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ABSTRACT
We develop several configuration interaction approaches for characterizing the electronic structure of an adsorbate on a metal surface (at least
in model form). When one can separate the adsorbate from the substrate, these methods can achieve a reasonable description of adsorbate
on-site electron-electron correlation in the presence of a continuum of states. While the present paper is restricted to the Anderson impurity
model, there is hope that these methods can be extended to ab initio Hamiltonians and provide insight into the structure and dynamics of
molecule-metal surface interactions.
Published under license by AIP Publishing. https://doi.org/10.1063/1.5131624., s

I. INTRODUCTION

Molecule-metal interfaces host a wide range of phenomena that
are of great chemical and physical interest, including adsorption,1

inelastic scattering,2 chemicurrents,3,4 and transport in molecular
electronics.5,6 However, quantitative predictions (and sometimes
qualitative explanations) of such processes remain a challenging
task. Typically, two key challenges must be addressed:

● (Challenge No. 1) First, the fact that a few discrete molec-
ular levels are coupled to a continuum poses a challenge
to any electronic structure calculation. On the one hand,
the heterogeneous nature of an interface makes the most
economic solid-state tool, density functional theory (DFT),
less reliable. For instance, benchmark studies show that
several common functionals can lead to significantly dif-
ferent chemisorption energies.7,8 Besides, standard Kohn-
Sham DFT cannot provide a good description for sys-
tems having strong multireference character.9 On the other
hand, the presence of a bulk metal restricts the use of
accurate high-level, molecular quantum chemistry meth-
ods. Moreover, for dynamical purposes, the computational
cost of an electronic structure calculation must be min-
imal, which disfavors many relatively accurate methods,
such as many-body perturbation theory (e.g., the GW
approximation10).

● (Challenge No. 2) Second, the presence of a continuum of
electronic states around the Fermi level of a metal enables
nonadiabatic effects to occur, as long as there is nonvanish-
ing nuclear-electronic coupling. Modeling such effects adds
further complexity to the problem of a molecule on a metal
surface: we need appropriate methodologies for simulating
nonadiabatic dynamics in the presence of a continuum of
electronic states, as well as associated additional quantities
(e.g., diabatic couplings or derivative couplings) from elec-
tronic structure calculations. If one can develop an accurate
and efficient electronic structure model of molecules on sur-
faces, there will be many possible applications, but this is a
daunting task.

Let us now discuss the question of the ground state electronic struc-
ture (Challenge No. 1) in more detail. As it is difficult to benchmark
electronic structure methods for realistic adsorbates on realistic sub-
strates (due to the high computational cost), today quantum impu-
rity models mimicking adsorbates on metal surfaces usually serve as
test beds for numerical solvers. One famous example is the Newns
model of hydrogen chemisorption,11 where an Anderson impurity
model (AIM) with on-site repulsion U ≠ 0 can be approximately
solved with the Hartree-Fock approximation. While reasonable
chemisorption energies for several metals can be obtained, the total
charge on hydrogen is systematically overestimated. To go beyond
Hartree-Fock (HF), there are now several powerful numerical
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methods available, e.g., quantum Monte Carlo (QMC),12 numer-
ical renormalization group (NRG),13,14 and exact diagonalization
(ED).15 Although QMC and NRG can in principle give accurate
solutions to the AIM, these methods demand a lot of computational
effort. Obviously, the size of an ED calculation scales exponentially
with the number of bath orbitals, and approximations must be made
in order to reduce the error introduced by bath discretization (for
instance, a truncation based on configuration interaction16).

Now, let us turn to the question of generating multiple elec-
tronic states (Challenge No. 2). In the past few decades, nonadiabatic
effects have been identified to play an important role in many molec-
ular interfacial processes.17,18,2 To model such effects, it is necessary
to take multiple potential energy surfaces (PESs) into consideration.
There are, however, a few complexities in this aspect.

First, if we are interested only in molecular nonadiabatic behav-
ior, we might expect that we would need a description with just a few
electronic degrees of freedom (DOFs) corresponding to the relevant
molecular diabatic states. Indeed, for molecular systems, such states
can be found through several diabatization approaches.19–29 Never-
theless, in the presence of a metal (or a semiconductor), these dis-
crete levels will be extended between the molecule and the metal and
involve a continuum of crossing points, where a molecular picture
is not directly identifiable. This scenario is closely related to low-
energy electron-molecular scattering,30–33 where one typically uses
a projection-operator formalism to select channels of interest. In a
single-electron picture, Kondov et al. have generalized this concept
to adsorbate-substrate systems and successfully performed a diaba-
tization at a dye-semiconductor interface.34 More generally, block-
diagonalization of the Fock matrix is standard in transport calcula-
tions.35 In a many-electron framework (with electron-electron inter-
actions), however, such diabatization is still a very challenging task
and is limited to small cluster substrates.

Second, for closed molecular systems, DFT/TDDFT is known
to give incorrect predictions of the dimensionality of conical inter-
sections between the singlet ground PES (S0) and the lowest singlet
excited PES (S1).36,37 Nevertheless, DFT remains the first choice for
the electronic structure in many scenarios because of its wide appli-
cability, mild scalability, and reasonable balance between cost and
accuracy. For this reason, various approaches have been proposed
to (more or less) address the issue of S0 − S1 crossing in DFT. For
instance, if one can expect certain charge character, constrained-
DFT is a powerful tool to generate a meaningful diabatic represen-
tation38 with possible application to conical intersections.39 More
generally, for small systems, one may resort to multiconfiguration40

or multireference41,36 DFT methods. Recently, based on studies of
double excitation states in TDDFT (time-dependent density func-
tional theory),42–44 Teh et al. suggested that, by merely adding one
selected double excitation to HF/CIS (configuration interaction sin-
gles) or DFT/TDDFT (so called CIS-1D or TDDFT-1D), one can
recover the correct S0 − S1 conical intersection topology with rea-
sonable energetic accuracy.45 Thus, to date, there has been some
progress improving DFT to allow for static correlation in the gas
phase. Nevertheless, for the most part, these DFT methods have not
been applied to molecules on metal surfaces, where charge transfer is
possible. In general, if one were to study a molecule on a metal sur-
face with a well-developed embedding theory, e.g., density matrix
embedding theory (DMET),46,47 one would generally be interested
in wave-function methods, especially in the case that electron

correlation is largest between molecular electrons, not between
molecular and metal electrons. More often than not, one freezes the
electrons in the bulk metal.48,49 This will be discussed again below.

From the discussion above, it is clear that, in order to model
adsorbate dynamics on a metal or insulating surface, many chal-
lenges and opportunities remain. At bottom, one requires a robust
electronic structure approach that can generate a finite set of elec-
tronic states in the presence of a continuum of states and nontrivial
electron-electron repulsion. With this goal in mind, in the present
work, we will extend the idea of CIS-1D45 mentioned above to study
charge character in a molecular-metal system. Specifically, we will
investigate the electronic structure of the Anderson impurity model
from a configuration interaction approach and compare the ground
state molecular charge with the exact answer from the NRG. Sub-
sequently, based on these approaches, a projection-based diabati-
zation is proposed to generate a diabatic picture for the system’s
many-electron states.

This paper is organized as follows. In Sec. II, we introduce
our configuration interaction-based electronic structure method and
projection-based diabatization. The results of these methods applied
to the Anderson-Holstein model are presented in Sec. III. A discus-
sion of these methods is given in Sec. IV. We conclude in Sec. V with
an outlook for future dynamical applications.

Regarding notations below, i, j, k, . . . label canonical Hartree-
Fock (mean-field) occupied orbitals and a, b, c, . . . label canonical
virtual orbitals. A tilde over an occupied (virtual) orbital means that
it is a linear combination of canonical occupied (virtual) orbitals. A
bar above an orbital represents spin-down, and orbitals without bars
are assumed spin-up.

II. METHODS
For this paper, we will work with the Anderson impurity model

(AIM),

H = E(x)∑
σ
d†
σdσ + Un↑n↓ +∑

kσ
(Vkc

†
kσdσ + V∗k d

†
σckσ) +∑

kσ
ϵkc

†
kσckσ .

(1)

Here, dσ corresponds to an impurity orbital with spin σ and
orbital energy E(x) (x represents a nuclear coordinate). n↑ ≡ d†

↑
d↑

(n↓ ≡ d†
↓
d↓) is the particle number operator. U is the impurity on-

site repulsion. ckσ corresponds to the bath state labeled by kwith spin
σ of energy ϵk. Vk is the system-bath coupling amplitude. The bath
spectrum {ϵk} forms a quasicontinuum. We will now present a host
of approaches for solving the AIM.

A. Restricted mean-field
We begin with the simplest approximation, mean-field theory,

whose behavior is well-known. A crude ground state for Eq. (1) can
be obtained from the (restricted) Hartree-Fock approximation. If we
assume the ground state can be expressed by a closed-shell single
Slater determinant,

∣Ψ0⟩ = ∣īij̄j . . .⟩, (2)
the variational principle yields the (spinless) self-consistent equa-
tion,

(h + Un0∣d⟩⟨d∣)∣i⟩ = λi∣i⟩, (3)
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where h is the one-body part of the Hamiltonian and

n0 ≡∑
j
∣⟨d∣j⟩2 (4)

is the population of the impurity orbital |d⟩ for one spin (↑ or ↓).
In the limit of U → 0, the model is essentially noninteracting. In

the wide band limit, the orbital population takes the simple form50

⟨n↑⟩ = ⟨n↓⟩ =
1
π ∫

dϵ
Γ/2

(ϵ − E(x))2 + (Γ/2)2 f (ϵ,μ), (5)

where μ is the chemical potential, Γ ≡ 2π∑k|Vk|2δ(ϵ − ϵk) is the
hybridization, and f is the Fermi function.

The ansatz of a single determinant can qualitatively break down
in the case of U ≫ Γ. Note that Eq. (2) has an inherent mean-field
behavior,

⟨Ψ0∣n↑n↓∣Ψ0⟩ = ⟨Ψ0∣n↑∣Ψ0⟩⟨Ψ0∣n↓∣Ψ0⟩. (6)

While this relation should hold when (μ − E(x) − U)/Γ≫ 1, where
⟨n↑⟩ = ⟨n↓⟩ ≈ ⟨n↑n↓⟩ ≈ 1, or (E(x) − μ)/Γ ≫ 1, where ⟨n↑⟩ ≈ ⟨n↓⟩
≈ ⟨n↑n↓⟩ ≈ 0, it becomes problematic when μ − U ≲ E(x) ≲ μ. On the
one hand, the noninteracting part of the Hamiltonian would prefer
the system to be significantly occupied; on the other hand, the large
repulsion U would prevent such occupation.

A general many-electron state does not necessarily suffer from
this issue; significant population, zero net spin (⟨n↑⟩ = ⟨n↓⟩), and
small on-site repulsion can happen simultaneously. For example,

∣ψ⟩ ≈ . . . + ∣. . . , ckd̄⟩ + ∣. . . , c̄kd⟩ + . . . . (7)

In other words, a superposition of singly occupied determinants
should be energetically preferred over a restricted mean-field ground
state in the correlated regime.

The artifact of a restricted mean-field ground state will lead
to a qualitatively wrong impurity population as a function of
nuclear coordinate: regardless of the magnitude of U, the esti-
mate of the impurity population changes smoothly from 0 to 1 as
E(x) moves from above to below the chemical potential, as one
can readily observe from the mean-field spectral function50 (note

that ⟨n↑⟩ = ⟨n↓⟩)

A(ϵ, ↑) =
1
π

Γ/2
(ϵ − E(x) −U⟨n↓⟩)2 + (Γ/2)2 . (8)

By contrast, given U ≫ Γ, the exact impurity population should
change drastically near two positions, x1 and x2, where E(x1) = μ
and E(x2) + U = μ, and display a population plateau (Mott plateau)
in between.

Note that the relationship between the ground-state impurity
population and the nuclear coordinate carries charge transfer infor-
mation, which is closely related to nuclear dynamics. In the case of
large U and not large Γ, nuclear dynamics may well exhibit strongly
nonadiabatic behavior near x1 and x2 and be almost adiabatic else-
where. A mean-field description, however, would incorrectly pre-
dict a mildly nonadiabatic dynamics over a wide range between x1
and x2.

B. Configuration interaction (CI)
The discussion above [and Eq. (7)] suggests that single exci-

tations should be crucial for optimizing the ground state. How-
ever, if one runs a variational calculation in the enlarged space
{∣Ψ0⟩, ∣Ψa

i ⟩}, the global ground state will remain due to the Brillouin
theorem,

⟨Ψ0∣H∣Ψa
i ⟩ = Fia = 0. (9)

Of course, once double excitations are involved, the ground state
and single excitations can be indirectly coupled and the ground state
can change. For our purpose, however, a practical question arises:
if we include double excitations in a CI calculation that models
bath orbitals explicitly, will not the number of configuration states
become formidably large even at the level of CISD? While a CIS cal-
culation uses a basis of NoccNvir states, a full CISD calculation would
involve (NoccNvir)

2 doubles, which would be impossible in practice.
After all, formally, we are modeling a true bath when NoccNvir are
infinite. Thus, even after discretizing the bath, the set of configu-
ration states must be further tailored, and one would like to apply
selective-CI methods to the AIM.

Below, several configuration interaction schemes are presented.
A complete list can be found in Table I.

TABLE I. A set of four different selective CI calculations for solving the AIM [Eq. (1)]. We list here both the basis func-
tions and the size of the selective CI space. Orbitals with a tilde are rotated canonical orbitals. h̃ and l̃ are active orbitals
defined in Eqs. (10) and (11). The subscript “s” means the states are singlets, e.g., ∣Ψa

i ⟩s ≡ (∣Ψ
a
i ⟩ + ∣Ψā

ī ⟩)/
√

2.

The subscript “+” denotes states that are linear combinations of opposite-spin determinants but not spin adapted:

∣Ψl̃b̃
h̃j̃
⟩

+
≡

1
√

2
(∣Ψl̃¯̃b

h̃¯̃j
⟩ + ∣Ψ

¯̃lb̃
¯̃hj̃
⟩).

Method Configuration state basis Basis size

Three-state [CAS(2,2)] ∣Ψ0⟩, ∣Ψl̃
h̃⟩s

, ∣Ψl̃̃̄l
h̃¯̃h
⟩ 3

CIS-1D ∣Ψ0⟩,{∣Ψa
i ⟩s}, ∣Ψ

l̃̃̄l
h̃¯̃h
⟩ NoccNvir + 2

CIS-ND ∣Ψ0⟩,{∣Ψa
i ⟩s},{∣Ψ

l̃b̃
h̃j̃⟩+
} 2NoccNvir + 1

MRCIS ∣Ψ0⟩,{∣Ψa
i ⟩s},{∣Ψ

l̃b̃
h̃j̃⟩+
},{∣Ψl̃̃̄lb̃

h̃¯̃hj̃
⟩
s
} 3NoccNvir − (Nocc + Nvir) + 2
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1. Three-state [CAS(2,2) with DMET active space]
In molecular systems, the simplest approach to capture mul-

tireference character is the complete active space (CAS) method.
In a CAS(M,N) calculation, one first identifies N orbitals as active
orbitals, and the ground state is diagonalized in the space spanned
by all configuration state functions with M valence electrons pop-
ulated in N active orbitals. This approach can address the wrong
topology of HF/CIS conical intersections and model bond making
and bond breaking processes. While for molecular systems, active
orbitals often be chosen reasonably from the valence orbitals near
the Fermi level, for our purposes, we will require a different strat-
egy for picking active orbitals, as there is essentially a continuum of
states near the Fermi level.

In the present work, the active orbitals are determined by a
projection scheme,

∣h̃⟩ ≡ Nh

occ

∑
j
∣j⟩⟨j∣d⟩, (10)

∣̃l⟩ ≡ Nl

vir

∑
b
∣b⟩⟨b∣d⟩, (11)

where |d⟩ is the impurity orbital and Nh and N l are normal-
ization constants. Note that ⟨̃l∣h̃⟩ = 0. For the AIM, the active
orbitals in Eqs. (10) and (11) are essentially the same as the ones
used by density matrix embedding theory (DMET).46,47 Note that
∣d⟩ = ∣h̃⟩/Nh + ∣̃l⟩/Nl, and so the subspace spanned by {∣h̃⟩, ∣̃l⟩} is
the same as the one spanned by {∣h̃⟩, ∣d⟩}, which is the DMET active
space. In the context of DMET, ∣h̃⟩ is the Schmidt impurity orbital
corresponding to |d⟩, and the Schmidt bath orbital is proportional
to (1− ∣d⟩⟨d∣)∣h̃⟩ = ∣h̃⟩−Nh⟨n⟩∣d⟩. See Appendix A for more details.

Here, our specific choice of the two orbitals in the active space
bears a charge-transfer meaning: if on-site energy E(x) is far below
μF , ∣h̃⟩ ≈ ∣d⟩ and ∣̃l⟩ is localized in the bath; if E(x) is far above
μF , ∣̃l⟩ ≈ ∣d⟩ and ∣h̃⟩ is localized in the bath; if E(x) ≈ μF , there
is ∑occ

j ∣⟨ j∣d⟩∣
2
≈ ∑

vir
b ∣⟨b∣d⟩∣

2, and ∣h̃⟩ − ∣̃l⟩ should be localized to
the bath and form the natural bath complement to the impurity
orbital |d⟩.

With the active orbitals given by Eqs. (10) and (11), one can
perform a ground state optimization in the sense of a CAS(2,2)
calculation, i.e., the optimized ground state

∣Ψg⟩ = c0∣Ψ0⟩ + c1∣Ψl̃
h̃⟩s

+ c2∣Ψl̃̃̄l
h̃¯̃h
⟩ (12)

will be obtained through diagonalizing the Hamiltonian subspace

{∣Ψ0⟩, ∣Ψl̃
h̃⟩s

, ∣Ψl̃̃̄l
h̃¯̃h
⟩}.

Note that the CAS calculation can be systematically improved
in the sense of configuration interactions (CIs). Below, the above
CAS(2,2) calculation will be extended to involve certain sets of
configuration states.

2. CIS-1D
Recently, Teh et al. have explored the notion of adding one

carefully selected, double excitation state to a CIS wavefunction (or
TD-DFT pseudowavefunction in the Tamm-Dancoff approxima-
tion). In the gas phase, this idea was proposed earlier by Maitra,

Cave, and Burke and was shown to improve excitation energies. In
Ref. 45, Teh et al. showed results for ethylene and stilbene, suggest-
ing that this approach could recover both good excitation energies
and an accurate S0 − S1 crossing (with a correct topology for a
conical intersection). The double excitation state was of the form

∣Ψl̃̃̄l
h̃¯̃h
⟩, where the active occupied and virtual orbitals, ∣h̃⟩ and ∣̃l⟩, were

chosen such that ⟨Ψl̃̃̄l
h̃¯̃h
∣H∣Ψl̃̃̄l

h̃¯̃h
⟩ is minimized.

Here, we will adopt the idea of Ref. 45 to study the AIM, which,
unlike ethylene or stilbene, is not a closed system. Our ansatz for the
optimized ground state will be obtained by minimizing ⟨Ψg |H|Ψg⟩

with

∣Ψg⟩ = c0∣Ψ0⟩ +
1
√

2
∑
jb
cbj (∣Ψ

b
j ⟩ + ∣Ψb̄

j̄ ⟩) + c̃∣Ψl̃̃̄l
h̃¯̃h
⟩, (13)

where

∣h̃⟩ =∑
j
∣ j⟩Rjh̃, (14)

∣̃l⟩ =∑
b
∣b⟩Qbl̃ (15)

are rotated, active occupied, and virtual orbitals yet to be deter-
mined.

Now, we would like to determine ∣h̃⟩ and ∣̃l⟩ by an energetic

minimization criterion (just as minimizing ⟨Ψl̃̃̄l
h̃¯̃h
∣H∣Ψl̃̃̄l

h̃¯̃h
⟩ in Ref. 45).

However, for our purposes, such minimization would not be effec-
tive for the same reason that choosing CAS active orbitals at a metal
surface is impossible. After all, for a system with a continuum of
states near the Fermi level, the lowest-energy doubly excited state
is very likely to be a bath excitation, and this one double excita-
tion will not yield a large correction. Thus, instead of minimizing

⟨Ψl̃̃̄l
h̃¯̃h
∣H∣Ψl̃̃̄l

h̃¯̃h
⟩, we will simply adopt the active orbitals [Eqs. (10)

and (11)].

3. CIS-ND
In the spirit of variational ansatz, one should expect that

CIS-1D will be further improved if more configuration states are
involved. Consider adding the following double excitation states to
a CI Hamiltonian:

1
√

2
(∣Ψl̃¯̃b

h̃¯̃j⟩ + ∣Ψ
¯̃lb̃
¯̃hj̃
⟩). (16)

Here, j̃(b̃) is an arbitrary rotated occupied (virtual) orbital restricted
only such that (j̃b̃) ≠ (h̃l̃) (but j̃ or b̃ may equal h̃ or l̃ individ-
ually). The total number of such double excitation states, plus the
special double in CIS-1D, is NoccNvir . Let us denote the diagonaliza-
tion of this CI Hamiltonian CIS-ND. Note that this basis is not spin
adapted.

4. MRCIS
If we further allow for triple excitations of the form

1
√

2
(∣Ψl̃̃̄lb̃

h̃¯̃hj̃
⟩ + ∣Ψl̃̃̄l¯̃b

h̃¯̃h¯̃j
⟩), (17)

where j̃ ≠ h̃ and b̃ ≠ l̃, one has essentially constructed a vari-
ant of multireference configuration interaction singles (MRCIS)
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calculation with three reference configurations: |Ψ0⟩, ∣Ψl̃
h̃⟩s

, and

∣Ψl̃̃̄l
h̃¯̃h
⟩. For each of these configurations, we allow for single excita-

tion on top so that the size of the total basis set is about 3NoccNvir
(the actual size is slightly less due to double counting). Note that we

have excluded determinants such as ∣Ψb̃¯̃l
h̃¯̃j
⟩, so the resulting basis is

not spin adapted.

C. Unrestricted mean-field
For the AIM, a nonmagnetic (⟨n↑⟩ = ⟨n↓⟩), single-determinant

(⟨n↑n↓⟩ = ⟨n↑⟩⟨n↓⟩) state is energetically disfavored in the presence
of a large U parameter. Consequently, a variational closed-shell,
single-determinant ground state can be qualitatively wrong in the
strongly correlated regime, and thus, we should not expect stan-
dard mean-field theory [Eqs. (2)–(4)] to be very accurate. Now, for
all of the CI methods above, we go beyond the mean-field limita-
tion, and yet the optimization of the ground state is still performed
within a subspace of nonmagnetic configuration states. Of course,
one can imagine a cheaper alternative: one can seek a lower energy,
variational ground state not by relaxing the mean-field property,
but instead by relaxing the nonmagnetic constraint. This ansatz
essentially leads to an unrestricted mean-field (UMF) calculation.
Consider an unrestricted Slater determinant,

∣Ψ⟩ = ∣i1 ī2j1 j̄2 . . .⟩. (18)

Following the variational principle, spin-up and spin-down orbitals
are now determined by the following two coupled self-consistent
equations:

(h + Un̄0P)∣i⟩ = λi∣i⟩, (19)

(h + Un0P)∣ j̄⟩ = λ̄ j ∣̄j⟩, (20)

where

n0 ≡∑
i∈Ψ
∣⟨i∣d⟩∣2, (21)

n̄0 ≡∑
j̄∈Ψ
∣⟨̄j∣d⟩∣2. (22)

By solving Eqs. (19)–(22), one obtains an unrestricted mean-field
solution to the AIM. Below, we will use CIS-1D, CIS-ND, MRCIS,
CAS(2,2), and unrestricted mean-field theory to solve for the ground
state of the AIM and, by comparing with NRG, assess how well these
methods perform in an open Hamiltonian (rather than the more
standard case of a small molecule).

D. Diabatization
As mentioned above, to model nonadiabatic dynamics, a dia-

batic representation will be helpful to establish a chemical picture
and to serve as a basis for model calculations (sometimes compu-
tational, sometimes analytical). As such, we would very much like
a reduced diabatic picture of the electronic structure within the
AIM. Unfortunately, however, our current situation differs from the
conventional diabatization problem in molecular systems in that,
while we may expect three diabatic PESs representing zero-, one-,
and two-electron occupation, these states must be extracted from a

continuum of adiabatic states; the standard notion of adiabatic-to-
diabatic transformations19–29 is not easily applied. For this reason,
we will now employ a different, projection-based strategy to perform
such a diabatization.

To better understand our approach, let us begin by rewriting
the identity,51

1 = (1 − n↑)(1 − n↓) + (n↑(1 − n↓) + n↓(1 − n↑)) + n↑n↓
≡ P0 + P1 + P2. (23)

For any many-body state |Ψ⟩, {P0|Ψ⟩, P1|Ψ⟩, P2|Ψ⟩} are the
three components of |Ψ⟩ with zero-, one-, and two-electron popu-
lation (up to some normalization constants), and in principle, this
would be an excellent set of diabatic states. However, since neither
the CIS-1D basis, nor the CIS-ND basis, nor the MRCIS basis is
an invariant subspace of PM(M = 0, 1, 2),52 projection by PM on
a CIS-1D/CIS-ND/MRCIS wavefunction will bring one given vec-
tor outside of the space of optimization, and therefore, evaluating
matrix elements of PMHPM ′ would be laborious. Thus, a slightly
simple approach would be preferable.

To that end, let us define

P̃M ≡ QPMQ, (24)

where Q is the projection operator on the optimization basis. For
instance,

Q(CIS−1D)
≡ ∣Ψ0⟩⟨Ψ0∣ +

1
2∑jb
(∣Ψb

j ⟩ + ∣Ψb̄
j̄ ⟩)

× (⟨Ψb
j ∣ + ⟨Ψ

b̄
j̄ ∣) + ∣Ψl̃̃̄l

h̃¯̃h
⟩⟨Ψl̃̃̄l

h̃¯̃h
∣. (25)

If we denote the ground state |Ψg⟩, then we can also define the
following diabatic state:

∣Ξ̃M⟩ ≡
P̃M ∣Ψg⟩

√
⟨Ψg ∣P̃2

M ∣Ψg⟩
, (26)

where ∣Ξ̃M⟩ is a potentially diabatic state whose system population is
approximately M.

While the set {∣Ξ̃M⟩} would appear to be a natural basis of dia-
batic states, one important drawback is that this set is not orthonor-
mal. To yield an orthonormal basis while preserving charge char-
acter as much as possible, a Löwdin orthogonalization53–56 can be
applied,

∣ΞM⟩ ≡∑
M′
∣Ξ̃M′⟩(S−1/2

)M′M , (27)

where S is the overlap matrix, i.e., SMM′ = ⟨Ξ̃M ∣Ξ̃M′⟩. The full diabatic
Hamiltonian H is then readily obtained by

HMM′ = ⟨ΞM ∣H∣ΞM′⟩. (28)

Below, we will report on the relevant set of diabatic states {|ΞM⟩} as
found for the AIM.
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III. RESULTS

We will now present results for the various methods in Table I
as far as reproducing the correct physics behind the AIM.

Figure 1 plots the impurity population vs on-site energy for
the various methods at different temperatures. An NRG calcula-
tion is used as the exact benchmark. In Fig. 1(a), we set U = 10Γ
= 102ΔE = 103kT, where ΔE is the bath spacing. The CIS-1D opti-
mized ground state exhibits a moderate correction to the restricted
mean-field ground state but is still far from the NRG result. Inter-
estingly, a CAS(2,2) optimization accounts for a large portion of
the CIS-1D correction. The CIS-ND and MRCIS optimized ground

states clearly display population plateaus almost as does the exact
NRG, indicating that these methods include a significant correc-
tion to the restricted mean-field ground state. As far as the unre-
stricted mean-field (UMF) ground state is concerned, the UMF pop-
ulation coincides with the restricted mean-field population in the
two noncorrelated regions [E(x) < μ − U and E(x) > μ] and dis-
plays a clear population plateau in between (actually even broader
than the NRG’s). However, discontinuities exist at the intersec-
tion of the correlated and noncorrelated regions, similar to the
Coulson-Fischer point57 in standard unrestricted Hartree-Fock cal-
culations. Such discontinuities are artifacts that result from the
fact that the method is limited to a single Slater determinant, and

FIG. 1. System population as a function of system on-site energy E(x) [see Eq. (1)]. The bath state energies range from −0.2 to 0.2 with spacing 0.001 [(a) and
(b)] and 0.003 (c). The temperatures are (a) 0.0001, (b) 0.001, and (c) 0.005. Other parameters are U = 0.1, Γ = 0.01, and μ = 0. NRG is used as the bench-
mark. The restricted mean-field (MF) ground state entirely fails to capture the electronic correlation, while the unrestricted calculation (UMF) overcorrects the impurity
population and introduces artificial continuities between the correlated and the noncorrelated regime. A three-state CAS(2,2) optimization can introduce significant
correction to the mean-field population. CIS-ND and MRCIS reproduce NRG results quite well when kT ≲ ΔE ≪ Γ. All the CIS-based methods deteriorate when
ΔE < kT ≲ Γ. Here ΔE is a typical energy spacing between bath states.
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this limitation can lead to unphysical artifacts or divergences of
quantities related to dynamics, e.g., the electronic friction58 (see
Sec. IV).

In Figs. 1(b) and 1(c), the temperature is raised so that
kT/Γ = 0.1 and 0.5, respectively. While the performance of CI-
based methods is apparently unaffected in Fig. 1(b), the performance
significantly deteriorates in Fig. 1(c), where a significant portion
of the excitation spectrum is involved in the Boltzmann average
(kT/Γ = 0.5). This failure should not be surprising, as the config-
uration states included in the diagonalization by no means reflect
the underlying density of states, and therefore, the excited state
DOS for the CI-based methods above are not reliable. As a con-
sequence, the high-T Boltzmann-weighted average is also biased,
leading to the deterioration of the CI-based methods in Fig. 1(c) at
large temperature.

Next, in Fig. 2, the on-site repulsion is plotted as a function of
on-site energy with the same parameter set as used in Fig. 1. In all
cases, the NRG repulsion rapidly drops to about zero at the point
where E(x) = μ − U, which verifies the multireference character as
described by Eq. (7). The relative performance of the CI-based meth-
ods agrees with their impurity populations as in Fig. 1; for small
temperature T, CI-based methods can ideally recover ⟨n↑n↓⟩ for a
large enough CI basis.

Finally, in Fig. 3, we plot the AIM quasidiabatic PESs and
diabatic couplings as defined in Sec. II D. Encouragingly, the
projection-based diabatization yields similar diabatic Hamiltoni-
ans and impurity populations in all of the different levels of the
electronic structure. In the three-state [CAS(2,2)] calculation, the
impurity population is an exact integer because the three-state basis
is an invariant subspace of PM (P̃M ≡ QPMQ = PM); for the

FIG. 2. On-site repulsion as a function of system on-site energy E(x) at (a) kT = 0.0001, (b) kT = 0.001, and (c) kT = 0.005. The parameters are the same as those in Fig. 1.
The repulsion is nearly zero between −0.1 and 0, where the impurity population is around 1, demonstrating the multireference nature in this region. In all cases, CI methods
can perform well for small enough temperatures.
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FIG. 3. Diabatic PESs, couplings, and
impurity populations from CIS-1D, CIS-
ND, MRCIS, and CAS(2,2). The zero-,
one-, and two-electron diabats are plot-
ted in blue, orange, and green, respec-
tively. The projection diabatization for the
CAS(2,2) algorithm yields exact integer-
occupation quasidiabatic states, since
the basis is an invariant subspace of PM .
For the other three methods, the system
populations of diabatic states are not an
exact integer, yet the deviations are very
small. The diabatic couplings of MRCIS
do not significantly differ from those of
CIS-ND.

other CI calculations, the system populations are close to (but not
exactly) integer values. Moreover, for the different levels of CI the-
ory, the exact positions of the diabatic crossings differ only slightly.
In general, the CIS-ND diabatized Hamiltonian does not differ
significantly from that of MRCIS.

Overall, the takeaway message from Figs. 1–3 is clear: if the
temperature is small enough (but not so low as to enter the Kondo
regime), one can clearly use carefully designed CI-based approaches
to model the electronic structure of the AIM.

IV. DISCUSSION
A. Spin contamination

One drawback of the CIS-ND and MRCIS approaches above is
that they are not spin adapted; the double excitations introduced by
CIS-ND are not pure singlets. However, since the double excitations
are introduced mostly to relax the orbitals from the excited single-
excitation singlet configurations, these states themselves do not lead

to a large spin contamination. Figure 4 plots the expectation value
⟨S2
⟩ for the CIS-ND and MRCIS optimized ground states. The spin

contamination is less than 0.005 throughout the correlated regime
and effectively zero elsewhere.

B. Electronic friction
In studying the electronic structure of the AIM, one of the most

important questions is how we will add in possibly nonadiabatic
dynamics when nuclei start moving. Of course, in general, model-
ing nonadiabatic dynamics on metal surfaces is a nontrivial task.
However, in the limit of fast electronic equilibration, it is known
that nonadiabatic dynamics can be reduced to Langevin dynamics,59

where the nonadiabatic effects are incorporated into the electronic
friction.

Now, Ref. 60 has demonstrated that, in the case of moderate to
high temperature and U ≫ Γ limit, the exact electronic friction in
the AIM peaks at two positions—exactly those positions where elec-
tron transfer should occur. Also as shown by Ref. 60, these two peaks
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FIG. 4. ⟨S2
⟩ vs on-site energy for CIS-ND and MRCIS ground states. The configu-

ration states introduced by CIS-ND are not spin adapted; thus, spin contamination
occurs in the correlated regime. Nevertheless, the contamination is insignificant
(less than 0.005).

are not captured by restricted mean-field theory.60 With this back-
ground in mind, in Fig. 5, we report CIS-1D and CIS-ND friction
coefficients as compared against the NRG and mean-field friction.
Encouragingly, both CIS-1D and CIS-ND qualitatively recover the
double-peaked pattern at exactly the position in space where the
proposed diabats cross. Unfortunately, however, their quantitative
values in the figure are not reliable. On the one hand, the electronic
friction depends on the density of states, and none of the CIS-based
methods can capture the true DOS; on the other hand, the Dirac

delta functions in the friction formula60

γμν =
πh̵β

2 ∑
IJ
⟨I∣δF̂μ∣J⟩⟨J∣δF̂ν∣I⟩

e−βEI + e−βEJ

Z
δ(EI − EJ) (29)

induce numerical instabilities: if one simply replaces the delta func-
tions with some broadening functions (such as gaussian), the num-
ber of bath states should be sufficiently dense compared with kT
and Γ in order to converge the friction (which would be hard).
While an interpolation scheme has been proposed to alleviate this
issue in a single-electron orbital framework,61 this method does
not seem to reliably extend to a many-body framework. For com-
putational details, see Appendix B. Finally, we also note that, in
Fig. 5, the unrestricted mean-field friction does produce two peaks,
but the friction diverges at the Coulson-Fischer points because of
the abrupt changes in the slopes of impurity population. Simi-
lar artifacts in the friction tensor have been observed earlier by
Trail et al.58

Overall, the details in Fig. 5 would suggest that, despite the
success of CI-based methods at recovering the correct qualitative
electronic friction of the AIM, modeling nonadiabatic molecular
dynamics with electronic friction does not appear simple or straight-
forward, and finding other methods for running dynamics will
be helpful, likely based on surface hopping.62 In any event, it is
known that electronic friction can fail (even with the correct fric-
tion tensor), and our past experience suggests that surface hopping
is a better starting point for exploring complicated dynamics at
surfaces.63

FIG. 5. Electronic friction (γ) vs impurity on-site energy [E(x)] according to CIS-1D, CIS-ND, mean-field theory, and NRG. The parameters are the same as those in Fig. 1(b).
Unlike restricted mean-field theory, CIS-1D and CIS-ND can qualitatively capture the double-peaked pattern; yet their quantitative value is not reliable here, due to both
numerical instability and systematic errors in the DOS. The CIS-based friction in (a) is computed by an interpolation method, while in the remaining panels, friction tensors
are computed by broadening the delta functions by (b) σ = ΔE, (c) σ = 3ΔE, (d) σ = 10ΔE, and (σ is the width of gaussian and ΔE is the bath spacing). Note that the friction
tensors computed by interpolation are not accurate, while the friction tensors computed by broadening do not converge with σ; see Appendix B for details. The unrestricted
mean-field friction diverges at the Coulson-Fischer point. Note that we cannot report a CAS(2,2) friction tensor here because friction requires a continuum of states, and for
the CAS(2,2) calculation, we do not have such a set of bath states.
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V. CONCLUSION
In the present work, we have studied the Anderson impu-

rity model with configuration interaction electronic structure meth-
ods. While a restricted mean-field calculation fails to capture the
electron-electron effect, we find that, with one special double exci-
tation added to the CIS calculation, we are able to partially cap-
ture static correlation and partially recover the correct ground state
impurity population. With a total of about 2NoccNvir configuration
states (CIS-ND), the ground state impurity population can recover
almost exactly the NRG results. However, such CI methods can-
not give the correct temperature dependence, as these truncated CI
methods cannot generate the total correct, density of states.

Looking forward to dynamics applications, we have proposed
a projection-based diabatization scheme to obtain a diabatic repre-
sentation of the total system. Motivated by chemical intuition, this
diabatization makes use of the impurity on-site charge as the crite-
rion for separating components of different chemical character in
the ground state. As such, this diabatization differs from traditional
approaches based on generating an adiabatic-to-diabatic transfor-
mation. Furthermore, unlike diabatization in the gas phase,19–29 here
we generate diabatic states only from the ground state (as opposed
to using a collection of adiabatic states). Admittedly, generating dia-
batic states from the ground state alone might appear dubious, even
at low temperatures, and yet our belief is that this approach should
be suitable for capturing charge-transfer dynamics of molecules on
surfaces, e.g., the famous NO on gold surface experiments.18 Further
investigation will be necessary to evaluate the overall effectiveness
and accuracy of this diabatic representation.

Now, with regard to applicability, we should emphasize that
all the calculations in the present paper have been limited to the
AIM. Nevertheless, the approaches introduced in Sec. II should be
all applicable to ab initio calculations as post-DFT methods, where
we will interpret the Kohn-Sham wavefunction as a real wavefunc-
tion (just as in Ref. 45). And yet one key step remains before we can
apply the present approach to realistic systems of molecules on metal
surfaces: molecules will have more than one orbital, as opposed to
the single-impurity model used in this paper. Thus, we will need a
predicative strategy (ideally a black-box algorithm) for finding the
active h̃ and l̃ orbitals from an ab initio calculation.

Finally, simulating molecular nonadiabatic dynamics on metal
surfaces in the presence of electron-electron correlation remains a
challenging task. With a system-wide few-level diabatic representa-
tion (e.g., as proposed in the present work), one should in princi-
ple be able to use semiclassical methods (e.g., the fewest-switches
surface hopping algorithm62) to simulate the dynamics. Also, yet
the validity of Tully’s algorithm in this scenario is unclear, since
this method would not reflect the correct electronic equilibration.
For this reason, Shenvi et al.64 originally developed the indepen-
dent electron surface hopping model. Nevertheless, for all of its suc-
cesses,65 the IESH model relies on independent electrons and cannot
directly include electron-electron repulsion (as would be found in a
realistic ab initio Hamiltonian); finite temperature effects are also
difficult.66

Alternatively, assuming an adsorbate-substrate separation, a
broadened classical master equation67,68 would appear to be a
good candidate for modeling the molecule-metal problem in the
molecular diabatic picture. However in practice, obtaining the

correct hybridization Γ in the case of a many-body electronic struc-
ture framework is not trivial. In the future, finding the appro-
priate pairing between correlated electronic structure calculations
and semiclassical nonadiabatic dynamical methods is an exciting
goal.
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APPENDIX A: DMET ACTIVE SPACE
In the context of density matrix embedding theory,46,47 the

Schmidt orbitals are usually defined in the case of multiple impu-
rity orbitals. Suppose we have N imp impurity orbitals |dp⟩(p = 1,
. . ., N imp) and Nocc occupied orbitals (assume Nocc ≥ N imp),
then the standard DMET approach is to first perform a singu-
lar value decomposition on the impurity part of the occupied
orbitals,

⟨dp∣ j⟩ =
Nimp

∑
q=1

UpqλqV†
q j. (A1)

The Schmidt orbitals {|ψq⟩}(q = 1, . . ., N imp) are defined as

∣ψ̃q⟩ =
Nocc

∑
j=1
∣ j⟩Vjq. (A2)

The DMET bath orbitals are the bath block of the Schmidt orbitals,
say,

∣ψ̃bath
q ⟩∝

⎛

⎝
1 −

Nimp

∑
p=1
∣dp⟩⟨dp∣

⎞

⎠
∣ψ̃q⟩ (A3)

and {{dp},{ψ̃bath
q }} constitute the DMET active space.

The same active space can be obtained via a projection scheme.
In the case of multiple orbitals, one can project every impu-
rity orbital onto the occupied and virtual subspace, respectively,
yielding 2N imp orbitals {∣h̃p⟩, ∣̃lp⟩}. Now, the linear space spanned
by these 2N imp orbitals is exactly the same as the DMET active
space. Specifically, {∣h̃p⟩} and the DMET Schmidt orbitals span
the same space since they are connected by a full-rank linear
transformation

∣h̃p⟩∝
Nocc

∑
j=1
∣ j⟩⟨j∣dp⟩ =

Nimp

∑
q=1

⎛

⎝

Nocc

∑
j=1
∣ j⟩Vjq

⎞

⎠
λ∗qU

†
qp =

Nimp

∑
q=1
∣ψ̃q⟩λ∗qU

†
qp, (A4)

where U, λ, V are introduced in Eq. (A1). Of course, ⟨h̃p∣h̃q⟩ ≠ δpq,
so an additional orthogonalization is necessary.
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APPENDIX B: COMPUTATIONAL DETAILS
OF ELECTRONIC FRICTION

In this section, we will review two ways of evaluating Eq. (29)
numerically.

1. Gaussian broadening
A straightforward and common treatment of the Dirac delta

functions in Eq. (29) is to replace them with some broadening
functions of finite width, e.g.,

δ(EI − EJ)→
1

σ
√

2π
e−

(EI−EJ)2

2σ2 , (B1)

where σ is a parameter that controls the broadening width. Ideally,
one would expect that γμν(σ) can plateau at a wide range of σ val-
ues, which is the converged result. Nevertheless, such convergence
is guaranteed only when ΔE ≪ Γ and ΔE ≪ kT are both satisfied
(ΔE is the bath spacing near the Fermi level). Without a sufficiently
dense bath, a broadening method is very likely to fail. Note that
the interpolated friction tensors in Fig. 5 do not converge with the
broadening factor, σ.

2. Interpolation
The friction can also be evaluated with an interpolation scheme

similar to the one used in Ref. 61. First, note that Eq. (29) can be
recast into an integral form

γμν = −πh̵∫ dϵTr(δF̂μP(ϵ)δF̂νP(ϵ))
∂p(ϵ)
∂ϵ

, (B2)

where P(ϵ) ≡ δ(ϵ − H) and p(ϵ) ≡ exp(−βϵ)/Z. Now, assuming the
eigenspectrum of H is nondegenerate at every eigenenergy EI , we can
deduce that

Tr(δF̂μP(EI)δF̂νP(EI)) = Tr(δF̂μP(EI))Tr(δF̂νP(EI)). (B3)

Let us define the cumulative sum function

Iμ(ϵ) ≡
EJ<ϵ

∑
J
⟨J∣δFμ∣J⟩. (B4)

Obviously,
dIμ
dϵ
= Tr(δF̂μP(ϵ)). (B5)

Therefore, Eq. (B2) can be written as

γμν = −πh̵∫ dϵ
dIμ
dϵ

dIν
dϵ

∂p(ϵ)
∂ϵ

. (B6)

An interpolation method can be established as follows, assuming
that one has already obtained the eigenpairs {|I⟩, EI}:

i. Find ⟨I|δFμ|I⟩ ≡ −⟨I|∂μH|I⟩ + ⟨∂μH⟩. In the specific
model Hamiltonian [Eq. (1)], this can be simplified to
−(∑σ⟨I∣nσ ∣I⟩ − ⟨nσ⟩). In a realistic calculation, this quantity
can be computed by density functional perturbation theory.

ii. Compute the cumulative sum function Iμ(EI) according to
Eq. (B4).

iii. Fit Iμ(EI) to some smooth function Ĩμ(ϵ). While in the single-
electron picture, one may pick a functional form based on
the analytical expression in the wideband limit, in a many-
electron counterpart, it is not available. In practice, the fall-
back method is the cubic spline over a smoothened data
set.

iv. Numerically compute Eq. (B6).

There are, however, two factors that undermine the quality of this
interpolation scheme. First, the assumption of nondegeneracy is
more problematic in the many-body case than in the one-body
case. Second, the curve fitting is prone to numerical instabilities:
unlike the situation in the single-electron picture whereby the energy
range of interest (a few kT around the Fermi level) usually lies
within the total energy range, the current thermally dominant range
actually lies near the lower bound of the total spectrum, essen-
tially making interpolation an extrapolation. Due to the two rea-
sons above, the interpolation method does not so far appear very
reliable, which likely explains the errors in Fig. 5.
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