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In a previous paper [Dou et al., J. Chem. Phys. 142, 084110 (2015)], we have introduced a surface
hopping (SH) approach to deal with the Anderson-Holstein model. Here, we address some interesting
aspects that have not been discussed previously, including transient phenomena and extensions to
arbitrary impurity-bath couplings. In particular, in this paper we show that the SH approach captures
phonon coherence beyond the secular approximation, and that SH rates agree with Marcus theory at
steady state. Finally, we show that, in cases where the electronic tunneling rate depends on nuclear
position, a straightforward use of Marcus theory rates yields a useful starting point for capturing
level broadening. For a simple such model, we find I-V curves that exhibit negative differential
resistance. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4922513]

I. INTRODUCTION

Electron transfer between a molecule and a metal
electrode is a fundamental reaction that underlies all electro-
chemical and molecular electronic processes as well as many
phenomena involved in corrosion and heterogeneous catalysis.
The Anderson-Holstein (AH) model (see Eqs. (1)–(4)) is
a simple model to describe such a system, where an elec-
tronic impurity level couples both to an electronic bath and
to nuclear motion.1 For simplicity, in this paper we will not
consider electron-electron (el-el) repulsion which is a source
of rich physics that must be treated carefully.2 Even without
el-el repulsion, the AH model has so many degrees of
freedom (DOF) that it admits no simple solution. Numerical
Renormalization Group (NRG),3–5 Multi-Configuration Time-
Dependent Hartree (MCTDH),6 and Path Integral Monte Carlo
(PIMC)7 can produce numerical exact solutions, but likely
none of these methods is feasible if we seek to extend the AH
model to more complicated, realistic Hamiltonians. If we are
interested in approximate solutions, which do not treat the bath
explicitly, Influence Functionals (IF)8 and Nonequilibrium
Green functions (NEGF)9–13 offer alternative tools whereby
one focuses on a subsystem with a handful of DOF.

Besides the methods above, historically surface hopping
(SH)14,15 has been a widely used tool for treating electron-
phonon (e-ph) couplings for molecules or atoms if there are
only a few electronic DOF. In the presence of a manifold of
electronic DOF—for instance, the case of a loosely bound
anion—Preston’s surface leaking algorithm16,17 is one possible
approach. More generally, near a metal surface, Shenvi et al.
have suggested discretizing the electronic bath, and running
SH on a large number of independent potential energy surfaces
(PESs).18–20 A nonequilibrium version of the Shenvi algorithm
might be possible in the vein of Refs. 21–26.

In a previous paper,27 which we refer to as Paper II, we
have analyzed an alternative approach based on a classical
master equation (CME) that describes the dynamics of the AH

impurity subsystem. This CME is solved by a SH approach—
basically one runs trajectories on two diabatic PESs with sto-
chastic hops between them. By further implementing level
broadening, we have shown that equilibrium and out of equilib-
rium observables agree well with the results from NRG and the
secular quantum master equation (sQME) in a classical regime
(i.e., high temperature).

In the present paper, we address some interesting aspects
of the CME/SH approach that were not discussed in Paper II.
First, we will look at transient dynamics of the impurity elec-
tronic population. Second, we will show how our SH approach
recovers the Marcus rate analytically. Third, we will generalize
the AH model to the case where the impurity hybridization
function depends on the nuclear coordinate, which is very rele-
vant for processes dominated by the dynamics of the impurity-
surface distance such as chemisorption28 and surface scatter-
ing.18,29 Fourth, in the latter case, we will investigate how to
implement level broadening and show that the Marcus rate is an
appealing approximation for this broadening. Fifth and finally,
we will study a set of out of equilibrium I-V curves, and we will
demonstrate interesting turnover effects that involve inelastic
electron transport properties.10,30

We organize the paper as follows. In Sec. II, we outline
how to derive the CME and discuss the transient observables.
In Sec. III, we show that SH recovers a Marcus rate, and
then we use that Marcus rate to include level broadening. We
compare our results with NRG results for electron population
in Sec. IV. In Sec. V, we show how one can find I-V curves
that exhibit negative differential resistance according to SH
and the quantum master equation (QME). We conclude in
Sec. VI.

II. TRANSIENT DYNAMICS

A. Classical master equation

We begin our study with the AH model Hamiltonian,
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H = Hs + Hb + Hc, (1)

Hs = Edd+d + g(a+ + a)d+d + ~ω(a+a + 1
2 ), (2)

Hb =


k
(ϵk − µ)c+kck, (3)

Hc =


k
Vk(c+kd + d+ck). (4)

Hs is the system Hamiltonian, consisting of an impurity level
with energy Ed coupled to an oscillator with frequency ω. The
bath Hamiltonian, Hb, describes an electrode which is assumed
to be in equilibrium characterized by the temperature T and the
electronic chemical potential µ. Hc is the coupling between the
impurity and the electrode.

The key quantity of interest is the reduced density matrix
of the system. Starting with the quantum Liouville equation in
the interaction picture, we find the total density matrix evolves
as31

dρ(t)
dt
= − i
~
[Hc(t), ρ(0)]

− 1
~2

 t

0
dt ′[Hc(t), [Hc(t ′), ρ(t ′)]], (5)

where

Hc(t) = exp(i(Hs + Hb)t/~)Hc exp(−i(Hs + Hb)t/~). (6)

In the Born-Markovian approximation, we replace ρ(t ′) by
ρ

eq
b


ρs(t) in the integrand that relies on the assumptions that

the bath remains in equilibrium throughout the process and that
bath correlation functions decay fast on the system time scale.
This leads to (setting τ = t − t ′)

dρ(t)
dt
= − i
~
[Hc(t), ρ(0)]

− 1
~2

 ∞

0
dτ[Hc(t), [Hc(t − τ), ρeq

b


ρs(t)]]. (7)

Next, we assume the initial total density matrix is a direct
product of the system density matrix and the equilibrium bath
density matrix, i.e., ρ(0) = ρ

eq
b


ρs(0) and take the trace of

Eq. (7) over the bath degrees of freedom. This yields

dρs(t)
dt

= − 1
~2

 ∞

0
dτTrb[Hc(t), [Hc(t − τ), ρeq

b


ρs(t)]].

(8)

In Eq. (8), we have used Trb(Hc(t)ρeq
b
) = 0. We can further

write Hs as

Hs = H0|0⟩⟨0| + H1|1⟩⟨1|, (9)

where |0⟩ (|1⟩) denotes the unoccupied (occupied) state of the
impurity electron,

H0 =
1
2
~ω(x2 + p2), (10)

H1 = Ed +
√

2gx +
1
2
~ω(x2 + p2), (11)

with x = 1√
2
(a+ + a) and p = i√

2
(a+ − a).

In what follows, we will consider processes in which the
impurity initial state is either state 0 or state 1, that is,

ρs(t = 0) = ρ0|0⟩⟨0| + ρ1|1⟩⟨1|, (12)

which ensures that there will be no coherence between occu-
pied and unoccupied states at later time (with this Hamilto-
nian). Thus, we can write

ρs(t) = ρ0|0⟩⟨0| + ρ1|1⟩⟨1|. (13)

After plugging Eq. (13) into Eq. (8), one can show that, in
the Schrödinger picture, the reduced density matrix for state 0
and state 1 evolves as31

dρ0

dt
= − i
~
[H0, ρ0] −


k

|Vk |2
~2

×
  ∞

0
dτeiϵkτ/~ f (ϵk)e−iH1τ/~eiH0τ/~ρ0

− eiϵkτ/~(1 − f (ϵk))ρ1e−iH1τ/~eiH0τ/~ + h.c

, (14)

dρ1

dt
= − i
~
[H1, ρ1] −


k

|Vk |2
~2

×
  ∞

0
dτe−iϵkτ/~(1 − f (ϵk))e−iH0τ/~eiH1τ/~ρ1

− e−iϵkτ/~ f (ϵk)ρ0e−iH0τ/~eiH1τ/~ + h.c

. (15)

Here h.c denotes Hermitian conjugate. Equations (14) and (15)
constitute a QME. The CME is obtained by taking the Wigner
transform of Eqs. (14) and (15), and throwing out all terms
that are linear or higher in ~. This corresponds to a classical
approximation for the nuclear motion (note that we are using
dimensionless x and p here),31

∂P0(x,p)
∂t

=
1
~

∂H0(x,p)
∂x

∂P0(x,p)
∂p

− 1
~

∂H0(x,p)
∂p

∂P0(x,p)
∂x

− γ0→1P0(x,p) + γ1→0P1(x,p), (16)

∂P1(x,p)
∂t

=
1
~

∂H1(x,p)
∂x

∂P1(x,p)
∂p

− 1
~

∂H1(x,p)
∂p

∂P1(x,p)
∂x

+ γ0→1P0(x,p) − γ1→0P1(x,p), (17)

where

γ0→1 =
Γ

~
f (∆V ), (18)

γ1→0 =
Γ

~
(1 − f (∆V )) , (19)

∆V = H1 − H0 = Ed +
√

2gx. (20)

Here, Γ is the hybridization function,

Γ(ϵ) = 2π

k

|Vk |2δ(ϵk − ϵ). (21)

In the wide band limit, Γ is a constant. f represents the Fermi
function of the relevant electronic bath. Equations (16) and
(17) can be solved using the SH methodology as described in
Paper II.
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B. The quantum master equation: The full QME vs.
the secular approximation

To assess the validity of the CME, we will compute exact
QME dynamics according to Eqs. (14) and (15). To do so,
we assume that Γ is a constant (i.e., does not change with ϵ
[Eq. (21)] or x) and we expand the reduced density matrix in
a basis of harmonic oscillator eigenstates,

dρ0(i, j)
dt

= − i
~
(ϵ0(i) − ϵ0( j))ρ0(i, j)

− Γ
~


i′,k

f (ϵ1(i′) − ϵ0(k))Fi→ i′Fk→ i′ρ0(k, j)

+
Γ

~


i′, j′

(1− f (ϵ1( j ′)−ϵ0( j)))Fi→ i′Fj→ j′ρ1(i′, j ′),

(22)

dρ1(i′, j ′)
dt

= − i
~
(ϵ1(i′) − ϵ1( j ′))ρ1(i′, j ′)

− Γ
~


i,k′

(1− f (ϵ1(k ′) − ϵ0(i)))Fi→ i′Fi→ k′ρ1(k ′, j ′)

+
Γ

~


i, j

f (ϵ1( j ′)−ϵ0( j))Fi→ i′Fj→ j′ρ0(i, j), (23)

where ϵ0(i) = ~ω(i + 1
2 ), and ϵ1(i′) = ~ω(i′ + 1

2 ) + Ēd. Ēd is
the renormalized impurity energy level,

Ēd ≡ Ed − Er , (24)

where Er ≡ g2/~ω is the reorganization energy. i (i′) labels
a phonon mode centered at x = 0 (x = −

√
2g/~ω). F is the

Franck-Condon factor,

Fi→ i′ = ⟨i′|i⟩ =


dxφi′(x +
√

2λ)φi(x), λ ≡ g/~ω, (25)

where φi(x) is the ith eigenfunction of the harmonic oscillator.
The Franck-Condon factor can be expressed as32,33

Fi→ i′ = (p!/Q!)1/2λQ−pe−λ
2/2LQ−p

p (λ2)sgn(p −Q)p−Q. (26)

p (Q) is the minimum (maximum) of i and i′, and Lm
n is gener-

alized Laguerre polynomial. Equations (22) and (23) repre-
sent full, nonsecular QME dynamics which we will abbre-
viate “nQME.” Often in the literature, when solving the QME,
one makes a secular approximation–whereby one eliminates
the fast oscillating off-diagonal terms of the reduced density
matrix and focuses only on the diagonal matrix elements.
In this case, the secular approximation of the QME (sQME)
dynamical equations of motion is

dPn
i

dt
=

n′, i′

[Pn′
i′W

n′→ n
i′→ i − Pn

i W n→ n′
i→ i′ ], n(n′) = 0,1, (27)

with

W 0→1
i→ i′ =

Γ

~
|Fi→ i′|2 f

(
Ēd + ~ω(i′ − i)) , (28)

W 1→0
i′→ i =

Γ

~
|Fi→ i′|2

(
1 − f (Ēd + ~ω(i′ − i))) , (29)

W n→ n′
i→ i′ = 0, n = n′. (30)

FIG. 1. Transient dynamics: the impurity electron population as a function
of time. Γ= 1, ~ω = 0.3, e-ph coupling g = 0.75, Ēd = 0. Note that SH and
nQME agree at high temperatures. The sQME does not show any oscilla-
tions in electronic population, whereas the nQME shows transient oscilla-
tions which are (empirically) close to the frequency ω. At time zero, the
phonon is prepared to be equilibrated thermally (assuming the impurity is
unoccupied).34

Equations (27)-(30) were studied in Paper II. It is easy to show
that, for the case of one bath, the nQME (Eqs. (22)-(26)) and
the sQME (Eqs. (27)-(30)) yield the same equilibrium density
matrix.

Figures 1 and 2 compare the transient dynamics for elect-
ron population according to sQME, nQME, and CME for
different parameters (for all the plots here and below, we have
set ~ = 1). We prepare the system initially with the phonon
equilibrated thermally assuming that the impurity state (or
level) is unoccupied (state 0). For both sQME and nQME, we
use 4th order Runge-Kutta to integrate the real time dynamics,
and 60 vibrational states are included to achieve converged
results. For SH, we average the results over 10 000 trajectories.
Clearly, without including coherence of the phonon states,
sQME does not capture the oscillations of the electronic popu-
lation at short times. By contrast, nQME populations do show
transient oscillations and CME agrees well with nQME in the

FIG. 2. Transient dynamics: the impurity electron population as a function
of time. kT = 1, ~ω = 0.3, e-ph coupling g = 0.75, Ēd = 0. Note that SH and
nQME agree in small Γ limit. The sQME does not show any oscillations in
electronic population, whereas the nQME shows transient oscillations which
are (empirically) close to the frequency ω. At time zero, the phonon is pre-
pared to be equilibrated thermally (assuming the impurity is unoccupied).34
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limit of high temperature and small Γ. Interestingly, whereas
Ref. 31 suggests that the CME can be accurate only when
~ω ≪ Γ, we find empirically that the CME is accurate in our
simulations provided only that ~ω,Γ ≪ kT .

III. ELECTRON TRANSFER (ET) RATE
FOR THE AH MODEL

Even though the transient populations of the impurity level
exhibit oscillations at short times, after reaching equilibrium,
one finds equal and opposite fluxes in population from one
diabat to the other. These fluxes will now be shown to be those
derived from the corresponding Marcus rates.

A. Standard electron transfer: Marcus theory
for the spin-boson model

For a spin-boson model with two electronic states D and
A that correspond to the system states before and after an ET
step, the ET rate is given by the Marcus rate

kD→ A =
2π
~
|VDA|2F (EAD). (31)

Here, EAD ≡ EA − ED is the difference in energy between
relaxed donor and acceptor (i.e., the “driving force”) and F
is the density weighted Frank-Condon factor which, in the
classical limit, takes the form

F (EAD) = e−(Er+EAD)2/4ErkT

√
4πErkT

. (32)

Er is the reorganization energy. In the corresponding electrode
process, taking the process D → A to imply an electron given
from the impurity to the metal, the initial and final states are
replaced by manifolds of system-metal states and the rate is
obtained by averaging over the thermal distribution of initial
states and summing over all final states. This leads to35

kD→ A =


dϵΓ(ϵ)(1 − f (ϵ))F (EAD + ϵ), (33)

kA→D =


dϵΓ(ϵ) f (ϵ)F (EDA − ϵ), (34)

where Γ(ϵ) = 2π


k |Vk |2δ(ϵk − ϵ) is the hybridization func-
tion defined in Eq. (21), taken below to be energy independent.
Finally note that in the AH model, EDA = −EAD = Ēd is the
renormalized single electron energy defined by Eq. (24).

B. Agreement with the SH picture

Let us now show that the CME yields the same Marcus
rate in the long time (equilibrium) limit.36

In Paper II, we have shown that at equilibrium, the proba-
bility densities P1(x,p) and P0(x,p) reach a Boltzmann distri-
bution. Thus, the normalized reduced probability densities for
position will be

P1(x) =

~ω

2πkT
e−

1
2 ~ω(x+√2g/~ω)2/kT , (35)

P0(x) =

~ω

2πkT
e−

1
2 ~ωx2/kT . (36)

From the CME (Eqs. (16)-(20)), the ET rate from state 1 to
state 0 (representing an electron hopping from the impurity to
the bath) at position x is determined as Γ(1 − f (√2gx + Ed)).
On average, the rate is

k1→0 =


dxΓ(1 − f (√2gx + Ed))

×

~ω

2πkT
e−

1
2 ~ω(x+√2g/~ω)2/kT . (37)

Now, if we define
√

2gx + Ed ≡ ϵ and change variables from x
to ϵ (using Er = g2/~ω and Ēd = Ed − Er), the above equation
becomes

k1→0 =


dϵΓ(1 − f (ϵ)) e−(Er+ϵ−Ēd)2/4ErkT

√
4πErkT

, (38)

which agrees with Eq. (33). Similarly, one can show the back-
ward rate from SH is given by

k0→1 =


dxΓ f (√2gx + Ed)P0(x). (39)

Equation (39) can be rewritten to recover the standard ET result
(Eq. (34)),

k0→1 =


dϵΓ f (ϵ) e−(Er−ϵ+Ēd)2/4ErkT

√
4πErkT

. (40)

This proves the equivalence we hypothesized.
Moreover, in the SH picture, these ET rates can be easily

extended to the case where Γ is not a constant, but depends
on the nuclear position x. Below, we consider the case where
Γ = Γ0 exp(−Dx2). This is equivalent to replacing d+ (d) with
d+e−Dx2/2 (de−Dx2/2) in system-bath coupling Hamiltonian
(Eq. (4)).

IV. BROADENING BY THE MARCUS RATE

From Eqs. (37)-(40), one can show that the forward and
backward Marcus rates satisfy detailed balance,

k1→0 = eĒd/kT k0→1, (41)

where Ēd is defined in Eq. (24). Equation (41) proves that the
equilibrium impurity electron population is a Fermi function,

N =
k0→1

k0→1 + k0→1
=

1
1 + eĒd/kT

= f (Ēd), (42)

which follows from detailed balance (Eq. (41)).
It is important to remember that Eq. (42) is correct only

in the limit of vanishingly small Γ. This expression does not
include any broadening of the impurity level. To incorporate
such broadening, in Paper II, we broadened all electronic
observables using a Lorentzian function of width Γ. This
worked well in certain regimes. However, this ansatz is not
general and it is not clear how to define a broadening width if
Γ is not a constant, but rather depends on nuclear coordinates.
For instance, Γ(x) = Γ0e−Dx2

.
Numerical tests described below indicate that a convo-

lution of all electronic observables with a Lorentzian whose
width is given by the sum of forward and backward Marcus
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FIG. 3. The equilibrium electron population as a function of the impurity
energy level, when Γ depends on nuclear coordinate, Γ= Γ0e

−Dx2
, Γ0= 0.01,

kT = 0.01, ~ω = 0.003, e-ph coupling g = 0.0025. The Marcus rates appear
to be good estimates for a broadening rate. NRG data can be considered nearly
exact.4,37

rates,

γt = k0→1 + k1→0, (43)

provides a good approximation as compared with numerically
exact NRG results. This observation is intuitively appealing,
since Eq. (43) is the inverse lifetime of an electron (hole)
in an occupied (unoccupied) molecular level. Applying such
broadening to Eq. (42), the impurity level occupation takes the
form

N =


dE
1

2π
γt

(γt/2)2 + (E − Ēd)2 f (E), (44)

that can be compared to the NRG-calculated value. As shown
in Figures 3 and 4, the results from Eq. (44) agree well with
NRG. For comparison, we also plot results either (i) without
broadening or (ii) after broadening by Γ0,

N =


dE
1

2π
Γ0

(Γ0/2)2 + (E − Ēd)2 f (E). (45)

Note when D = 0, Γ = Γ0.

FIG. 4. The equilibrium electron population as a function of the impurity
energy level, when Γ depends on nuclear coordinate, Γ= Γ0e

−Dx2
, Γ0= 0.01,

kT = 0.01, ~ω = 0.003, e-ph coupling g = 0.0075. The Marcus rates appear
to be good estimates for a broadening rate. NRG data can be considered nearly
exact.4,37

To highlight some of the nuances we face in estimating
broadening rates, in Figures 5(a) and 5(b), we plot the elect-
ron population as a function of (a) e-ph coupling g and (b)
temperature T . In Figure 5(a), we find that, even though results
from Marcus rate broadening are not perfect (as compared to
the NRG results), Marcus rate broadening clearly captures the
feature that increasing g reduces the effective broadening. In
Figure 5(b), we note that Marcus rate broadening agrees with
NRG for both high and low temperatures.

Overall, Eq. (44) is the best approximation among all
broadening approaches we have tested thus far. Future work
will likely explore further the data in Figures 3-5 and seek
either a better approach or an improved theoretical foundation
for this empirical broadening behavior.

V. STEADY STATE CURRENT

Thus far, we have shown that when impurity-bath coupl-
ing depends strongly on nuclear coordinates, SH shows good

FIG. 5. The equilibrium electron population as a function of (a) e-ph coupling g and (b) temperature kT . The other parameters are D = 0, Γ0= 0.01, ~ω = 0.003,
Ēd =−0.018. Note that broadening by the Marcus rate gives the qualitatively correct behavior. NRG data can be considered nearly exact.4,37 (a) kT = 0.01. (b)
g = 0.0075.
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FIG. 6. I-V curves for different values of D (see Eq. (46)). Lines from
SH, dots from the sQME. g = 0.005, ~ω = 0.003, kT = 0.01, Γ= 2Γ0= 0.01,
Ēd = 0. For large D, we observe negative differential resistance.

agreement with NRG for equilibrium quantities (i.e., popula-
tion). With this in mind, we will now study out of equilibrium
quantities; in particular, we will compare I-V curves from SH
and sQME in case of two electronic baths.7,38,39 Our interest
is exploring the rich nonequilibrium physics possible when Γ
strongly depends on x, which might be called “non-Condon”
behavior. Our choice here of hybridization is

ΓL = Γ0e−Dx2
, (46)

ΓR = Γ0. (47)

The procedure for calculating I-V curves for SH and QME
can be found in Paper II. In short, with two electronic baths
(with Fermi levels µL and µR), the hopping rates of the CME
(compared with the case of one electronic bath [Eqs. (18) and
(19)]) will be

γ0→1 =
ΓL

~
f L(∆V ) + ΓR

~
f R(∆V ), (48)

γ1→0 =
ΓL

~
(1 − f L(∆V )) + ΓR

~
(1 − f R(∆V )). (49)

ΓL (ΓR) is the hybridization function of the impurity coupled to
the left (right) electronic bath. The CME (Eqs. (16) and (17))
will be unchanged. The current can be calculated using the
steady states probability densities P0(x,p) and P1(x,p),

I =


dxdp
(
γL

0→1(x)P0(x,p) − γL
1→0(x)P1(x,p)

)
, (50)

with

γL
0→1 =

ΓL

~
f L(∆V ), (51)

γL
1→0 =

ΓL

~
(1 − f L(∆V )). (52)

For the sQME, when ΓL = Γ0e−Dx2
, it is easy to show that

the transition rates between the impurity and the left electrode
become (compared to Eqs. (28)-(30))

W 0→1
i→ i′

L
=
Γ0

~
|⟨i |e−Dx2/2|i′⟩|2 f L

(
Ēd + ~ω(i′ − i)) , (53)

W 1→0
i′→ i

L
=
Γ0

~
|⟨i |e−Dx2/2|i′⟩|2(1 − f L(Ēd + ~ω(i′ − i))) ,

(54)

W n→ n′
i→ i′

L
= 0, n = n′, (55)

where again i (i′) labels a phonon mode centered at x = 0
(x = −

√
2g/~ω). The transition rates between the impurity and

the right electrode are unchanged; one just sets f = f R in
Eqs. (28)-(30). As implemented in the sQME, the final on and
off rates are the sum of the left and right rates,

W n′→ n
i′→ i = W n′→ n

i′→ i

L
+W n′→ n

i′→ i

R
. (56)

Similar to Eq. (50), with the steady states probability densities
Pn
i , we can calculate the steady current

I =

ii′

P0
i W

0→1
i→ i′

L − P1
i′W

1→0
i′→ i

L
. (57)

To obtain converged results for the current, 300 phonon states
are kept for the sQME. Here, we do not incorporate any level
broadening for either the sQME or SH data (which is valid
when Γ is small).

FIG. 7. (a) I-V curves with and without an extra phonon bath, (b) the average kinetic energy (effective temperature) of the oscillator as a function of bias.
kT = 0.01, Γ0= 0.01, D = 0.5, ~ω = 0.003, Ēd = 0, e-ph coupling g = 0.0075, the damping term γp = 0.02. For weak phonon damping, negative differential
resistance goes hand in hand with a voltage-dependent heating. For strong phonon damping, however, the average kinetic energy is independent of voltage and
we find no negative differential resistance.
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In Figure 6, we plot I-V curves for different values of D
from SH and sQME, and we find good agreement between
them.

The most interesting observation in Figure 6 is that, when
D is nonzero, the I-V curve shows a peak. In words, increasing
the voltage across the impurity can lower the current. This peak
can be explained by the (unbroadened) Landauer formula,

I =
ΓLΓR

ΓL + ΓR
( f L − f R). (58)

In the normal region, when the bias between the two Fermi
levels becomes larger ( f L − f R becomes larger), current in-
creases. However, in addition to this primary effect, increasing
the bias will also heat the oscillator to a higher temperature
than the bath.33,40,41 Thus, on average, the root of mean square
displacement ⟨x2⟩ should increase, which reduces the average
of ΓL, due to the factor e−Dx2

. From the Landauer formula,
when ΓL becomes smaller, the current decreases.

As evidence for this explanation, in our SH calculations,
we have added an external phonon bath coupled to the oscil-
lator both through a Langevin force and a damping term.42

Figure 7(b) shows that if the damping term γp is set to be
γp = 0.02, the temperature of the oscillator will not change
with the voltage. In this case, observe that there are now no
peaks in the I-V curves (Figure 7(a)). By contrast, without
friction, the temperature of the oscillator changes dramatically
with bias, and the I-V curves do show a peak.

VI. CONCLUSION

We have investigated the transient dynamics of the CME,
which include interesting oscillations at short times. For large
enough temperature T , our dynamics agree with the full, non-
secular QME at most times. The secular QME provides a good
approximation to the full QME at steady states.

To connect with standard nonadiabatic quantum
dynamics, we have shown analytically that our SH approach
recovers the celebrated Marcus rate when Γ is a constant.
Moreover, SH can be extended easily to the case where the
hybridization function depends on the nuclear coordinate. In
such a case, the Marcus rate gives us an easy, approximate way
to incorporate level broadening, which has been verified by
comparing with NRG for equilibrium populations (and with
secular QME for out of equilibrium I-V curves). If possible,
further benchmarking against exact dynamics will be useful.
For now, we believe it is promising to apply the CME to a
real condensed phase system—for example, the interaction
between an adsorbate and a metal surface, which depends
strongly on position. This work is ongoing.

Finally, we have studied I-V curves for the case where
Γ = Γ0e−Dx2

, and we have found an interesting turnover ef-
fect. This turnover can be explained as the result of heating
from a steady state current and offers yet another example of
inelastic scattering (which can lead to instability,33,40 and I-V
step feathers10,30). With coupling to an external phonon bath,
however, the turnover effect disappears.

Overall, given the fact that Γ will hardly ever be a
constant in practice, we believe the paper represents an
important step forward towards understanding SH and imple-
menting an algorithm to simulate a realistic condensed phase
system.
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