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ABSTRACT: Dynamics at molecule−metal interfaces are a subject of intense current interest
and come in many different flavors of experiments: gas-phase scattering, chemisorption,
electrochemistry, nanojunction transport, and heterogeneous catalysis, to name a few. These
dynamics involve nuclear degrees of freedom entangled with many electronic degrees of
freedom (in the metal), and as such there is always the possibility for nonadiabatic phenomena
to appear: the nuclei do not necessarily need to move slower than the electrons to break the
Born−Oppenheimer (BO) approximation. In this Feature Article, we review a set of dynamical
methods developed recently to deal with such nonadiabatic phenomena at a metal surface,
methods that serve as alternatives to Tully’s independent electron surface hopping (IESH)
model. In the weak molecule−metal coupling regime, a classical master equation (CME) can
be derived and a simple surface hopping approach is proposed to propagate nuclear and
electronic dynamics stochastically. In the strong molecule−metal interaction regime, a
Fokker−Planck equation can be derived for the nuclear dynamics, with electronic DoFs
incorporated into the overall friction and random force. Lastly, a broadened classical master
equation (BCME) can interpolate between the weak and strong molecule−metal interactions. Here, we briefly review these methods
and the relevant benchmarking data, showing in particular how the methods can be used to calculate nonequilibrium transport
properties. We highlight several open questions and pose several avenues for future study.

1. INTRODUCTION

The Born−Oppenheimer approximation plays a central role in
modern physics and chemistry, asserting that nuclear motion is
decoupled from electronic dynamics due to the large ratio of the
mass of a nucleus to the mass of an electron. For many chemical
processes, however, several excited electronic states are relevant,
and the Born−Oppenheimer approximation breaks down, e.g.,
for processes with electronic relaxation or electron and energy
transfer. And at molecule−metal interfaces, electrons from the
metal are much easier to excite than for an isolated molecule,
such that Born−Oppenheimer dynamics can break down even
more dramatically. Such nonadiabatic dynamics at molecule−
metal interfaces are relevant for many typical chemical setups,
e.g., chemisorption,1−4 electrochemistry,5−8 heterogeneous
catalysis,9−11 and molecular junctions.12,13

Before addressing the role of the metal surface, consider for a
moment a simple, nonadiabatic event for a photoexcited
molecule in the gas phase or in solution, with only a handful
of electronic states. For such an experiment, a variety of
computational approaches have been developed to treat coupled
electron−nuclear dynamics including: generalized master
equations,14,15 the Meyer−Miller mapping,16−18 the momen-
tum jump approximation,19 linearized path integrals,20 multiple
spawning,21 and exact factorization dynamics.22 Among these
approaches, Ehrenfest dynamics (ED) and Tully’s fewest switch
surface hopping (FSSH)23 are probably still the most commonly
used approaches, in no small part due to their simplicity.

Nowadays, many researchers continue to look for improvements
to these approaches, e.g., by addressing the coherence problem
of FSSH24,25 or the detailed balance problem of ED.26 At the
same time, it is also routine nowadays for computational
physicists and chemists to use FSSH and ED to model a variety
of photochemical processes, e.g., light-harvesting, proton
coupled electron transfer,6,27 singlet fission,28 and multidimen-
sional spectroscopy.29−31

Turning to the case of molecules on surfaces, we note that,
near a metal surface, because of the continuum of electronic
degrees of freedom (DoFs), nonadiabatic dynamics are much
more complicated than they are in solution. For these problems,
while numerically exact solutions for simple model Hamil-
tonians can sometimes be ascertained, e.g., through multi-
configuration time dependent Hartree (MCTDH),32 quantum
Monte Carlo (QMC),33 or the hierarchical quantum master
equation (HQME),34,35 more commonly we require new
insights based on a reasonable physical approximation, and
these approximations lead us to simpler descriptions of the
problem, e.g., such as a quantum master equation,36−38

scattering matrix,39,40 a Green’s function approach,41−44 or
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influence functional techniques.45 For the purposes of modeling
realistic systems, however, even these approaches are usually still
too difficult, and new, affordable, and accurate approaches are
still being actively developed. And thus, we return to the most
basic dynamical propagation routines: Ehrenfest dynamics and
surface hopping dynamics.
(i) From a mean-field, Ehrenfest point of view, the dynamics

of molecules near a metal surface is one whereby, just as for
standard Born−Oppenheimer dynamics, nuclei evolve on a
potential of mean force. If one goes beyond the Born−
Oppenheimer approximation and works at first order in the
nonadiabaticity of the molecular dynamics, the influence of the
collective electronic DoFs gives rise to frictional (damping) and
fluctuating (random) forces.46,47 Such an “electronic friction”
model has been explored by many researchers in the literature
over decades.4,40,48−52 In particular, the most commonly used
expression was extrapolated by Head-Gordon and Tully
(HGT),53 which has been implemented to study several realistic
systems, including vibrational relaxation and chemisorp-
tion.10,11,54−64 As detailed below, we have recently shown that
Langevin dynamics can be rigorously derived from a quantum-
classical Liouville equation (QCLE)46 and the resulting HGT
model agrees with several other electronic friction models.65,66

Furthermore, we have demonstrated that nonadiabatic effects
can give rise to quantifiable entropy production.67

Of course, there are cases where electronic friction fails to
recover exact dynamics at metal surfaces.47,68,69 After all, the
electronic friction serves as a first-order correction to the BO
approximation.46,53 When strong nonadiabatic dynamics occur,
i.e., nuclear DoFs are not slow compared to electronic DoFs, a
mean-field treatment of coupled electron−nuclear dynamics is
not valid. Moreover, because the frictional approach traces out
all electronic dynamics, a detailed understanding of the electron
transfer, spin dynamics, etc. is missing in the electronic friction
picture. To go beyond this mean-field solution, a surface
hopping picture serves as a better alternative.
(ii) From a surface hopping point of view, the usual algorithm

for simulating dynamics at surfaces is the independent electron
surface hopping (IESH) approach as developed by Shenvi, Roy,
and Tully.70,71 According to IESH, one explicitly discretizes the
continuum of electronic DoFs and then uses FSSH to evolve the
mixed quantum-classical dynamics. To make the computational
cost affordable while still treating many electronic states, the
Hamiltonian models independent electrons such that the
electronic wave function is always the simple product of one-
electron orbitals. In practice, the IESH algorithm is a powerful
approach for simulating dynamics at surfaces,70,71 and we have
recently demonstrated that IESH does agree withMarcus theory
under the right conditions.72 The only hiccup with IESH is that,
for gas-phase scattering calculations (i.e., without a nuclear
bath), there is no natural means to include electronic relaxation
of the Fermi sea bath to the Fermi level without introducing
artifacts;72 this remains an outstanding question for future
development.
Now within the context of surface hopping calculations, we

have recently developed a few alternative approaches that do
automatically reach the correct equilibrium conditions. (a) First,
instead of treating all metallic electrons explicitly, the methods
assume that one can separate molecular electrons (at least
partially) from the electronic DoFs in the metal.38,73 Thereafter,
in the limit of weak molecule−metal interactions, we arrive at a
simple classical master equation (CME). This CME has a simple
surface hopping interpretation: we run trajectories on potential

energy surfaces (PESs) of the molecular system, and we
introduce hopping between potential energy surfaces to account
for molecule−metal interactions. To be specific, the hopping
probabilities depend on (i) the hybridization function of the
molecule−metal couplings and (ii) the energy of the impurity
orbital relative to the Fermi level of the metallic electrons. As
shown below, one of the most important features of the CME is
that one can directly relate CME dynamics to mean-field
electronic friction dynamics: when electronic dynamics are
faster than nuclear motion, CME surface hopping can be
mapped onto classical motion on potential of mean force plus
electronic friction and random force. See Figure 1 and ref 74. (b)

Second, armed with this surface-hopping/friction connection,
we have demonstrated that one reasonable means to incorporate
broadening effects into surface hopping dynamics is simply to
adjust the diabatic surfaces of propagation so as to recover the
correct, broadened potential of mean force.75 As shown below,
such a “broadened” classical master equation (BCME) appears
to be very accurate for treating both weak and strong molecule−
metal interactions (as benchmarked against numerical exact
results).76

The present Feature Article is not intended by any means to
be an exhaustive review of dynamics near metal surfaces; for
such a purpose, see refs 69 and 77−82. Instead, our purpose here
is to highlight our own perspective in this field and what we have
learned over the past few years of our investigations. We
organize this article as follows. In section 2, we introduce the
Anderson−Holstein model (which will serve as the model
Hamiltonian of choice) and we give a brief overview of methods
for solving the AH problem. In section 3.1, we introduce the
classical master equation (CME). In section 3.2 we demonstrate
a useful connection between the CME and an electronic friction
model. Armed with this connection, in section 3.3, we introduce
the BCME, which we have found to be a very efficient and
accurate approach as far as simulating the dynamics of a single
molecule on a surface. Next, in section 4, we show key numerical

Figure 1. Surface hopping and electronic frictionmolecular dynamics at
metal surfaces. In the surface hopping picture, electron transfer between
the molecule and metal surface is incorporated into hopping events
between neutral and changed potential energy surfaces. In the
electronic friction picture, we propagate molecular dynamics along
the potential of mean force, while the electronic dynamics are
incorporated into a frictional force and a fluctuating force. There are
natural connections between the surface hopping and electronic friction
pictures. As shown in section 3.2, when the hopping between the
neutral and charged states occurs quickly, i.e., electrons move very fast,
surface hopping dynamics recover molecular dynamics on a potential of
mean force, with the hopping being reduced into both a frictional and a
random force.
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results from these dynamical methods. In section 5, we show
how to embed the CME into a QCLE to model nonadiabatic
dynamics for a molecule (with many orbitals) and a metal
surface. In section 6, we pose several open questions and point
out future directions for newcomers to the field.

2. THE ANDERSON−HOLSTEIN MODEL
To describe nonadiabatic molecular dynamics near metal
surfaces, we begin with the standard model of choice: the
Anderson−Holstein (AH) model (or the Anderson−Newns
model in the surface scicence community).83−85 The AH model
posits a molecule with only a single electronic level coupled to
both a manifold of electrons and a set of nuclear degrees of
freedom (DoFs). To be explicit, in the AH model, the total
Hamiltonian is divided into three parts: the system Ĥs, the bath
Ĥb, and the interactions between the system and bath ĤI,

̂ = ̂ + ̂ + ̂H H H Hs b I (1)

∑̂ = ̂ ̂ + +
α

α

α

+
H h d d U

P
m

R R( ) ( )
2s 0

2

(2)

∑̂ = ϵ ̂ ̂+H c c
k

k k kb
(3)

∑̂ = ̂ ̂ + ̂ ̂+ +H V d c c dR( )( )
k

k k kI
(4)

Here d̂ (d̂+) is the annihilation (creation) operator for the
electronic orbital of the molecule. ck̂ (ck̂

+) is the annihilation
(creation) operator for the kth electronic orbital in the metal. R
andP are nuclear positions andmomenta, respectively (we use α
and ν to denote the nuclear degrees of freedom). U0(R) is the
nuclear potential for the neutral molecule, i.e., d̂+d̂ = 0; when the
molecule is charged, i.e., d̂+d̂ = 1, the nuclear potential isU1(R) =
U0(R) + h(R). Vk(R) is the coupling between the molecular
orbital d and the metallic orbital k, which generally depends on
R. We will define a hybridization function Γ to characterize the
strength of the system-bath coupling:

∑π δΓ ϵ = ϵ − ϵV( ) 2 ( )
k

k k
2

(5)

Γ typically depends on ϵ (through the δ function in the above
equation) and nuclear position R (through Vk). To simplify the
model, typically the wide-band limit is applied, such that Γ is
independent of ϵ.
As far as the molecule is concerned, the AH model represents

an open quantum system, and one would like to use the Fermi
energy μ and the temperature kT of the electronic bath to
propagate molecular dynamics. For the nonequilibrium case,
e.g., molecular junctions, where there are two metals with two
different Fermi levels and there can be an electronic current
flowing through the molecule, one must use kT, μL, and μR to
propagate dynamics. In the following, we will mostly focus on
the equilibrium case; for extensions to the nonequilibrium case,
see section 4.2.
2.1. Regimes of the AH Model. In practice, propagating

AH dynamics rigorously is difficult due to (1) the presence of a
manifold of electronic DoFs in the metal (so that the
computational cost grows exponentially with the increasing
number of quantum electrons) and (2) the nonadiabaticity of
the dynamics (whereby electronic dynamics and nuclear motion
are coupled). To be more explicit with regard to the question of

nonadiabaticity, consider the hybridization function Γ, which is
often used to quantify the decay of the d electron on the
molecule: the typical time scale for electronic motion is
characterized by ℏ/Γ. At the same time, consider also the
nuclear potential U0, according to which one can extract the
frequency ωα for a certain nuclear mode, where

ω = ∂α α αU m/2
0 : the typical time scale for nuclear motion

can be quantified as 1/ωα. The ratio of the two time scales can
then used to classify the AH model into two regimes:

• the nonadiabatic regime, Γ < ℏωα, i.e., where nuclear
motion is fast compared to electronic dynamics

• the adiabatic regime, Γ > ℏωα, i.e., where nuclear motion
is slow compared to electronic dynamics

In addition to the two energy scales above, there is also a third
energy scale that plays a role in the dynamics that should be
taken into account: temperature, kT. Depending on the strength
of the molecule−metal coupling compared to temperature, we
can further classify the AH model:

• the weak molecule−metal interaction regime, kT > Γ
• the strong molecule−metal interaction regime, kT < Γ

Lastly, yet another classification can be made as well: is the AH
model in the regime of classical nuclear motion (kT > ℏωα) or
the regime of quantum mechanical nuclear motion (kT < ℏωα)?
Note that all of the classifications above can be overlapped and

are not necessarily unique. For example, for classical nuclei (kT
> ℏωα), the strong molecule−metal interactions regime (Γ >
kT) automatically lies in the adiabatic regime (Γ > ℏωα);
similarly, the nonadiabatic regime (Γ < ℏωα) automatically lies
in the weak molecule−metal interaction regime (Γ < kT). The
fact that these regimes overlap well will allow us (below) to
rationalize the BCME approach as an extrapolation from the
weak to strong molecule−metal interaction regimes as well as
from the nonadiabatic to adiabatic regimes.

2.2. Flowchart of the Different Methods for Different
Regimes. As stated previously, because computational cost
scales exponentially with the number of quantum DoFs, a full
quantum mechanical treatment of the AH model (with no
approximations) can be very expensive. So far, only a few
computational approaches are available and only for relatively
small systems, e.g., MCTDH,32 QMC,33 and the HQME34,35

approaches. When one wishes to model a more realistic system,
assumptions and approximationsmust bemade. To that end, the
classification of the different AH regimes in the previous
subsection is a good guide for understanding the existing
semiclassical literature. For visual ease, our discussion below will
follow Figure 2, which should help the reader understand the
panoply of different mixed quantum classical approaches
possible.
In the limit where the temperature is high relative to the

typical frequency of the nuclear modes kT > ℏωα, we can
simplify AH dynamics by treating the low frequency nuclear
modes classically. If one makes no further assumptions and
discretizes the electronic bath explicitly, one standard approach
today is the independent electronic surface hopping (IESH)
model of Shenvi, Roy, and Tully.70 As discussed above, IESH is a
generalization of the FSSH model, whereby one propagates
dynamics over a very large number of electronic states, with
individual electrons allowed to hop independently. This scheme
accounts for electron−hole pair excitation and can recover some
energy relaxation for a scattering event.70,71 That being said, the
computational cost of IESH is not always small and the scheme
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can have problems achieving the correct detailed balance at
equilibrium. IESH will be discussed in section 4.3.
Next, if we insist on finding the correct equilibrium density

matrix according to a proper (but limited) description of
electronic dissipation, according to Figure 2 and as discussed in
the Introduction, we have two options. First, in the limit of weak
molecule−metal interaction, i.e., kT > Γ, we can trace out the
electronic DoFs in the metal, which leads to a very inexpensive
classical master equation (CME). Similar to Tully’s FSSH
algorithm, the CME propagates nuclear motion with hops
between electronic levels, but unlike Tully’s FSSH algorithm,
energy is not conserved, so that no momentum adjustment is
taken when electron transitions occur. This prescription yields a
proper account of dissipation in the electronic bath such that
detailed balance is obeyed. See section 3.1 for a detailed
discussion.
Second, in the limit of strong molecule−metal interactions,

i.e., Γ > ℏωα, where the electrons are much faster than the
nuclear motion, nuclear motion becomes adiabatic and another
approach is optimal. Here, we can trace out all of the electronic
DoFs and focus purely on the nuclear motion. To first order, the
influence of the electronic dynamics can be written as a frictional
force as well as a fluctuating force that corrects the Born−
Oppenheimer approximation. At equilibrium, because the
second fluctuation−dissipation theorem is obeyed by the so-
called electronic friction tensor and corresponding random
force, nuclear DoFs always reach thermal equilibrium. There is a
long history of work on electronic friction in both the chemistry
and physics literature.4,40,48−53,86 See section 3.2 and refs 46, 47,
65, and 66 for details.
Below we will almost always assume that we are operating in

the kT > ℏωα regime, such that a classical treatment of nuclear
motion is feasible, and we will review the relevant quasi-classical
methods from Figure 2 in more detail.

3. SEMICLASSICAL METHODS UNDER
INVESTIGATION
3.1. Classical Master Equation/Surface Hopping (CME/

SH). In the limit of relatively weak molecule−metal coupling (as
compared with temperature, Γ < kT), one can treat the
molecule−metal interaction perturbatively up to second order
and, provided the nuclei are classical, one can derive a classical

master equation for the coupled electron−nuclear dynamics of
the molecule described by the AH model:

∑ ∑ρ
ρ ρ

ρ

ρ

∂
∂

= −
∂
∂

+
∂
∂

∂
∂

− Γ
ℏ

+ Γ
ℏ

−

α

α

α α α α αt
t

P
m R

U
R P

f h

f h

R P( , , ) ( )

(1 ( ))

0
0 0 0

0

1 (6)

∑ ∑ρ
ρ ρ

ρ

ρ

∂
∂

= −
∂
∂

+
∂
∂

∂
∂

+ Γ
ℏ

− Γ
ℏ

−

α

α

α α α α αt
t

P
m R

U
R P

f h

f h

R P( , , ) ( )

(1 ( ))

1
1 1 1

0

1 (7)

Here ρ0(R,P) and ρ1(R,P) are the probability densities in phase
space for the neutral (d̂+d̂ = 0) and charged (d̂+d̂ = 1) molecule.
These densities follow classical motion on potential energy
surfaces U0(R) and U1(R) correspondingly, plus exchange
between the two densities. Note that U1 = U0 + h, where h(R) is
the onsite energy of the d orbital (see eq 2); henceforward, we
will often drop the dependence of h on R for notational

convenience only. The exchange rate from ρ0 to ρ1 is
Γ
ℏ f h( ), and

the exchange rate from ρ1 to ρ0 is −Γ
ℏ f h(1 ( )). Here, f(h) ≡ 1/

(exp((h − μ)/kT) + 1) is the Fermi function; note that f(−h) =
1 − f(h).
The CME has a simple surface hopping interpretation: if one

uses a swarm of trajectories to represent the density probability,
each trajectory follows classical motion on one of the two PESs:

̇ =α
α

α
R

P
m (8)

̇ = −
∂
∂α

λ

α
P

U
R (9)

Here λ = 0,1 is the activate potential surface which represents
current electronic states. The rate of switching from U0 to U1 is
Γ
ℏ f h( ), and the rate of switching from U1 to U0 is −Γ

ℏ f h(1 ( )).
In Figure 3, we prepare different initial kinetic energies for a

single nuclear mode and plot the average kinetic energy as a
function of time according to eqs 6 and 7. We note that, at long
times, the kinetic energy converges to the correct equilibrium
solution, where the average kinetic energy is one-half kT,

=E kTk
1
2

. In ref 73, we further show that the final position and

momentum distributions have the correct Gaussian shapes with
widths kT. Note that CME dynamics are consistent with the
surface scattering experiments by Wodtke and co-workers,2

where one observes huge vibrational energy loss of NOmolecule
after scattering back from a gold metal surface. From the surface
hopping perspective, Wodtke et al. have argued that this energy
loss arises from hopping back and forth between the NO and
NO− potentials. Of course, in the case of an insulator, no such
transition is allowed and there is no such dissipation of energy.
Interestingly, Figure 3 also shows there will be energy promotion
if one starts from a low initial kinetic energy, and such energy
promotion has been observed in scattering events by Wodtke
and co-workers.87

3.1.1. CME Surface Hopping vs Tully’s FSSH. For the
interested reader, it is worthwhile to emphasize a few key
differences between CME surface hopping (dealing with
nonadiabatic dynamics near metal surfaces) and Tully’s fewest

Figure 2. Regimes of the AH model. In the limit kT > ℏω, we can treat
nuclear motion classically. To further simplify the dynamics, two
additional approximations are taken. (1) In the weak molecule−metal
interaction regime kT > Γ, we treat out electronic degrees of freedom in
the metal, and we arrive at a CME. (2) In the adiabatic regime, Γ > ℏω,
where electron is faster than nuclei, we trace out all electronic degrees of
freedom, and we arrive at Langevin dynamics for the classical nuclei.
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switch surface hopping (FSSH) (dealing with nonadiabatic
dynamics in gas phase or solution).

1. For CME surface hopping, hops are governed by an
effective coupling Γ and Fermi function f(h), which
together guarantee that detailed balance is satisfied
exactly. By contrast, for Tully’s FSSH, hops are governed
by a combination of an electronic amplitude, the local
derivative coupling, and the concept of velocity rescaling.
For this reason, detailed balance is obtained only
approximately for FSSH.88

2. Unlike Tully’s FSSH, there is no rescaling velocities ever
within the CME and energy is not conserved for CME
dynamics: the molecular system is explicitly open because
of the metal bath.

3. For Tully’s FSSH, because one propagates electronic
amplitudes forward in time no matter how the nuclear
motion may be different for different adiabatic states, it is
well-known that FSSH can suffer from overcoher-
ence.23−25,89−91 By contrast, for CME surface hopping,
the hopping rate is determined purely by the local
position; no electronic density is needed or propagated,
and there are never any coherence issues. In short, the
question of coherence between two molecular states with
different numbers of electrons is not terribly important.
That being said, as shown in section 5, when dealing with
a large molecule and many quantum levels (some with the
same number of electrons), coherence/decoherence
issues can and do arise.92

3.1.2. CME and Broadening.Before we conclude this section,
one final word is now appropriate regarding the CME. Even
though the CME works well in the weak molecule−metal
interaction regime, the CME is missing all so-called broadening
effects. To understand these effects, we note that the CME has a
simple steady solution: ρ0 = C exp(−U0/kT) and ρ1 =
C exp(−U1/kT), where C is a normalization factor that satisfies
∫ ∑αdRα dPα (ρ0 + ρ1) = 1. Henceforward, electronic
populations are evaluated by averaging over all nuclear
distributions, e.g., P1 = ∫ ∑αdRα dPα ρ1 yields the total
probability for the molecule to be charged. For the AH model
in eqs 1−4 with linearly dependence of h on one nuclear

coordinate x ( ω= ϵ + ℏh gx m2 /d ) plus parabolic potential

for the nuclei ω=( )U x m x( )0
1
2

2 2 , one finds that the steady state

solution in phase space is

ρ βω
π

=
+ β ω

β ω
− ϵ − ℏ

− +x p
e

( , )
2

1

1
e

g
m x p m

0
eq

( / )
((1/2) ( /2 ))

d
2

2 2 2

and

ρ ρ= β ω− ϵ + ℏx p x p( , ) e ( , )gx m
1
eq ( 2 / )

0
eqd

Thus, the procedure above concludes that the total population
of the molecule is a single Fermi distribution with renormalized
energy level ϵd̅, = ϵ̅P f ( )1 d , where ϵ̅ = ϵ − Ed d r; here

ω= ℏE g /r
2 is the reorganization energy.38,73 Unfortunately,

this answer is incorrect. The correct answer is not a Fermi
function in general, but rather the integral of a convolution of a
Fermi function with a Lorentzian:93

∫ π
= ϵ Γ

ϵ − + Γ
ϵn h x

h x
f( ( ))

d
2 ( ( )) ( /2)

( )2 2 (10)

∫= β−P
Z

n h x x
1

( ( ))e dU x
1

( )pmf

(11)

Here, Upmf is the potential of mean force,

∫= + ∂ ′
∂ ′

′ ′U x U x
h x

x
n h x x( ) ( )

( )
( ( )) d

x

x

pmf 0
0 (12)

and Z is a normalization factor, ∫= β−Z e dxU x( )pmf . Hence-
forward, we will refer to eq 11 as a broadened population, and
anywhere a lorentzian of width Γ appears, will refer to the notion
of “broadening.” See sections 3.2 and 3.3 and ref 93. In practice,
the CME is correct only in the limit that Γ→ 0. See also section
3.3 for a discussion of broadening and how to incorporate
broadening effects within the CME.

3.2. Fokker−Planck (FP) Equation/Electronic Friction.
3.2.1. Friction in Full Generality (with Broadening). At this
point, let us turn to the adiabatic limit, where electronic
dynamics are faster than nuclear dynamics. In such a limit, one
can trace out all of the electronic DoFs, leaving purely classical
nuclear DoFs with additional frictional and fluctuating forces to
capture the electronic response:

∑ γ δ̈ = ̅ − ̇ +α α α αν ν αm R F R F
v (13)

Here F̅α is the mean force, γαβ is the “electronic friction”
coefficient (which operates on the nuclei), and δFα is the
random force. According to eq 13, perhaps surprisingly,
whenever a molecule operates near a metal surface, there will
always be some friction and random forces associated with the
construction and destruction of electron hole pairs.
In order to derive the Markovian Langevin dynamics in eq 13

(with explicit expressions for the mean force F̅α, friction γαν, and
random force δFα), the most general procedure is to invoke the
mixed quantum-classical Liouville equation (QCLE),19,94,95 and
impose an adiabatic expansion in the velocity of the nuclear
motion.46 In such a way, one can extract the proper electronic
friction tensor that is valid in or out of equilibrium. See ref 46
and the supporting information within for such a derivation. The
results for F̅α and γαν within the AH model are as follows:

Figure 3. Average vibrational energy as a function of time from a CME
surface hopping solution. We note that, regardless of different initial
conditions, we arrive at one equilibrium solution, where =E kTk

1
2

. In

ref 73, we further show the momentum distribution obeys Gaussian
distribution with width equal to kT, meaning the nuclear DoFs reach
thermal equilibrium with the electrons in the metal. We are considering
he re a s ing l e nuc l ea r mode where ω=U m x0

1
2

2 2 and

ω= ϵ + ℏh gx m2 /d , with ℏω = 0.003, kT = 0.01, g = 0.0075, Γ =
0.005 (all in atomic units).
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Here, n(h) in eq 14 is the local equilibrium electronic population
with broadening taken into account (see eq 10). Due to the
strong interaction between molecule and metal, the molecular d
level is not a single discrete level. Instead, the discrete level has
been broadened by a Lorentzian with half-width Γ. The local
equilibrium electronic population (n(h)) is then a convolution
of the Fermi distribution with a Lorentzian, and the total
electronic population is the integral of n(h) over all space,
weighted by β−e Upmf . See eqs 10−12. Henceforward, we will refer
to FP dynamics with the correctly broadened force (eq 14) and
the correctly broadened friction (eq 15) as a broadened FP
(BFP) equation. In the limit where Γ < kT, broadening is small
compared to the width of the Fermi distribution, such that n(h)
→ f(h), and the true mean force (F̅α in eq 14) recovers the
unbroadened mean force from the CME (F̅α

CME in eq 22, see
below).
Besides invoking the QCLE, various other techniques have

also been proposed for calculating electronic friction
tensors,4,40,48−53,86 with some non-Markovian friction tensors
also considered.45,47,48,51,96 Although Langevin dynamics need
not have any immediate connection to the QCLE, they arise
naturally whenever one invokes an adiabatic approximation for
one DoF that is coupled to a set of much faster DoFs; in that
situation, as is well-known from chemical dynamics,97 the
general form of a friction tensor can be recast as a response
function.46,47

3.2.2. Friction without Broadening. While the QCLE is the
most general means to derive an electronic friction tensor, given
the generality of Langevin dynamics, one must presume there
should also be a means to map the simple CME above (in eq 6
and 7) onto Langevin dynamics as well. In order to establish
such a mapping, notice that, without nuclear motion, the
hopping in the CME (see eqs 6 and 7) gives a local equilibrium
solution, ρ0 = A(1 − f(h)) and ρ1 = Af(h), where A is the total
probability density for the nuclear DoFs: A = ρ0 + ρ1. With
nuclear motion, we can define a probability density B that
quantifies the difference between ρ0 and ρ1 and the local
equilibrium solution, i.e.

ρ = − +A f h BR P R P R P( , ) ( , )(1 ( )) ( , )0 (16)

ρ = −A f h BR P R P R P( , ) ( , ) ( ) ( , )1 (17)

Henceforward, we will call B the nonadiabatic probability
density, since B quantifies how far away the local probability
density is from local equilibrium due to nuclear motion.
If we plug the definitions in eqs 16 and 17 into the equations

of motion in eqs 6 and 7, we arrive at
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The first two terms on the right-hand side (RHS) of eq 18
indicate thatA follows classical motion subjected to amean force

̅ = − −α
∂
∂

∂
∂α α

F f h( )U
R

h
R

CME 0 . Similarly, the first two terms on the

RHS of eq 19 indicate that B follows classical motion subject to a

force− − −∂
∂

∂
∂α α

f h(1 ( ))U
R

h
R

0 . The last term on the RHS of eq 19

indicates that B decays at a rate Γ/ℏ. Obviously, A and B are
coupled through the rest of the terms in eqs 18 and 19.
Finally, at this point we can impose our adiabatic

approximation: since the electrons are presumed to be faster
than the nuclei, the nonadiabatic density B should be small
compared to the total probability density A; in addition, the
decay in the last term on the RHS of eq 19 should dominate the
classical motion expressed by the first two terms on the RHS of
eq 19. Thus, we can approximate eq 19 as follows:
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If we plug the solution for B to the above equation into eq 18, we
arrive at an (unbroadened) Fokker−Planck (FP) equation,

∑ ∑

∑ ∑γ

∂
∂

= − ∂
∂

− ̅
∂
∂

+ ∂
∂

+ ∂
∂ ∂

α

α

α α α
α

α

αν
αν

ν

α

α αν
αν

α ν

i
k
jjjjj

y
{
zzzzz

A
t

P
m

A
P

F
A
P

P
P
m

A D
A

R R

CME

CME CME
2

(21)

Here the mean force F̅α
CME, friction tensor γαν

CME, and correlation
function of the random force are expressed as

̅ = −
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α α
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(22)
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The FP equation in eq 21 is equivalent to the Langevin equation
in eq 13, with the random force satisfying the following statistics:

δ⟨ ⟩ =αF 0 (25)

δ δ δ⟨ ′ ⟩ = − ′α ν ανF t F t D t t( ) ( ) ( )CME
(26)

Note also that eq 15 reduces to eq 23 (and eq 14 reduces to eq
22) in the limit that Γ→0, i.e., without any broadening. Finally,
according to the properties of the Fermi function,

= − −∂
∂

∂
∂ν ν

f h f h kT( )(1 ( )) /f h
R

h
R

( )
(kT is the temperature of the

electrons), and the second fluctuation−dissipation theorem is
demonstrably satisfied

γ=αν ανD kTCME CME
(27)

such that the classical modes in the Langevin equation or FP
equation will reach thermal equilibrium with the same
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temperature as the electrons in the metal. Interestingly, the
second fluctuation−dissipation theorem is hidden within the
CME and can be revealed by mapping the CME onto a FP
equation.
In Figure 4, we compare the nuclear dynamics from SH/CME

and electronic friction-Langevin dynamics (EF-LD). We fix ℏω

= 0.003, kT = 0.05 (in atomic units), and we varyΓ. In the case of
larger Γ, SH agrees with EF-LD very well; by contrast, for the
case of small Γ, EF-LD disagrees with SH, where EF-LD predicts
that nuclear relaxation is too fast. Quite dramatically, the friction
expression in eq 23 can be seen to diverge for infinitesimal Γ,
indicating that EF-LD fails for small Γ. This curiosity will be
discussed briefly later in section 3.3; see also ref 98 for more
discussion of this point.
3.3. Broadened Classical Master Equation (BCME).

Incorporating broadening into the CME framework can be done
simply by modifying the diabatic potentials underlying eqs 6 and
7; we simply add the difference between the true mean force (eq
14) and the unbroadened mean force (eq 22). Hence one can
propose new potentials Ũ0 and Ũ1 of the form

∂ ̃
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∂
∂
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leading to a new CME of the form
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The above equations are what we refer to as a broadened
classical master equation (BCME). In Figure 5, we plot the
modified potentials Ũ0 and Ũ1. Note that new potentials Ũ0 and

Ũ1 approach the original diabatic potentials U0 and U1 as well as
the true PMF far away from the crossing point. However, the
energy where Ũ0 and Ũ1 cross is much lower than the energy
whereU0 andU1 cross, such that the inclusion of broadening will
promote hopping with a thermal energy less than the barrier
height. One can expect that electron transfer rate between U0
and U1 will be larger according to the BCME, as opposed to the
CME.
Overall, the extrapolated BCME in eqs 30 and 31 naturally

links the weak molecule−metal interaction regime to the
nonadiabatic regime. In the weak molecule−metal interaction
regime, broadening effects can be neglected, such that the
BCME reduces to the CME. In the nonadiabatic regime, one
follows the adiabatic expansion in section 3.2, and maps the
BCME onto a FP equation with the corrected broadening
(BFP). Therefore, we might expect (or at least hope) that the
BCME should work in both the weak and strong coupling
regimes as well the adiabatic and nonadiabatic regimes. Note
that, in practice, the BCME is easily solved: just for the CME, we
simply run classical dynamics on themodified diabatic potentials
(Ũ0 and Ũ1), with stochastic hopping between potentials.
Finally, one more word is appropriate vis a vis the notion of

broadening. The true electronic friction in eq 15 also contains
broadening just like the force in eq 14. Nevertheless, it turns out
that the broadening effect for the friction is of higher order in Γ
than for the mean force, such that the broadening in friction is
less significant than in the mean force. See ref 75. In addition, for
classical dynamics, the potential of mean force has a much more
significant effect on the dynamics than does friction. For
example, in transition state theory, the transition rate decreases
exponentially with the increase of the barrier hight of the
potential, whereas the transition rate decreases with friction as
only 1/γ. Thus, for now, we will simply incorporate broadening
only into our potential (and not friction). For very large Γ,
broadening in friction may be important, and the broadened
friction can be incorporated into BCME as well. See ref 75.

4. KEY NUMERICAL RESULTS
4.1. Electron Transfer Rate. Obviously, one cannot derive

the BCME in eqs 30 and 31 and so empirical testing of BCME
dynamics against exact dynamics is crucial. To that end, themost
natural test of BCME dynamics is the electron transfer rate,
where kinetic theories are available in certain limits. Note that, to
apply rate theories, a small external nuclear friction is added to
make sure the nuclear DoFs maintain thermal equilibrium. In

Figure 4. Average kinetic energy as a function of time from SH and EF-
LD. Here we fix kT and ℏω and vary Γ. For larger Γ, SH agrees with EF-
LD; by contrast, in the case of small Γ, EF-LD do not agree with SH.
Note that SHmust be correct for small Γ, indicating that EF-LD breaks
down in such a limit. ℏω = 0.003, kT = 0.05 (all in atomic unit).74

Figure 5. BCME potentials: the new potentials Ũ0 and Ũ1 approach the
original diabatic potentials U0 and U1 as well as the true PMF far away
from the crossing point. At the crossing point, however, the energy
where Ũ0 and Ũ1 cross is much lower than the energy where U0 and U1
cross, which will result in a larger electron transfer rate.
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this subsection, the added external nuclear friction is set to be
γn = 2mω; here ω is the frequency of the nuclear mode and
γn = 2mω yields critically damped surface hopping or Langevin
dynamics.
In Figure 6, we plot the electron transfer rate as a function ofΓ

according to BCME and CME dynamics.99 In the weak

molecule−metal interaction regime Γ < kT, the electron transfer
rate from the molecule to the metal is given by Marcus’s
electrochemical rate constant:100,101

∫
π

= Γ
ℏ

−
− −ϵ̅ +

k f E
E kT

E(1 ( ))
e

4
d

E E

Marcus

( )

r

r d

(32)

Note that, by averaging the usual (Marcus) homogeneous
electron transfer rates over a continuum of electronic states, the
above equation takes into account the plethora of metallic states
that can accept the molecular electron. Note also that, in this
regime, the electron transfer rate scales linearly with Γ. As Figure
9 demonstrates, the BCME and CME can reproduce theMarcus
rate in this limit; the Marcus rate is not shown here, but see the
agreement in Figure 9 or in ref 98. In ref 38, we further prove
analytically that the BCME and CME electron transfer rates
agree with the Marcus rate in the small Γ limit.
For intermediate molecule−metal couplings, ℏω < Γ < kT,

Figure 6 also shows that surface hopping dynamics are
equivalent to Langevin dynamics, such that the (B)CME and
(B)FP quantitively agree and adiabatic transition state theory
can be applied. According to adiabatic transition state theory, for
intermediate values of Γ, broadening effects are not significant;
electron friction deceases with Γ but is overpowered by nuclear
friction, such that the electron transfer rate is independent of Γ.
Finally, when Γ gets even larger, Γ > kT, the dynamics remain

adiabatic and transition state theory should still apply. However,
as Figure 6 shows, broadening effects are now crucial and show
strong signatures as a result of lowering the potential energy

barrier. According to transition state theory, lowering this energy
barrier should exponentially increase the electron transfer rate,
and indeed we find that, in this regime, the electron transfer rate
according to BFP and BCME dynamics grows rapidly with Γ.
That being said, according to CME and FP dynamics,
broadening effects are neglected, such that in Figure 6, the
CME and FP electron current (erroneously) remain constant
regardless of Γ.
One observation from Figure 6 is surprising: In the limit of

small Γ, the electron transfer rate according to the (B)FP agrees
with (B)CME. As stated in section 3.2, in principle, the (B)FP
equation of motion should be valid only in the adiabatic limit,
i.e., for intermediate and large Γ. After all, electronic friction (eq
23) diverges with very small Γ. Interestingly, this feature seems
to incorporate some of the correct physics in practice. In ref 98,
using transition state theory, we prove that electronic friction-
Langevin dynamics can actually reproduce the Marcus rate in
the small Γ limit. Of course, this agreement is true only under
certain conditions, e.g., a large barrier and a one-dimensional
crossing, and even then electronic friction is certainly not always
reliable in the strong nonadiabatic regime; for example, see the
case of nuclear relaxation in Figure 4. In ref 102, we further
explore the case of multiple dimensional crossings, which
highlights a bit more carefully when electronic friction is reliable
for electron transfer near a metal surface.

4.2. Out of Equilibrium: I−V Curves and Heating
Effects.To further test BCME dynamics, we have benchmarked
the BCME against numerically exact solutions using the
hierarchical master equation (HQME) for transport properties.
Whereas the above discussion centered around the case of one
metal, i.e., the equilibrium case, we now consider a molecule
connected to two metals with unequal Fermi energies and
subject to nonequilibrium electronic currents. The extension of
CME or BCME dynamics to this nonequilibrium case can be
easily realized by adding another hopping term due to couplings
to the second metal. Within the BCME, transport properties can
be evaluated by averaging the corresponding local observables
over nuclear distributions. For instance, the total current is given
by

∫ ρ ρ= +I I x x p x p x p( )( ( , ) ( , )) d dloc 0 1 (33)

where Iloc(x) is the local current given by
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2
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See ref 76 for details.
In Figure 7, we plot the electronic current as a function of

electron voltage. We note that the BCME agrees with the
HQME almost exactly, whereas the unbroadened CME fails
when we increase Γ. The I−V curves from the unbroadened
CME have sharper features regardless of Γ, which is a
consequence of neglecting broadening; broadening tends to
decrease the electronic current as been captured by the BCME.
In this regime of classical nuclear motion, the CME also
reproduces the quantum master equation (QME) solution. See
ref 76 for details about the quantum mechanical treatment of
nuclear motion and how to incorporate broadening within a fully
quantum QME (bQME).
Lastly, as far as nuclear dynamics are concerned, in Figure 8,

we plot the phonon population as a function of electron voltage.
Again, the BCME agrees with the HQME almost exactly for all

Figure 6. Electron transfer rate at molecule−metal interfaces as a
function of molecule−metal interaction Γ according to a broadened
classical master equation (BCME), a broadened Fokker−Planck
equation (BFP), an ordinary unbroadened classical master equation
(CME), and an ordinary unbroadened Fokker−Planck equation (FP).
(B)CME reproduces the Marcus electron transfer rate (not shown, but
see the agreement in Figure 9 or in ref 98) in the limit of small Γ, where
the rates scale linearly with Γ. For large Γ, the electron transfer rate
according to BCME and BFP dynamics increases rapidly with Γ, due to
a lowering of the energy barrier; by contrast, the CME and FP rates are
independent of Γ. Suprisingly, (B)FP reproduces the (B)CME rate (or
Marcus rate) in the nonadiabatic regime, i.e., smallΓ. See the discussion
in the main text.
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Γ, whereas the CMEworks only in the smallΓ regime. Note that,
at zero bias, when Γ gets large, the phonon population from the
BCME decreases, which is consistent with the lowering of the
potential of mean force energy barrier. The CME fails to
reproduce these features, again due to a lack of broadening. Note
also that the phonon population increases dramatically with the
voltage bias. Obviously, with a nonzero electronic voltage across
the system, nuclei do not remain in thermal equilibrium any
more; rather, the electronic current heats up the vibrational
DoFs of the molecule, which can lead to instability of the
molecular junction.36,103−105

4.3. IESH vs BCME. As noted in the Introduction, the
Shenvi−Roy−Tully IESH framework was the first surface
hopping algorithm to study nonadiabatic dynamics near a
metal surface. Beyond the usual assumptions of the FSSH
algorithm, two additional approximations are notable within
IESH: (1) Instead of tracing out the electronic DoFs in themetal
(as done above), IESH discretizes the continuum of the metal,
and a finite number of electronic levels are chosen, usually up to
around 90 levels as limited by the high computational cost. (2)
Only single excitations are allowed at each time step within
IESH. Despite these approximations, IESH does partially
reproduce experimental studies of energy relaxation for NO
on a gold surface;71 however, until recently, the general validity
of IESH was not fully tested or benchmarked over a large set of
different parameter regimes. In ref 72, we have now made such a
comparison, testing IESH versus both BCME and Marcus
theory.
In Figure 9, we plot the electron transfer rate as a function ofΓ

for both IESH and BCME. As stated above, both BCME and

CME reproduce theMarcus rate for small Γ. When Γ gets larger,
the CME rate levels off (erroneously), whereas the BCME rate
increases rapidly with Γ. IESH does agree with the BCME in
general. Note that, for IESH, since themetal is treated as a closed
system, the electronic temperature is missing. To partly address
this issue, inclusion of an electronic thermostat has been
suggested,106 and τ represents the time scale for an electronic
thermostat in Figure 9. Unfortunately, according to Figure 9, we
find that adding such an electronic thermostat can make the
coupled nuclear-electronic dynamics worse. That being said,
adding such an electronic thermostat can help IESH to recover
the correct equilibrium; without such a thermostat, equilibrium
solutions from IESH can be incorrect. See discussion in ref 72
for details.
In conclusion, treating the electronic DoFs from the metal

surface explicitly as is done with IESH is a bit tricky. As a huge
plus, no assumption regarding the molecule−metal couplings
(e.g., wide band approximation, weak coupling) are needed. As a
minus, however, such a treatment is expensive, the dynamics can

Figure 7. IV curves. The CME agrees with numerically exact results
from HQME for small Γ; for large Γ, I−V curves from the CME yield
features that are too sharp due to a lack of broadening. By contrast, the
BCME agrees with the HQME almost exactly. The QME includes a
fully quantum mechanical treatment of nuclear motion, which agrees
with the CME in this classical regime (kT > ℏω). See also ref 76 for a
detailed discussion of QME dynamics and how to incorporate
broadening within the QME framework (yielding a bQME).

Figure 8. Phonon population as a function of voltage. The BCME
reproduces the numerically exact results from the HQME, whereas the
CME works only in the small Γ case regime. The phonon population
increases dramatically with voltage bias, leading to instability of the
molecular junction. See also ref 76 for a detailed discussion of QME
dynamics and how to incorporate broadening within the QME
framework (yielding a bQME).

Figure 9. Electron transfer rate as a function ofΓ. The BCME andCME
reproduce the Marcus rate for small Γ. When Γ gets larger, the CME
rate (incorrectly) levels off, whereas the BCME rate increase rapidly
with Γ. IESH results agree with BCME results in general. Here τ for
IESH represents an electronic thermostat, which should help to mimic
an open quantum system. Unfortunately, however, we find that adding
such an electronic thermostat apparently can make the dynamics
worse.72
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be hard to converge, and adding a thermostat can fix one
problem (equilibrium populations) but lead to other problems
(worse dynamics). The optimal means to incorporate a
thermostat needs to be investigated in the future. Finally, is
there a way to push IESH to the nonequilibrium case to study
transport properties? This remains an open question.

5. MOLECULE WITH MULTIPLE LEVELS: QCLE-CME
Our discussion above has been restricted to the AH model,
where a single level in the molecule is hybridized with the
electronic DoFs in the metal. When mimicking a realistic
molecule with many electronic orbitals coupled to a metal
surface, onemust generalize the relevant equations of motion for
coupled electron−nuclear dynamics.
To be specific, let us consider a molecule with multiple

electronic levels (d̂m) coupled to a set of nuclear DoFs:

∑ ∑̂ = ̂ ̂ + +
α

α

α

+
H h d d U

P
m

R( )
2mn

mn m ns 0

2

(35)

Here hmn is interaction energy between level d̂m and d̂n in the
molecule. The couplings between the molecule and metal also
have to be generalized

∑̂ = ̂ ̂ + ̂ ̂+ +H V d c c d( )
mk

mk m k k mI
(36)

Here Vmk is the coupling energy between the molecular d̂m level
and metallic k level. The Hamiltonian for the metal remains the
same as the one in eq 3.
As for the case of a single molecular level, we focus on the

mixed quantum classical density of the molecule, and we trace
out the electronic DoFs in the metal. By treating the interactions
between the molecule and metal pertubatively up to second
order, provided the nuclear motion can be treated classically, we
arrive at a quantum-classical Liouville equation embedded into a
classical master equation (QCLE-CME):92,107
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Here ρ̂(R,P,t) is the density operator in phase space (R, P) at
time t. The first three terms on the right-hand side of eq 37 are
the standard QCLE,19,95 describing nonadiabatic dynamics for

an isolated molecule;94 the super operator ̂̂ as found in the last
term takes into account the molecule−metal interaction,
describing electron transfer between the molecule and metal.
The exact form of this super operator can be found in refs 92 and
107. Of course, in the case of one electronic level considered in
the molecule, the QCLE-CME in eq 37 reduces to the CME in
eqs 6 and 7.
Now in section 3.1, we demonstrated that there is a natural

surface hopping solution to the CME. Moreover, in refs 19, 89,
108, and 109 two different groups have demonstrated a
connection between the QCLE and Tully’s FSSH. Thus, one
might expect that one can fashion a hybridized scheme Tully/
CME surface hopping scheme to solve the QCLE-CME. To that
end, because Tully’s surface hopping algorithm can be
understood naturally only in an adiabatic representation, one
must transform the QCLE-CME into the adiabatic representa-
tion. The adiabatic representation of the QCLE-CME can be
found in ref 92. With such an adiabatic representation, it is clear

that hopping between two quantum states can be induced by
two distinct mechanisms: (1) nuclear motion as incorporated by
derivative couplings and (2) electronic dynamics between
molecule and metal as incorporated by molecule−metal
couplings. For the first mechanism, the nonadiabatic dynamics
as induced by derivative couplings are naturally introduced in
the QCLE part and can be addressed with Tully’s FSSH. These
dynamics can give rise to electron transfer within the molecule
(i.e., they should preserve the electronic population of the
quantum subsystem). Second, the nonadiabatic dynamics
arising from molecule−metal couplings are captured by the

super operator ̂̂ , which gives rise to electron transfer between
the molecule and metal and can be addressed with CME-like
surface hops. Note that, unlike the single level case (eqs 6 and 7),
where molecular populations do not couple to molecular
coherences, in the case of multiple electronic states, populations

do couple to coherences through the super operator ̂̂ . As such,
there is no absolutely clean means to decouple these two distinct
dynamical mechanisms and, as such, tricky coherence/
decoherence issue can arisemore so than in the case for
Tully’s FSSH algorithm for which we do now have a fairly
accurate understanding of and treatment for decoher-
ence.23−25,89−91,110

In Figure 10, we present results for a series of different QCLE-
CME surface hopping schemes as benchmarked against a
quantum master equation for a donor−acceptor−metal model

Figure 10. We plot electron population on the donor for a donor−
acceptor−metal model. W is the diabatic coupling between donor and
acceptor, and Γ is the hybridization function between the acceptor and
metal. See eqs 38,39, and 5. Here the QME can be viewed as an exact
solution. Surface hopping dynamics with or without decoherence agree
with QME well in the case ofW > Γ (upper two panels). In the case of
small W compared to Γ (lower two panels), SH dynamics without
decoherence leads to the wrong equilibrium states. Ignoring coherence
completely (sec-SH) can recover the correct equilibrium solution, but
at the cost of dynamics with larger errors. An augmented SH solution
with decoherence correctness (A-SH) works well for both dynamics
and equilibrium states, but the decoherence problem is far more
complicated near a metal as compared to in solution, and far more
research is needed in this area. Electronic friction-Langevin dynamics
(EF-LD) only work for both large W and Γ (right two panels), i.e.,
adiabatic limit. In addition, EF-LD misses all oscillations and initial
conditions in electronic dynamics at short times.
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(with four quantum states). The system Hamiltonian (donor−
acceptor part with a nuclear DoF) is

ω

̂ = ̂ ̂ + ̂ ̂ + ̂ ̂ + ̂ ̂

+ +

+ + + +
H E x d d E x d d W d d d d

m x
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2 2

s D D D A A A A D D A
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(38)

HereW is the coupling energy between the donor and acceptor.
The acceptor states linearly couple to the metal states

∑̂ = ̂ ̂ + ̂ ̂+ +H V d c c d( )
k

k k kI A A
(39)

Again, we will use Γ (see eq 5) to quantify the strength of
acceptor−metal coupling. For weak acceptor−metal coupling,
the QME can be viewed as an exact solution. In such a model, an
electron can be transferred between donor and acceptor as well
as between acceptor and metal surface. In the figure, the curve
“SH” does include any additional decoherence. “A-SH”
represents an augmented surface hopping algorithm that
incorporates decoherence in a similar fashion as A-FSSH
includes decoherence on top of Tully’s FSSH.24 “Sec-SH”
signifies the secular approximation, whereby coherence between
different adiabatic states of the molecular system is completely
ignored. In the adiabatic limit, following a similar procedure in
section 3.2, the QCLE-CME can be mapped onto a FP equation
as well. The resulting friction can be found in ref 107.
As shown in the upper two panels of Figure 10, when the

coupling between the donor and acceptor is not weak compared
to acceptor−metal coupling (W > Γ), and when decoherence is
not an issue, all surface hopping algorithms (with or without
decoherence) work well for both electronic dynamics and
nuclear dynamics as compared to QME; by contrast, electronic
friction-Langevin dynamics is meaningful only for largerW and
Γ. See eqs 38, 39, and 5 for a definition of W and Γ. To be
specific, for such a model, the time scales for electronic dynamics
are limited by the donor−acceptor couplings W and the
acceptor−metal couplings Γ, such that electronic friction-
Langevin dynamics work only when W and Γ are both large. In
addition, EF-LD misses all oscillations in electronic dynamics at
short times.
Despite the highly encouraging results above, when the

donor−acceptor coupling is weak compared to acceptor−metal
coupling (W < Γ) and one is strongly breaking the Born−
Oppenheimer approximation, decoherence will matter and the
dynamics becomemore difficult to solve. In the lower two panels
of Figure 10, we show that errors in capturing decoherence (in
SH) can eventually lead to the wrong equilibrium states. Vice
versa, if we ignore coherence completely (sec-SH), we can
recover the correct equilibrium solution, but at the cost of
dynamics with larger errors (as compared with the exact
solution). Overall, a decoherence-corrected SH algorithm (A-
SH in Figure 10) works best compared to the othermethods, but
much more work in this area (and with larger Hamiltonians and
with different approaches to capture decoherence) will be
necessary in the future.

6. OPEN QUESTIONS
Having reviewed our general findings for molecular dynamics on
metal surfaces, we should now highlight that many open
questions remain before the methods discussed above can be
truly predictive for big, realistic (and ideally ab initio) systems.
The results above were fairly exhaustive for the case of a single

electronic (impurity) level near a surface, but many questions
remain when there are many relevant quantum states, quantum
(as opposed to classical) nuclear motion, and strong electron−
electron interactions.

6.1. Broadeningwithin theQCLE-CME. Just like theCME
in eqs 6 and 7 (for two quantum states), the QCLE-CME in eq
37 (for many quantum states) is derived by assuming the
presence of relatively weakmolecule−metal interaction and thus
ignores all broadening effects as well. Just as for the case of the
BCME, one natural way to incorporate broadening effects within
the QCLE-CME would be to simply modify the relevant
potentials. While we have preliminary results showing that such
an idea can work well in certain regimes, future tests are required
to fully benchmark the weakness and strength of such a
broadening scheme within the QCLE-CME framework.
Another question regarding the QCLE-CME is the

decoherence problem. In the presence of a metal surface, an
electronic bath introduces decoherence naturally beyond the
usual decoherence as introduced by opposite forces leading to
different nuclear motion on different electronic surfa-
ces.24,25,27,90,110−119 Are these two decoherence mechanisms
entirely decoupled? Can they be added together? This is a very
tricky question, and anomalous results can be obtained if one is
not careful to be sure that detailed balance is correctly
achieved.92 Understanding the balance of coherence versus
decoherencefor a molecule with a metallic environment on
one side and a solvated environment on the otheris a key
question for future research on electrochemical systems.

6.2. Nuclear Quantum Effects. To date, we have mostly
treated nuclear motion classically, but for high frequency modes,
nuclear quantum effects can obviously be important. Currently,
there is a big push to incorporate the nuclear quantum effect in
molecular dynamics both in the gas phase and in solution,
adiabatically and nonadiabatically using ring polymer ap-
proaches.120−130 While moving ring polymers on different
surfaces is a complicated task (do the beads move collectively or
independently?), one very interesting feature of dynamics near
metal surfaces is the isomorphism between hopping and
frictional approaches,74,75 as appropriate when the molecule−
metal coupling Γ is not too big or too small. It will be very
interesting to see if one can derive (or even guess) a
nonadiabatic approach for dynamics near metal surfaces that
preserves this isomorphism.

6.3. Electron−Electron Interaction in Nonadiabatic
Dynamics. Finally, at this point, the most important question
not yet discussed is how to actually describe the electronic states
of the molecule, the electronic states of the metal, and the
molecule−metal interactions. According to eqs 1−4, we have
neglected electron−electron (el−el) interactions and focused
exclusively on coupled nuclear-electronic problems. Thus, two
immediate questions arise: First, if we want to use eqs 1−4, what
is the best means to parametrize such a model of noninteracting
electronic states using a practical electronic structure theory
method, e.g., DFT? Surely, we should borrow from the large and
relevant literature for molecular conduction,51,101,131−133 but we
should also keep in mind that we require smooth para-
metrizations for many different nuclear geometries.
Second, it is not yet clear exactly what features do we miss by

ignoring electron−electron interactions when solving for
nuclear-electronic dynamics, and how important are those
features? In refs 46 and 47, for the interacting AH model with
electron−electron repulsion, we showed that including el−el
interactions not only changes potential energy surfaces (which is
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obvious) but also gives rise to interesting resonances and new
exotic peaks in the electronic friction profile (which is not
obvious). For larger molecules, will the effects of electron−
electron interactions be similar? Andmost importantly, are there
experimental signatures of an exotic electron friction tensor, or
are all friction effects necessarily smeared away in practice by the
presence of a distribution of velocities? With better treatment of
el−el interaction from electronic structure theory, one would
hope to answer some of these questions in the future.

7. CONCLUSIONS
The study of dynamics at a metal surface is an enormous
problem in chemical and condensed matter physics, and this
Feature Article has made no attempt to be (even close to)
exhaustive. Instead of reviewing the enormous literature,69,77−81

we have attempted to summarize our recent experiences with
semiclassical models of such dynamics, whereby classical nuclear
motion is entangled with quantum electronic motion. We have
shown that quite a bit of progress has been made for model
problems, such that we now have a reasonably accurate
conceptual picture of dynamics near metal surfaces: one can
adapt either a hopping or frictional perspective and one can
successfully interpolate between the two. Furthermore, for
model problems, one can make phenomenological predictions
given a set of reasonable parameters capturing the molecule,
metal, and molecule−metal interactions. Nevertheless, as
highlighted in the last section, many obstacles remain before
these methods can be predictive for realistic systems, especially
with regard to electron−electron interactions; for researchers
interested in the intersection of electronic structure theory and
quantum dynamics, now is clearly a great time to be working on
molecule−metal surface dynamics.
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