Comparison of GF2 in frequency and imaginary
time domain

We first compare the imaginary time and imaginary frequency
sRI-GF2 methods. One of the most important properties we can gain
from Matsubara GF is the correlation energy, which is given by

Ecorr = ∫
β

0
dτ Tr (Σ(τ)G(β − τ)). (15)

We generally used Nτ = 256 imaginary time points for the integrals.
In Table I, we compare correlation energy from imaginary time and
imaginary frequency sRI-GF2 methods on H2, H10, H20, and H40.
We find excellent agreement between the two sRI-GF2 methods, up
to an error of 6 meV for the total correlation energy (about 0.2 meV
for correlation energy per electron). The computational cost of the
two methods is comparable and is mainly determined by the evalu-
ation of the self-energy. The results shown in the remainder of the
paper were obtained with the frequency domain calculation, but the
analysis applies to both methods.

B. Correlation energy
In Fig. 1, we plot the correlation energy for the hydrogen

dimer chain as a function of number of hydrogen atoms. We use
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TABLE I. Correlation energy (in eV) from time sRI-GF2 and frequency sRI-GF2, and
the CPU time ratio for sRI-GF2 between frequency and time domain formulations.

Ecorr from time Ecorr frequency CPU time
sRI-GF2 sRI-GF2 ratio (%)

H2 −0.6546 −0.6548 47.9
H10 −3.7541 −3.7565 37.7
H20 −6.3811 −6.3835 63.1
H40 −13.2038 −13.2092 61.1

Ns = 800 stochastic orbitals for each sRI-GF2 calculation. The final
results are then averaged over 10 independent runs. We find that
sRI-GF2 results provide a very good agreement with the determinis-
tic GF2 results. Note also that the correlation energy grows nearly
linearly with the system size, which signifies weak correlations in
the hydrogen dimer chain. We also note that the difference in cor-
relation energy per electron [Fig. 1(b)] between deterministic and
stochastic GF2 is within the statistical error.

Note also that from Fig. 1(b), the statistical error bar for energy
per electron does not increase with the system size. In other words,
to obtain constant accuracy for energy per electron for different
system sizes, one does not need to increase the number of stochas-
tic orbitals; therefore, our sRI-GF2 approach scales as N3 with the
system size or number of electrons. However, if one does want to
obtain the same accuracy for the total energy (instead of energy per
electron), since the stochastic error is proportional to the inverse
square root of the sampling size (central limit theorem), our sRI-
GF2 approach will scale as N5 with system size, which is the same
scaling as the deterministic implementation of GF2. That being said,
for extended systems, e.g., bulk materials, the meaningful quantities
are energy per particle or per unit cell instead of the total energy. We
expect our sRI-GF2 method will be very useful for such extended
systems.

C. Error estimation
In Fig. 2, we plot the average correlation energy per electron as a

function of the number of stochastic orbitals. The stochastic error is
the standard deviation of the 10 independent sRI-GF2 runs, which is
roughly 0.02 eV. Clearly, the error bars decrease with the increasing
number of stochastic orbitals and do not depend on the system size.
Note also that the average correlation energy does not show a mono-
tonic behavior with the number of stochastic orbitals. In Ref. 42,
the authors report a linear dependence between the average correla-
tion energy and the number of stochastic orbitals due to a systematic
bias which is observable due to the small statistical errors. Here, we
do not observe a clean linear dependence, suggesting that our bias,
if there is any, is much smaller than our statistical error. This also
implies that in order to converge the results to a given statistical
error, the number of stochastic orbitals does not need to increase
with the system size (at least for the system size we are testing here,
under 1000 electrons).

D. Timing
In Fig. 3, we show the overall computational scaling of our

sRI-GF2 method and compare it to the deterministic version. In
all cases, we used, as mentioned, Nτ = 256, and roughly 20 SCF
cycles were required for convergence. Furthermore, Nω = 20 000
frequency points (cubic splined from 200 frequency points42)
were used. All calculations used the 32-core Intel-Xeon processor
E5-2698 v3 (“Haswell”) at 2.3 GHz on a single node. The wall
time for sRI-GF2 is tested for a single run with 800 stochastic
orbitals.

In our calculations, we do not rely on the sparsity of the 4-
index ERIs nor on the sparsity of the overlap matrix or the Fockian.
Using the sparsity of the 4-index ERIs would further reduce the
computational cost for both the deterministic and stochastic GF2
implementations. For larger systems, we find that the computational
cost scales as N3, with N being the number of hydrogen atoms. As

FIG. 1. (a) Correlation energy as a function of the number of H atoms (N = 10, 80, 200, 500). We have averaged over 10 independent sRF-GF2 runs. sRI-GF2 results
agree well with deterministic GF2 well. For a weakly correlated system such as H dimer chain, the correlation energy grows almost linearly with the number of H atoms.
(b) Correlation energy per electron as a function of the number of H atoms. The stochastic error is estimated using 10 independent sRI-GF2 runs, σ

√
10

. Here, σ is the

standard deviation of 10 independent sRI-GF2 runs with different sampling seeds. The difference in correlation energy per electron between deterministic and stochastic GF2
are within the statistical error. In both cases, we have used Ns = 800 stochastic orbitals in our sRI-GF2 calculations.
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FIG. 2. Correlation energy per electron as a function of the number of stochastic
orbitals Ns, for H80, H200, and H500, respectively. We run 10 independent sRI-GF2
calculations, and the stochastic error is the standard deviation of the 10 correlation
energy per electrons. In Ref. 42, systemic bias is reported where the correlation
energy decreases almost linearly with the increase in stochastic orbitals. Here,
there is no clear linear dependence on Ns since the statistical error is larger
compared to the bias.

FIG. 3. Wall time as a function of number of electrons on a single node (32-
core) modern Xeon CPU. We see that the computational cost scales as N3.1

(from fitting), with N being the number of H atoms. The original GF2, without
such stochastic resolution of identity, however, scales as N5.1 (from fitting) with
the number of H atoms N.

stated above, the most time consuming part is calculating the self-
energy. Using the stochastic resolution of identity, calculating the
self-energy is simply matrix multiplication, which scales N3. The
deterministic GF2 scales as N5. We find that the crossover between
the deterministic and stochastic GF2 is around 80 hydrogen atoms
for the accuracy of 0.01 eV in correlation energy per particle (as esti-
mated by the standard error of the mean value over 10 independent
runs, σ√

10
) given by 800 stochastic orbitals.

IV. CONCLUSIONS
We have presented two stochastic versions of the Matsubara

Green’s function method to calculate ground states properties of

molecular systems. Using the resolution of identity, the second order
Born self-energy is represented in a matrix product form, which
reduces the scaling from the original N5 to N3. Our sRI-GF2 can
be seen as an extension of the stochastic MP2 results as presented in
Ref. 43 and offers an alternative to the one as presented in Ref. 42.
We have shown that our sRI-GF2 reproduces deterministic GF2 up
to the stochastic error. In addition, we do not see systemic bias as we
increase the number of stochastic orbitals. Future work will investi-
gate how our stochastic resolution of identity can be implemented in
the real time GF method. Such work is ongoing.
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