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Universal approach to quantum thermodynamics of strongly coupled systems
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We present an approach based on a density matrix expansion to study thermodynamic properties of a quantum
system strongly coupled to two or more baths. For slow external driving of the system, we identify the adiabatic
and nonadiabatic contributions to thermodynamic quantities, and we show how the first and second laws of
thermodynamics are manifested in the strong coupling regime. Particularly, we show that the entropy production
is positive up to second order in the driving speed. The formulation can be applied both for bosonic and fermionic
systems, and recovers previous results for the equilibrium case [Phys. Rev. B 98, 134306 (2018)]. The approach
is then demonstrated for the driven resonant level model as well as the driven Anderson impurity model, where
the hierarchical quantum master equation method is used to accurately simulate the nonequilibrium quantum
dynamics.
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I. INTRODUCTION

Thanks to the advance in nanofabrication, quantum in-
formation and computing technologies, there has been an
increasing research interest in the study of dynamics and ther-
modynamics for small systems consisting of just a few atoms
(or photons, spins, etc.). Being far from the thermodynamic
limit, these systems are subject to strong fluctuations and/or
are not necessarily weakly coupled to their environments in
general. Hence, the concepts of quantum thermodynamics
emerge, addressing the quantum nature of thermodynamic
quantities [1–10], e.g., entropy production, dissipation and
fluctuation, energy flow and work efficiency [1,11–15]. While
theoretical works have focused on formulating thermody-
namic laws for quantum systems, recent experiments have
started to test the concepts of quantum heat engines [16–20].

Different from the regimes of weak system-bath coupling,
where quantum thermodynamics have been successfully for-
mulated for certain systems [2,21–26], the regimes of strong
system-bath coupling remain as open questions. On the one
hand, there have been plenty studies focusing on the dy-
namics and transport properties of strongly coupled nanosys-
tems, using either numerically exact methods (e.g., multilayer
multiconfiguration time dependent Hartree (ML-MCTDH)
[27–29], path integral and quantum Monte Carlo [30–33],
the hierarchical quantum master equation (HQME) [34–37])
or approximate approaches (e.g., numerical renormalization
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group [38,39], combinations of reduced density matrix tech-
niques and impurity solvers [40–42], nonequilibrium Green’s
function [3,11,43–45], scattering theory [46–48], and map-
ping techniques [49–53]). On the other hand, the thermo-
dynamic properties of these systems are less understood,
particularly in the case with external driving. One main chal-
lenge in the study of thermodynamics of strongly coupled
nanosystems is how to properly quantify energy, heat, and
entropy for a system which is strongly hybridized with baths.
Another way of looking at the problem is how to treat/split
the interactions between the system and baths [54–59].

As an example for a noninteracting nanosystem, the driven
resonant level model has been studied extensively in the liter-
ature [3,11,60]. Within the wide-band approximation, studies
have shown that a symmetric splitting of the interactions be-
tween the system and bath is able to describe thermodynamic
quantities for the extended system consistently [60]. To the
second order in driving speed, the entropy production is pos-
itive and is related to dissipated work (i.e., frictional effects)
at equilibrium [3,60]. Similar results have been obtained for
bosonic systems [61]. However, such a symmetric splitting
may not be able to describe higher moments in thermody-
namic quantities correctly [62]. Later, von Oppen and co-
workers employed the concept of scattering states to avoid the
splitting of the system-bath couplings [47]. Nevertheless, their
approach as well as most studies of quantum thermodynamics
in the strong coupling limits are restricted to noninteracting
systems or equilibrium cases.

In a recent publication [63], one of the authors and co-
workers have proposed a generic approach to study quantum
thermodynamics at equilibrium. The approach is based on a
description of the full density matrix (including system and
bath). Under slow external driving, the full density matrix
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is expanded into a series of terms in the power of driving
speeds, where the adiabatic and nonadiabatic contributions
to the thermodynamic quantities are identified, and further,
the first and second laws of thermodynamics are formulated.
The entropy production rate is found to be positive, and is
related to dissipative work. This general formulation can be
applied to interacting systems as well. When strong electron-
electron (el-el) interactions are allowed in the Anderson im-
purity model, Kondo signatures are found in thermodynamic
quantities, e.g., nonadiabatic energy, dissipated work [64].

In the present work, we extend the previous study based
on nonadiabatic expansion of the full density matrix to
the nonequilibrium case. Nonequilibrium conditions can be
achieved by having the subsystem coupled to two (or more)
baths that induce energy flows due to different temperatures
and/or chemical potentials. When subject to external driving,
we establish a thermodynamic description for the case of finite
driving speeds. In addition, we show that the nonadiabatic
entropy production rate can be recasted into a Kubo trans-
formed correlation function and remains positive, such that
the second law of thermodynamics holds out of equilibrium.
We apply our analysis to the resonant level model as well as
the Anderson impurity model, and further study thermody-
namic signatures arising from el-el interactions.

The paper is organized as follows. In Sec. II, we formulate
thermodynamic laws for out-of-equilibrium systems within
the adiabatic limit. In Sec. III, we extend the results to the
nonadiabatic limit and identify the entropy production rate. In
Sec. IV, we apply our analysis as well as numerical simula-
tions using the HQME method to model systems. Finally, we
conclude in Sec. V.

II. ADIABATIC THERMODYNAMICS

In this section, we consider thermodynamics for a nonequi-
librium system under infinitely slow driving, i.e., in the adi-
abatic limit. The thermodynamic quantities can be defined
using the steady-state density matrix.

A. Steady-state solution of an undriven system

We first consider thermodynamic properties of a nonequi-
librium quantum system in the static limit, i.e., without ex-
ternal driving. We assume the dynamics of the total system,
including a subsystem and multiple baths, are governed by
the total Hamiltonian Ĥ . The total density matrix ρ̂ follows
the Liouville equation:

∂

∂t
ρ̂ = − i

h̄
[Ĥ , ρ̂]. (1)

To mimic the steady-state solution of the full density matrix
(baths + subsystem), we introduce superbaths as illustrated in
Fig. 1. The steady-state full density matrix satisfies

∂t ρ̂ss = − i

h̄
[Ĥ , ρ̂ss] = 0. (2)

Note that, in the equilibrium case, the total system maintains
one temperature (kBT = 1/β) and one chemical potential μ

due to weak coupling to a superbath (see also Ref. [63] for a
discussion), such that the equilibrium solution to the density

FIG. 1. A sketch of an out-of-equilibrium system. A subsystem
is strongly coupled to multiple baths with different temperatures
and chemical potentials. The superbaths are weakly coupled to the
baths to make sure that the total system (subsystem + baths) reaches
steady state. The subsystem can be subject to external driving.

matrix is given by the Boltzmann/Gibbs distribution

ρ̂eq = e−β(Ĥ−μN̂ )/Z. (3)

Here, N̂ is the number operator, and Z = Tr(e−β(Ĥ−μN̂ ) ) is the
partition function.

Under nonequilibrium conditions, where a subsystem cou-
ples to multiple baths with different temperatures or/and
chemical potentials, the steady-state density matrix does not
admit a simple solution. Nevertheless, as shown by Hershfield
[65] and others [58,66,67], the steady-state density matrix can
be formally expressed as

ρ̂ss = e−β̄(Ĥ−Ŷ )/�. (4)

Here, � = Tr(e−β̄(Ĥ−Ŷ ) ) is the normalization factor and
kBT̄ = 1/β̄ is the reduced temperature (e.g., for a subsystem
coupled to two baths with inverse temperature βL and βR,
β̄ = (βL + βR)/2) [68]. Ŷ in the above equation is an operator
that accounts for particle transport throughout the subsystem.
The formal expression for Ŷ can be found in Ref. [58] and can
be obtained analytically for certain noninteracting cases (see
Sec. IV).

With such a formal solution, we can define the steady-state
energy and entropy of the total system (baths + subsystem) as

E (0) = Tr(Ĥ ρ̂ss), (5)

S(0) = −kBTr(ρ̂ss ln ρ̂ss). (6)

We use superscript (n) to indicate that the thermodynamic
quantities are nth order in the driving speeds. Here, the super-
script (0) indicates that the quantities in the above equations
are zeroth order in the driving speeds (see below).

B. Adiabatic limit for a driven system

In order to construct a heat engine or a refrigerator, we
introduce additional external driving of our nonequilibrium
system using a time-dependent Hamiltonian. Without loss of
generality, we assume that the system Hamiltonian depends on
a set of parameters, i.e., Ĥ = Ĥ (R), and the parameters R =
(R1, R2, . . . , Rα, . . . ) vary in time due to external driving.

In the adiabatic limit, where the driving speed is very
small as compared to the system dynamics, i.e., Ṙ ≈ 0, the
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system remains at steady state and follows the instantaneous
Hamiltonian. By taking the time derivative, we can define the
rate of change of thermodynamic quantities. Particularly, the
rate of change of the total energy is (note that the steady-state
density matrix also depends on R)

Ė (1) =
∑

α

Ṙα∂αE (0) =
∑

α

ṘαTr(ρ̂ss∂αĤ )

+
∑

α

ṘαTr(Ĥ∂αρ̂ss). (7)

Here, we have denoted ∂α ≡ ∂
∂Rα

. The superscript (1) indicates
that the quantities are first order in the driving speeds.

Naturally, we can define the rate of heat transport

Q̇(1) =
∑

α

ṘαTr((Ĥ − Ŷ )∂αρ̂ss), (8)

the rate of work done to the system

Ẇ (1) =
∑

α

ṘαTr(∂αĤ ρ̂ss), (9)

as well as the rate of change in energy due to particle transport

Ẏ (1) =
∑

α

ṘαTr(Ŷ ∂αρ̂ss). (10)

With such definitions, we note that the rate of change in
energy Ė (1) is equal to the combination of the rate of heat
transport Q̇(1), the rate of work Ẇ (1), and the rate of change in
energy due to particle transport Ẏ (1),

Ė (1) = Q̇(1) + Ẇ (1) + Ẏ (1), (11)

showing that the first law of thermodynamics holds in the
adiabatic limit.

In addition, in the adiabatic limit, using the definitions in
Eqs. (4), (6), and (8), we find that the rate of change in entropy
is equal to the rate of change of heat:

Ṡ(1) =
∑

α

Ṙα∂αS(0) = kBβ̄
∑

α

ṘαTr((Ĥ − Ŷ )∂αρ̂ss)

= Q̇(1)

T̄
. (12)

At this point, a few words are appropriate regarding the
definition of entropy and the heat flow as well as the meaning
of superbaths. Just as for the equilibrium case [63], in a closed
system (subsystem + baths), the rate of change in heat flow
and entropy will be zero even for the out-of-equilibrium case.
To see this, take the rate of change in heat flow as an example
(note that Ĥ and Ŷ commute [58])

Q̇ = Tr

(
(Ĥ − Ŷ )

d ρ̂

dt

)
= − i

h̄
Tr((Ĥ − Ŷ )[Ĥ , ρ̂]) = 0. (13)

By contrast, our definition of the rate of change in heat from
Eq. (8) does not vanish. This apparent contradiction is due to
the fact that we are not dealing with a closed system: The pres-
ence of the superbaths guarantees a unique steady-state solu-
tion for the total system. As a result, Eq. (8) defines the rate
of heat exchange with the superbaths. See also discussions in
Ref. [63]. The same argument holds for entropy and energy.
Note that in the literature, other definitions of heat or energy

are being used in the absence of superbaths, which require
proper partition (or projection) of the coupling between the
system and baths [3,47,60,63,69,70]. We emphasize, though,
that for thermodynamic quantities which operate locally (e.g.,
work or friction), our definitions do agree with the previous
results.

III. NONADIABATIC THERMODYNAMICS

When the external driving is not infinitely slow as com-
pared to the timescale of system relaxation, the total system
does not necessarily remain at steady state, hence nonadia-
batic effects arise. In this section, we quantify such nonadia-
batic contributions to thermodynamic quantities and entropy
production.

A. Expansion of density operator in driving speed

To systematically classify the nonadiabatic contributions,
we use an expansion of the density operator in the driving
speed. The procedure here follows Ref. [63]. To be self-
consistent, we outline the main steps below.

With finite driving speed, the equation of motion for the
density matrix can be described as

d

dt
ρ̂(R, t ) = ∂

∂t
ρ̂ +

∑
ν

Ṙν∂νρ̂ = − i

h̄
[Ĥ (R), ρ̂]. (14)

In presence of finite driving speed (Ṙ �= 0), the total derivative
respect to time d

dt is a combination of the partial derivative
respect to time ∂

∂t plus driving terms
∑

ν Ṙν∂ν , i.e., d
dt = ∂

∂t +∑
ν Ṙν∂ν . Assuming that the driving speed Ṙ is small, the total

density matrix can be then expressed as a series of terms in the
order of the driving speed:

ρ̂ = ρ̂ (0) + ρ̂ (1) + ρ̂ (2) + · · · (15)

Here, ρ̂ (n) is density operator in nth order of Ṙ. We can break
Eq. (14) into a series of equations by matching the order in the
driving speed on both sides,

∂

∂t
ρ̂ (0) = − i

h̄
[Ĥ , ρ̂ (0)], (16)

∂

∂t
ρ̂ (n) = − i

h̄
[Ĥ , ρ̂ (n)] −

∑
ν

Ṙν∂νρ̂
(n−1), n � 1. (17)

Obviously, the steady-state solution in Eq. (4) satisfies
Eq. (16), and we use the steady-state density matrix as the
zeroth-order density operator,

ρ̂ (0) = ρ̂ss. (18)

Starting with the zeroth-order density matrix, we can then
solve for the nth-order ρ̂ (n) sequentially,

ρ̂ (n)(R, t ) = −
∑

ν

∫ t

0
e−iĤ (t−t ′ )/h̄Ṙν∂νρ̂

(n−1)eiĤ (t−t ′ )/h̄dt ′,

n � 1. (19)

If we assume that the timescale of bath relaxation is much
faster than the speed of driving, we can invoke the Markovian
approximation (i.e., the superbaths bring the system back to
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steady state fast) in the above equation:

ρ̂ (n)(R) ≈ −
∑

ν

Ṙν

∫ ∞

0
e−iĤt ′/h̄∂νρ̂

(n−1)eiĤt ′/h̄dt ′, n � 1.

(20)
Particularly, the first-order correction to the steady-state den-
sity matrix is

ρ̂ (1)(R) ≈ −
∑

ν

Ṙν

∫ ∞

0
e−iĤt ′/h̄∂νρ̂sse

iĤt ′/h̄dt ′. (21)

B. Nonadiabatic corrections thermodynamic quantities

We now consider the rate of change in thermodynamic
quantities to the second order in driving speed. This can be
done by replacing the steady-state solution in Eqs. (7)–(10)
with the nonadiabatic correction, Eq. (21). We find that the
nonadiabatic correction to the rate of change in energy is

Ė (2) =
∑

α

ṘαTr(ρ̂ (1)∂αĤ ) +
∑

α

ṘαTr(Ĥ∂αρ̂ (1) ). (22)

Correspondingly, the nonadiabatic correction to the rate of
change in heat transport, work, and energy due to particle
transport are given, respectively, by

Q̇(2) =
∑

α

ṘαTr((Ĥ − Ŷ )∂αρ̂ (1) ), (23)

Ẇ (2) =
∑

α

ṘαTr(∂αĤ ρ̂ (1) ), (24)

Ẏ (2) =
∑

α

ṘαTr(Ŷ ∂αρ̂ (1) ). (25)

Consequently, the first law of thermodynamics holds in the
nonadiabatic limit,

Ė (2) = Q̇(2) + Ẇ (2) + Ẏ (2). (26)

We further note that the nonadiabatic correction to the rate
of change in work is related to the friction tensor [64,71,72],

Ẇ (2) =
∑
αν

ṘαγανṘν, (27)

where the friction tensor is defined as

γαν =
∫ ∞

0
Tr(e−iĤt ′/h̄∂νρ̂sse

iĤt ′/h̄∂αĤ )dt ′. (28)

At equilibrium, due to time reversal symmetry, the friction
tensor is symmetric (along with respect to α and ν) and pos-
itive definite[64,71,73], such that there is always a dissipated
work associated with driving, i.e., Ẇ (2) > 0. Out of equilib-
rium, however, the presence of a nonequilibrium current can
break the time reversal symmetry, such that the friction tensor
is no longer symmetric nor positive definite [48,74]. As shown
by von Oppen et al. [48], in a minimal setup of a two-level
system with two external degrees of freedom (α and ν), the
negativity of the friction is present, for example, when an
electron current pumps energy into the two-level system.

C. Entropy production and the second law of thermodynamics

When the total system does not remain at steady state due
to external driving, we define the total entropy using the total

density matrix, such that

S = −kBTr(ρ̂ ln ρ̂ ). (29)

To zeroth order in driving speed, the above definition recovers
the steady-state entropy in Eq. (6). To first order in the driving
speed, the entropy is then given by

S(1) = −kBTr(ρ̂ (1) ln ρ̂ss), (30)

as was shown in Ref. [63].
The derivative of Eq. (30) with respect to time gives the

rate of change for the entropy to the second order in driving
speed,

Ṡ(2) =
∑

α

Ṙα∂αS(1) = −kB

∑
α

Ṙαtr(∂αρ̂ (1) ln ρ̂ss)

− kB

∑
α

Ṙαtr(ρ̂ (1)∂α ln ρ̂ss). (31)

Using the definition in Eq. (23), we note that the first term in
the above equation is equal to Q̇(2)

T̄ , such that Eq. (31) can be
rewritten as

Ṡ(2) = Q̇(2)

T̄
+ 	ṠNA, (32)

where we have defined

	ṠNA = −kB

∑
α

Ṙαtr(ρ̂ (1)∂α ln ρ̂ss). (33)

	ṠNA can be interpreted as the entropy production rate due to
nonadiabatic driving. If we insert the result for ρ̂ (1), and use
the following Campbell-Baker-Hausdorff formula,

∂νρ̂ss =
∫ 1

0
ρ̂1−λ

ss ∂ν (ln ρ̂ss)ρ̂λ
ssdλ, (34)

	ṠNA can be rewritten as a Kubo transformed correlation
function

	ṠNA = kB

∑
αν

ṘαṘν

∫ ∞

0
〈δF̂α (t )δF̂ν〉K dt > 0. (35)

Here, we have defined the following operator in Heisenberg
picture:

δF̂α = ∂α ln ρ̂ss, (36)

δF̂α (t ) = eiĤt/h̄δF̂αe−iĤt/h̄. (37)

The Kubo transformed correlation function is given by

〈δF̂α (t )δF̂ν〉K =
∫ 1

0
Tr

(
ρ̂1−λ

ss δF̂ν ρ̂
λ
ssδF̂α (t )

)
dλ. (38)

Obviously, the Kubo transformed self-correlation function
is positive definite such that the entropy production rate is
always positive, i.e., 	ṠNA > 0. This can be shown using a
Lehmann representation. Employing the eigenstates |�n〉 of
the Hamiltonian, Ĥ |�n〉 = En|�n〉, and the steady-state den-
sity operator, ρ̂ss|�n〉 = ρn|�n〉 (note that Ŷ and Ĥ commute,
such that ρ̂ss can be diagonalized using the eigenstates of Ĥ ),
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the entropy production rate in Eq. (35) can be rewritten as

	ṠNA = kB

∑
mn

|〈�n|δF̂ |�m〉|2δ(En − Em)
∫ 1

0
ρλ

n ρ1−λ
m dλ.

(39)
Here, we have defined δF̂ = ∑

α ṘαδF̂α . Note that every
single term in the above equation is positive, such that entropy
production rate 	ṠNA is positive, i.e., the second law of
thermodynamics holds.

Equations (32) and (35) are our main results. To better
understand the entropy production term, we use the steady-
state density matrix to express δF̂α as

δF̂α = −β̄[∂αĤ − ∂αŶ − Tr(ρ̂ss(∂αĤ − ∂αŶ ))]. (40)

At equilibrium, ∂αŶ vanishes, such that δF̂α reduces to
the random force operator, δF̂α = −β̄[∂αĤ − Tr(ρ̂ss∂αĤ )].
Hence, we recover our previous results: the entropy pro-
duction rate is related to the friction tensor, T̄ 	ṠNA =∑

αν ṘαṘνγαν . Out of equilibrium, ∂αŶ does not vanish, such
relationship does not hold, and the friction tensor is not pos-
itive definite. The entropy production rate, however, remains
positive under nonequilibrium conditions. Note also that our
discussion of the positivity of the nonadiabatic entropy pro-
duction is restricted to the second order in driving speed.
Whether the entropy production remains positive for arbitrary
driving speed requires further investigation.

IV. APPLICATION TO MODEL SYSTEMS

In this section, we illustrate the theory discussed above and
analyze thermodynamic quantities for representative model
systems. To avoid ambiguities related to a partitioning be-
tween the subsystem and baths, we focus on local thermo-
dynamic quantities, e.g., local population, work, and current.
That being said, the calculation of heat and energy do require
a partitioning of couplings between the subsystem and baths.
For a proper treatment of such cases, see discussions in
Ref. [63]. The numerical simulations are carried out using the
HQME method [35,36,75]. More details of this method can
be found in the Appendix.

A. The resonant level model

The quantum thermodynamics of the resonant level model
have been studied in literature [3,11,60]. However, most stud-
ies are restricted to the equilibrium case, i.e., without any elec-
tron current. Here we study an out-of-equilibrium resonant
level model, where a single fermionic level d (representing,
e.g., a level of molecule or a quantum dot) strongly couples to
two macroscopic fermionic baths:

Ĥ = Ed (t )d̂†d̂ +
∑
k,ζ

εkζ ĉ†
kζ

ĉkζ +
∑
k,ζ

Vkζ (ĉ†
kζ

d̂ + d̂†ĉkζ ).

(41)
Here, ζ ∈ (L, R) indicate the left and right leads, which are
described by a continuum of noninteracting Fermionic levels
with energies εkζ each. We assume the leads to have the same
temperature kBT but different chemical potentials μL and μR,
respectively. We can define the hybridization function �ζ to
describe the strength of coupling between d level and the ζ

lead,

�ζ (ε) = 2π
∑

k

|Vkζ |2δ(ε − εkζ ). (42)

We will apply the wide-band approximation, such that �ζ does
not depend on ε (and the real part of the self-energy vanishes).
The total coupling � = �L + �R quantifies the timescale of
the overall dynamics. Further, due to external driving, the
energy of the d level Ed (t ) is time-dependent, described by
the following form:

Ed (t ) = Ėdt + E0, (43)

where E0 is the energy level at the starting point (before
turning on driving). Ėd defines the driving speed. To be more
explicit, the ratio h̄Ėd

�2 quantifies slow or fast driving. When
h̄Ėd
�2 
 1, we reach the adiabatic limit.

For such a model, the steady-state density matrix ρ̂ss can
be obtained analytically. The Ŷ operator in the steady state ρ̂ss

[Eq. (4)] equals [28,65,76–78],

Ŷ =
∑
k,ζ

μζ ψ̂
†
kζ

ψ̂kζ . (44)

Here, ψ̂
†
k,ζ

is a linear combinations of operators ĉ†
kζ

and d̂†,

ψ̂
†
kζ

= ĉ†
kζ

+ Vk′ζ ′G(εkζ )

⎛
⎝d̂† +

∑
k′,ζ ′

Vk′ζ ′

εkζ + iη − εk′ζ ′
ĉ†

k′ζ ′

⎞
⎠,

(45)
and we have defined the retarded Green’s function of the dot,

G(εkζ ) = 1

εkζ − Ed + i�/2
. (46)

The total Hamiltonian in Eq. (41) can also be diagonalized by
ψ̂

†
k,ζ

:

Ĥ =
∑
k,ζ

εkζ ψ̂
†
kζ

ψ̂kζ . (47)

Using the steady-state solution, we can then calculate
the population of the dot analytically in the zeroth order of
driving,

N (0) = Tr(ρ̂ssd̂
†d̂ ) =

∫
dε

2π
A(ε) f̄ (ε). (48)

Here, A(ε) and f̄ are spectral function and averaged Fermi
distribution, respectively,

A(ε) = �

(ε − Ed )2 + (�/2)2
, (49)

f̄ (ε) = �L f L(ε) + �R f R(ε)

�
, (50)

and f ζ (ε) = 1/[1 + exp(β(ε − μζ ))] is the Fermi function.
Further, the first-order nonadiabatic correction to the popula-
tion is obtained as

N (1) = Tr(ρ̂ (1)d̂†d̂ ) = −h̄Ėd

∫
dε

4π
A2(ε)∂ε f̄ (ε). (51)

Here, ρ̂ (1) is given in Eq. (21). See the Appendix in Ref. [63]
(or Ref. [79]) for a derivation of the above result.
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FIG. 2. Population N as a function of Ed from numerical exact
results (HQME, lines) and analytical results (dots). Note that Ed is
time dependent: Ed (t ) = Ėdt + E0. We have set the starting point E0

at low enough energy, such that the HQME results are independent
of E0. The analytical results are evaluated up to first-order correction
in driving rate, i.e., a combination of Eq. (48) and (51). Note that in
the slow driving case h̄Ėd = 0.1�2, the first-order correction agrees
with the numerically exact results. As we increase the driving rates,
the first-order correction to the population starts to deteriorate. In
the strongly nonadiabatic regime, our analytical results break down
completely and predict unphysical values for the population (greater
than 1). The parameters are set to be kT = �, μL = −μR = 2�,
�L = �R = 1

2 �.

Employing the HQME method, numerically exact results
for the population as a function of Ed (t ) can be obtained,

N = Tr(ρ̂d̂†d̂ ). (52)

In Fig. 2, we plot the populations as a function of Ed ob-
tained from the HQME method and our first-order correction
[combination of Eqs. (48) and (51)] for different driving
rates Ėd . Here, Ed is time dependent, Ed (t ) = Ėdt + E0. We
have set the starting point E0 at low enough energy, such
that the HQME results are independent of E0. For a slow
driving rate as compared to system dynamics, h̄Ėd = 0.1�2,
the analytical results agree with the numerically exact result
very well. As we increase the driving rate, e.g., h̄Ėd = 1�2,
the analytical results start to deviate from the HQME results,
as the first-order correction to the population deteriorates. In
the strongly nonadiabatic regime, h̄Ėd = 5�2, the analytical
results break down completely and predict unphysical values
for the population (greater than 1). Obviously, in the strongly
nonadiabatic regime, our approach based on a perturbative
treatment of the driving speed is not valid.

To second order in the driving speed, the rate of change in
the work is related to the population as follows:

Ẇ (2) = Ėd Tr

(
ρ̂ (1) ∂Ĥ

∂Ed

)
= Ėd N (1) = γ Ė2

d . (53)

Here, γ is the friction coefficient

γ = −h̄
∫

dε

4π
A2(ε)∂ε f̄ (ε). (54)

FIG. 3. Friction coefficient γ as a function of Ed . Analytical
results are obtained from Eq. (54) and HQME results are obtained
by Eq. (55). We note that the friction coefficient exhibits two peaks.
The presence of the peaks is due to Fermi resonance (Ed = μL or
Ed = μR): when the energy of dot level gets close to the chemical
potential of the left or right lead, there is a dramatic change in
population or work, such that the friction exhibit peaks near the
chemical potentials. Again, HQME results agree with analytical
analysis in general, with small shift as we increase the driving
speed. These shifts are higher orders in driving speed. Note that the
analytical result for the friction coefficient [Eq. (54)] is independent
of Ėd . The parameters are set to be kT = �, μL = −μR = 2�, and
�L = �R = 1

2 �.

From the numerical simulations, we can quantify friction by
the correction to the steady-state population divided by the
driving speed.

γ = N − N (0)

Ėd
. (55)

For small driving speed, the above equation recovers our
definition of friction in (51).

In Fig. 3, we plot the friction coefficient calculated from
Eq. (54) and the HQME result from Eq. (55). We note that
the friction coefficient exhibits two peaks. The presence of
the peaks is due to Fermi resonance: when the energy of the
dot level is close to the chemical potential of the left or right
lead, there is a dramatic change in population or work, such
that the friction coefficient exhibits peaks near the chemical
potentials. Again, the HQME results agree with analytical
analysis in general, with small shift as we increase the driving
speed. These shifts are higher-order corrections in the driving
speed.

B. Inclusion of electron-electron interactions:
the Anderson impurity model

In Refs. [63,64], we have studied the quantum thermo-
dynamics of the Anderson impurity model at equilibrium,
where the el-el interactions give rise to Kondo resonance in
thermodynamic quantities. We now analyze such a model out
of equilibrium with different chemical potentials from left and
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FIG. 4. Friction coefficient γ as a function of Ed obtained from
the HQME method using Eq. (55). We note that γ exhibits three
peaks when the Coulomb repulsion U is nonzero. Note that, for the
Anderson impurity model, there are effectively two energy levels, Ed

and Ed + U . The three peaks correspond to resonances where there is
a significant change in population: (1) when the first of the two levels
starts to approach the lower chemical potential (Ed + U = μR), (2)
when the last of the two levels start to leave the upper chemical
potential (Ed = μL), and (3) when the two levels are located exactly
between the two chemical potentials (2Ed + U = μL + μR). The
parameters are set to be kT = �, μL = −μR = 2�, �L = �R = 1

2 �,
U = 2�.

right leads:

Ĥ = Ed (t )
∑

σ

d̂†
σ d̂†

σ + Ud̂†
↑d̂†

↑d̂†
↓d̂†

↓ +
∑
k,ζ ,σ

εkζ ĉ†
kζσ

ĉkζσ

+
∑
k,ζ ,σ

Vkζ (ĉ†
kζσ

d̂σ + d̂†
σ ĉkζσ ). (56)

Here, U is the local Coulomb repulsion energy, and σ =↑,↓
indicate spin direction. For this interacting model, analytical
results are not available. Our analysis below is based on the
HQME method. Just as for the resonant level model, we can
define hybridization functions as in Eq. (42) and use the wide-
band approximation. We will also assume a linear dependence
of Ed on time [Eq. (43)].

We first analyze the friction coefficient γ for the Anderson
impurity model based on the HQME method using Eq. (55).
As shown in Fig. 4, γ exhibits three peaks as compared to two
peaks in the case of the resonant level model in Fig. 3. Note
that, for the Anderson impurity model, there are effectively
two energy levels, Ed and Ed + U . The three peaks correspond
to resonances where there is a significant change in popula-
tion: (1) when the first of the two levels starts to approach the
lower chemical potential (Ed + U = μR), (2) when the last
of the two levels start to leave the upper chemical potential
(Ed = μL), and (3) when the two levels are located exactly
between the two chemical potentials (2Ed + U = μL + μR).

Next, we analyze the nonadiabatic correction to the trans-
port properties of the Anderson impurity model. To this end,
we consider the electronic current, which is given by

I = − i

2h̄
Tr([Ĥ, N̂L − N̂R]ρ̂ ). (57)

FIG. 5. Electron current I as a function of Ed for different driving
speed Ėd obtained from the HQME method. We note that the current
shows a peak when the two effective dot levels (Ed and Ed + U )
are located exactly between the two chemical potentials (2Ed + U =
μL + μR). The peak of the current shifts with the Coulomb repulsion
U . kT = �, μL = −μR = 2�, �L = �R = 1

2 �.

Here, N̂ζ = ∑
k ĉ†

kζ
ĉkζ is the number operator for the ζ =

(L, R) lead. The steady-state current is obtained using the
steady-state density matrix,

I (0) = − i

2h̄
Tr([Ĥ, N̂L − N̂R]ρ̂ss). (58)

Just as the definition of friction for the population (or energy)
in the above, we can quantify the nonadiabatic correction to
the current in the slow driving case by the difference of I
and I (0)

δI = I − I (0)

Ėd
. (59)

Before analyzing the nonadiabatic correction to the cur-
rent, we first consider the electron current itself. Figure 5
shows the current as a function of Ed for different driving
speed Ėd obtained from the HQME method. We note that the
current shows a peak when the two effective dot levels (Ed

and Ed + U ) are located exactly between the two chemical
potentials (2Ed + U = μL + μR). The peak of the current
shifts with the Coulomb repulsion U . While the current does
not show notable difference for slow driving speeds, the nona-
diabatic contribution to the current can reveal more interesting
structures (see below).

We next analyze the nonadiabatic contribution to the cur-
rent. Figure 6 depicts δI [Eq. (59)] as a function of Ed for
the case U = 0 and different driving speeds. Again, near the
chemical potentials, due to Fermi resonance, δI exhibits peaks
(or dips). The sign of the current indicates the direction of the
electron flow. The nonadiabatic contribution to the current δI
exhibits opposite signs at different chemical potentials, hence
a peak near one chemical potential and a dip near the other.

For the case of U �= 0, when the dot level can be doubly
occupied, there is a local Coulomb repulsion between the two
electrons with different spins, such that we have effectively
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FIG. 6. Nonadiabatic contribution to the current δI [Eq. (59)] as
a function of Ed for the Anderson impurity model when U = 0. Note
that δI exhibits a dip near one chemical potential and a peak near the
other. This again is due to Fermi resonance. The sign of the current
indicates the direction of electron flow. kT = �, μL = −μR = 2�,
�L = �R = 1

2 �, and U = 0.

two levels Ed and Ed + U for the dot. In Fig. 7, the nonadia-
batic contribution to the current δI exhibits more peaks/dips
as these two levels are in resonance with chemical potentials
in the leads. Specifically, we see peaks or dips at Ed = μR

(Ed = −2�), Ed = μL (Ed = 2�), Ed + U = μL (Ed = 0), as
well as Ed + U = μR (Ed = −4�). Again, for larger driving
speed, we see a slight shift in the position of the peaks/dips.
Note that we are not in the Kondo regime. Previously, we
have shown that in the limit of strong el-el interactions and
low temperature, thermodynamic quantities exhibit Kondo

FIG. 7. Nonadiabatic contribution to the current δI as a function
of Ed for the Anderson impurity model when U �= 0. Note that δI
exhibits more peaks at energies where the two levels are in resonance
with chemical potentials in the leads. Particularly, we see the peaks
or dips at Ed = μR (Ed = −2�), Ed = μL (Ed = 2�), Ed + U =
μL (Ed = 0), as well as Ed + U = μR (Ed = −4�). kT = �, μL =
−μR = 2�, �L = �R = 1

2 �, U = 2�.

resonance in addition to Fermi resonance at equilibrium
[63,64]. Further work addressing the effect of Kondo res-
onance in thermodynamic quantities under nonequilibrium
condition is appropriate.

V. CONCLUSIONS

Within a general framework based on a full density matrix
expansion, we have formulated the first and second laws
of thermodynamics for a quantum system strongly coupled
to two or more baths under nonequilibrium conditions and
additional external driving. We have quantified the rate of
entropy production using a Kubo transformed correlation
function and shown that it remains positive. At equilibrium,
our results recover previous studies [63] and the entropy
production rate can be related to dissipative (frictional) work.
The nonequilibrium formulation is quite general and can
be applied both for Bosonic and Fermionic systems. In the
present work, we have applied the formalism to analyze the
resonant level model as well as the Anderson impurity model.
The nonequilibrium quantum dynamics has been simulated
using the HQME method, which allows a numerically exact
solution. The results obtained for the Anderson impurity
model show that el-el interaction manifests itself as Coulomb-
blockade signatures in the thermodynamic quantities.

Upon writing this article, we became aware of recent work
[79], addressing similar problems using a scattering states
approach. The work presented here extends this important
contribution in several ways. We prove that the nonadia-
batic entropy production is positive in systems carrying a
nonequilibrium particle and/or heat current. Furthermore,
the combination with the HQME approach allows the study
of interacting problems where the scattering states are not
analytically available.
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APPENDIX: HIERARCHICAL QUANTUM
MASTER EQUATION (HQME)

In the following, we provide some details regarding the
numerically exact HQME approach which has been used to
test our newly developed expansion. The HQME method (also
known as hierarchical equation of motion (HEOM) approach)
was originally developed in the context of relaxation dynam-
ics [34,80] and later on applied to charge transport [35,37,81].
Here, we closely follow Ref. [35]. In contrast to Ref. [35],
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the HQME approach is described for a time-dependent
Anderson impurity model system without vibrational degrees
of freedom.

The derivation of the HQME is based on the system-bath
partitioning

Ĥ = ĤS(t ) + ĤSB + ĤB, (A1)

where the individual parts are defined according to Eq. (56),

ĤS(t ) = Ed (t )
∑

σ

d̂†
σ d̂†

σ + Ud̂†
↑d̂†

↑d̂†
↓d̂†

↓, (A2a)

ĤSB =
∑
k,ζ ,σ

Vkζ (ĉ†
kζσ

d̂σ + d̂†
σ ĉkζσ ), (A2b)

ĤB =
∑
k,ζ ,σ

εkζ ĉ†
kζσ

ĉkζσ . (A2c)

Employing a bath interaction picture, the bath coupling
operators are defined by

b̂s
ζσ (t ) = exp

(
iĤBt/h̄

)(∑
k

Vkζ ĉs
kζσ

)
exp(−iĤBt/h̄), (A3)

with s = ±, ĉ−
kζσ

≡ ĉkζσ and ĉ+
kζσ

≡ ĉ†
kζσ

. As these operators
obey Gaussian statistics, all information about system-bath
coupling is encoded in the two-time correlation function of the
free bath Cs

ζ ,σ (t − τ ) = 〈b̂s
ζσ (t )b̂s̄

ζσ (τ )〉B where s̄ ≡ −s. Via
Fourier transformation

Cs
ζ ,σ (t ) = 1

2π

∫ ∞

−∞
dε esiεt/h̄�ζ,σ (ε) f [s(ε − μζ )], (A4)

Cs
ζ ,σ (t ) is related to the spectral density in the leads

�ζ,σ (ε) and the Fermi-Dirac distribution f (ε) =
(exp(ε/kBT ) + 1)−1. To derive a closed set of equations of
motion within the HQME method, Cs

ζ ,σ (t ) is expressed by a
sum over exponentials [37]. To this end, the Fermi distribution
is represented by a sum-over-poles scheme employing a Padé
decomposition [82–84] and the spectral density of the leads
is assumed to be a single, spin-independent Lorentzian
�ζ,σ (ε) = 1

2
�W 2

(ε−μζ )2+W 2 . The bandwidth W is set to be

103 times larger than � to effectively describe the leads in the

wide-band limit, which implies that the overall molecule-lead
coupling strength is independent of energy and symmetric,
�L = �R = 1

2�. Thus the correlation function of the free bath

is given by Cs
ζ ,σ (t ) = ∑lmax

l=0 ηζ,σ,l�ζ e−γζ,σ,s,l t .
The HQMEs are given by

∂

∂t
ρ̂

(n)
jn··· j1

= −
(

i

h̄
L̂S(t ) +

n∑
m=1

γ jm

)
ρ̂

(n)
jn··· j1

− i�

h̄

∑
j

Âs̄
σ ρ̂

(n+1)
j jn··· j1

− i
n∑

m=1

(−)n−mĈ jm ρ̂
(n−1)
jn··· jm+1 jm−1··· j1

, (A5)

with the multi-index j = (ζ , σ, s, l ) and ˆ̃LS(t )Ô =
[ ˆ̃HS(t ), Ô]. Here, ρ̂ (0) ≡ ρ̂ represents the reduced density
matrix and ρ̂

(n)
jn··· j1

(n > 0) denote auxiliary density matrices,
which describe bath-related observables such as, e.g., the
current

〈Îζ (t )〉 = i
e�

2h̄

∑
σ,l

TrS
{
d̂σ ρ̂

(1)
ζ ,σ,+,l (t ) − H.c.

}
. (A6)

The superoperators Â and Ĉ read

Âs̄
σ ρ̂ (n) = d̂ s̄

σ ρ̂ (n) + (−)nρ̂ (n)d̂ s̄
σ , (A7a)

Ĉζ ,σ,s,l ρ̂
(n) = ηζ,σ,l d̂

s
σ ρ̂ (n) − (−)nη∗

ζ ,σ,l ρ̂
(n)d̂ s

σ . (A7b)

According to system-bath interaction, the superoperator Â
(Ĉ) couples the nth level of the hierachy to the (n + 1)th
[(n − 1)th] level. The importance of the auxiliary density
operators is estimated by assigning them the following im-
portance values [81]:

I
(
ρ̂

(n)
jn··· j1

) =

∣∣∣∣∣∣∣
⎛
⎜⎝n−1∏

m=1

�/(2h̄)∑
a∈{1..m}

Re
[
ω ja

]
⎞
⎟⎠

(
n∏

m=1

η jm

Re
[
ω jm

]
)∣∣∣∣∣∣∣. (A8)

In the calculations presented in this paper, the results are
quantitatively converged for truncations of the hierarchy at
level n = 4, neglecting auxiliary density operators having an
importance value smaller 10−9.
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