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A broadened classical master equation (BCME) is proposed for modeling nonadiabatic dynamics
for molecules near metal surfaces over a wide range of parameter values and with arbitrary initial
conditions. Compared with a standard classical master equation–which is valid in the limit of weak
molecule-metal couplings–this BCME should be valid for both weak and strong molecule-metal
couplings. (The BCME can be mapped to a Fokker-Planck equation that captures level broadening
correctly.) Finally, our BCME can be solved with a simple surface hopping algorithm; numer-
ical tests of equilibrium and dynamical observables look very promising. C 2016 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4939734]

I. INTRODUCTION

The dynamics of molecules near metal surfaces are
often nonadiabatic, i.e., the dynamics do not obey the Born-
Oppenheimer approximation.1 In such a case, just as for prob-
lems in photochemistry, there are several energy scales that
are relevant. Consider, for example, the Anderson-Holstein
(AH) model (Eqs. (1)-(4)), which is the simplest model
Hamiltonian for describing such dynamics. The Anderson-
Holstein model (and generalizations thereof) has been broadly
used to describe molecular junctions,2–4 quantum dots,5–7 gas
scattering from metals,8–10 and electrochemical systems.11

For the AH model, we consider an impurity energy level
coupled both to a manifold of electronic states representing
the metal and also to a single nuclear degree of freedom.12,13

There are at least three important energy scales for the AH
Hamiltonian: the inverse time scale for nuclear motion ω,
the strength of the molecule-metal coupling Γ, and the
temperature of the metal T .14 In general, propagating dynamics
for the simple AH model with an arbitrary set of parameter
values to convergence can be difficult for numerically exact
methods, such as Numerical Renormalization Group,15–17

Multi-Configuration Time-Dependent Hartree,18 and Path
Integral Monte Carlo.19 Thus, if we seek an algorithm to
describe more complicated, realistic systems beyond the AH
model, appropriate approximations must be made.

For this paper, we restrict ourselves to the case kT > ~ω,
where a classical description of the nuclear motion should be
feasible. Even for this regime, however, no simple solution is
available. For example, in the literature, we find two different
approaches for further simplifying the AH model, each based
on the strength of electron-metal coupling (Γ) (see Fig. 1).
On the one hand, for small Γ, a perturbative treatment leads
to a variety of master equations,20–25 where usually the level
broadening is disregarded; for the most part, these approaches
are valid only when the electron-metal coupling is small
compared to temperature (Γ < kT). On the other hand, in the
limit of large Γ, an adiabatic approach yields a broadened
Fokker-Planck (BFP) equation, or equivalently Langevin

dynamics on a broadened potential of mean force.26–29 As
usual, the adiabatic approximation requires that the nuclear
dynamics be slow compared to electron-metal coupling,
roughly Γ > ~ω; the adiabatic approximation also cannot
be used in a straightforward formalism for short times if the
system begins out of equilibrium.

In a series of recent papers,20,23,30 we have now started
to analyze both of the approaches above. Almost a year
ago, in Refs. 20 and 23, we followed the first approach
above and studied a classical master equation (CME) to
model nonadiabatic dynamics near metal surfaces in the limit
Γ < kT . This CME did not include broadening. More recently,
in Ref. 30, we considered our CME in the further limit that
Γ > ~ω, and we showed that our CME can be mapped to a
Fokker-Planck (FP) equation (where the nuclei move on the
potential of mean force with random force and experience
frictional damping from the electronic degrees of freedom).
Most importantly, in Ref. 30, we also showed that our FP
equation is equivalent to the BFP equation derived by von
Oppen and co-workers in the limit of high temperature.26

It must be emphasized that von Oppen and co-workers
derived their BFP equation using the second approach listed
above, i.e., assuming only that Γ > ~ω (and not requiring
that Γ < kT). Thus, for low temperature, the von Oppen BFP
equation includes broadening whereas our FP equation does
not.

With this background in mind, in the present paper, we
will argue that it is possible to bridge the small and large
Γ cases above by extrapolation. While a rigorous approach
for connecting these two limits was recently proposed by
Galperin and Nitzan,31 we will propose a practical approach
by ansatz. To make this connection, we will modify our
CME to incorporate level broadening, and we will refer to
the resulting equation (see below) as a “broadened classical
master equation (BCME).” In the limit that Γ < kT , our
BCME reduces to the unbroadened CME; in the limit that
Γ > ~ω, our BCME can be mapped to von Oppen’s BFP
equation. Therefore, we would hope that our BCME should
be valid for all Γ (see Fig. 1), so long as the nuclei are
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FIG. 1. The energy regimes for different theoretical approaches. All methods
treat the nuclei classically, hence kT > ~ω. Depending on how strong the
electron-metal coupling (Γ) is, different methods will be applicable. A broad-
ened CME (BCME) will have the largest range of applicability, connecting
the domains of the standard CME and broadened FP (BFP) equation.

classical, kT > ~ω. Note that such an approach would be key
for two important applications. First, with such an approach,
we would be able to study the photoinduced dynamics of
molecules near strongly coupled metal surfaces; recall that
von Oppen’s BFP equation assumes that the nuclei must begin
and remain in quasi-equilibrium with the electronic degrees
of freedom so that out of equilibrium initial conditions are
not permitted. Second, for many reactions on surfaces, the
molecule-metal coupling changes strongly with position (x),
where x might be the distance to the metal surface. In such a
case, if Γ is not a constant, one cannot assume that Γ(x) < kT
or Γ(x) > ~ω. With an accurately BCME, however, one should
be able to treat both cases so that one can model inner sphere
electrochemical reactions occurring at surfaces.

Before concluding this introduction, we note that the
BCME presented below can be solved numerically with a
simple, stable surface hopping (SH) procedure. Compared
with our previous SH algorithm20 without broadening, there
is now one difference: whereas all jumps between potential
energy surfaces are local in phase space for the standard CME,
momentum adjustments become necessary for the BCME.
Of course, momentum jumps also occur in Tully’s fewest-
switches surface hopping algorithm.32 Thus, one must wonder
whether in the future we will find additional connections
between our BCME and Tully style surface hopping; this
theme will be explored in a future article.

An outline of this article is as follows. In Sec. II, we
present a BCME that incorporates level broadening. In Sec. III
we describe the surface hopping algorithm to solve the BCME.
In Sec. IV, we show results. We conclude in Sec. V.

II. THEORY

For simplicity, we now discuss the Anderson-Holstein
(AH) model, which is the simplest possible model for
describing coupled nuclear electronic motion near a metal
surface. (A more general discussion of our algorithm is given
in Appendix B, where we consider the case of arbitrary
potential energy surfaces and many nuclear degrees of

freedom.) The AH Hamiltonian is

H = Hs + Hb + Hc, (1)

Hs = E(x)d+d + 1
2
~ω(x2 + p2), (2)

Hb =


k
(ϵk − µ)c+kck, (3)

Hc =


k
Vk(c+kd + d+ck), (4)

where the energy difference between diabats is defined as

E(x) ≡ √2gx + Ed. (5)

Here, we find an impurity electronic energy level (with
creation operator d+ and annihilation operator d) coupled
both to a manifold of electrons (c+

k
, ck labeled by Bloch

state k) and a nuclear degree of freedom (x, p). We use
dimensionless x and p coordinates. In Eq. (5), g describes the
strength of electron-phonon coupling (

√
2 is a factor used by

convention). µ is the Fermi energy of the electronic bath.

A. Standard classical master equation

In a classical master equation (CME) approach, we
use probability density P0(x,p, t) (P1(x,p, t)) to describe a
state with the impurity being unoccupied (occupied), and
the oscillator being at position x with momentum p. When
Γ ≪ kT , the time evolution of the probability density is given
by20,21

~
∂P0(x,p, t)

∂t
= −~ωp

∂P0(x,p, t)
∂x

+ ~ωx
∂P0(x,p, t)

∂p

− Γ f (E(x))P0(x,p, t)
+ Γ(1 − f (E(x)))P1(x,p, t), (6)

~
∂P1(x,p, t)

∂t
= −~ωp

∂P1(x,p, t)
∂x

+ (~ωx +
√

2g)∂P1(x,p, t)
∂p

+ Γ f (E(x))P0(x,p, t)
− Γ(1 − f (E(x)))P1(x,p, t). (7)

Here, Γ is the hybridization function that describes the
strength of electron-metal coupling, and we assume Γ
is a constant (i.e., the wide band approximation),
Γ(ϵ) = 2π


k |Vk |2δ(ϵ − ϵk) ≡ Γ. f (E(x)) = 1

eE(x)/kT+1
is a

Fermi function.
Eqs. (6) and (7) have a simple physical picture: motion

along two diabatic potential surfaces (with a timescale of 1/ω),
plus hopping (with a timescale of ~/Γ) between P0(x,p, t) and
P1(x,p, t). The two diabatic potential surfaces are

V 0
diab =

1
2
~ωx2, (8)

V 1
diab =

1
2
~ωx2 +

√
2gx + Ed. (9)

Following Ref. 30, we can define new densities A(x,p, t)
and B(x,p, t) according to

P0(x,p, t) = (1 − f (E(x)))A(x,p, t) + B(x,p, t), (10)
P1(x,p, t) = f (E(x))A(x,p, t) − B(x,p, t). (11)

Plugging Eqs. (10) and (11) into Eqs. (6) and (7), we arrive at
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~
∂A(x,p, t)

∂t
= −~ωp

∂A(x,p, t)
∂x

+ (~ωx +
√

2g f (E(x)))∂A(x,p, t)
∂p

−
√

2g
∂B(x,p, t)

∂p
, (12)

~
∂B(x,p, t)

∂t
= −~ωp

∂B(x,p, t)
∂x

+ (~ωx +
√

2g −
√

2g f (E(x)))∂B(x,p, t)
∂p

− ΓB(x,p, t)

−
√

2g f (E(x))(1 − f (E(x)))∂A(x,p, t)
∂p

+ ~ω
∂ f (E(x))

∂x
pA(x,p, t). (13)

Now, we see A(x,p, t) and B(x,p, t) are moving on two
different potential surfaces, which we will refer to as adiabatic
potential surfaces

V 0
adiab =

1
2
~ωx2 +

√
2g

 x

x0

f (E(x ′))dx ′, (14)

V 1
adiab =

1
2
~ωx2 +

√
2g

 x

x0

(1 − f (E(x ′)))dx ′. (15)

As explained in Ref. 30, if Γ > ~ω—such that B(x,p, t) is
small compared with A(x,p, t) and such that B(x,p, t) changes
slowly with respect to x,p, t—we can approximate Eq. (13)
by

ΓB(x,p, t) = −√2g f (E(x))(1 − f (E(x)))∂A(x,p, t)
∂p

+ ~ω
∂ f (E(x))

∂x
pA(x,p, t). (16)

If we plug Eq. (16) back into Eq. (12), we get a FP equation
(we have used ∂ f (E(x))

∂x
= −
√

2g f (E(x))(1 − f (E(x))) 1
kT

),

~
∂A(x,p, t)

∂t
= −~ωp

∂A(x,p, t)
∂x

+
∂V 0

adiab

∂x
∂A(x,p, t)

∂p

+ ~γe(x) ∂
∂p

(pA(x,p, t))

+ ~γe(x) kT
~ω

∂2A(x,p, t)
∂p2 , (17)

where γe(x) is the electronic friction,

γe(x) = 2g2

Γ

ω

kT
f (E(x))(1 − f (E(x))). (18)

B. The incorporation of broadening

To incorporate level broadening, we propose replacing
f (E(x)) in Eq. (12) by n(E(x)),

~
∂A(x,p, t)

∂t
= −~ωp

∂A(x,p, t)
∂x

+ (~ωx +
√

2gn(E(x)))∂A(x,p, t)
∂p

−
√

2g
∂B(x,p, t)

∂p
, (19)

where n(Z) is defined as

n(Z) =


dϵ
2π

Γ

(ϵ − Z)2 + (Γ/2)2 f (ϵ). (20)

If we plug Eq. (16) back into Eq. (19), we get

~
∂A(x,p, t)

∂t
= −~ωp

∂A(x,p, t)
∂x

+
∂Ṽ 0

adia

∂x
∂A(x,p, t)

∂p

+ ~γe(x) ∂
∂p

(pA(x,p, t))

+ ~γe(x) kT
~ω

∂2A(x,p, t)
∂p2 . (21)

Here, Ṽ 0
adia

is the (broadened) potential of mean force,
which we also refer to as the broadened adiabatic potential
surface 0 compared with the unbroadened adiabatic potential
surface 0 in Eq. (14)

∂Ṽ 0
adia

∂x
= ~ωx +

√
2gn(E(x)). (22)

Finally, if we use Eqs. (10) and (11) to calculate P0 and
P1 from Eqs. (13) and (19), we find

~
∂P0(x,p, t)

∂t
= −~ωp

∂P0(x,p, t)
∂x

+ ~ωx
∂P0(x,p, t)

∂p
− Γ f (E(x))P0(x,p, t) + Γ(1 − f (E(x)))P1(x,p, t)

+
√

2g(n(E(x)) − f (E(x)))(1 − f (E(x)))∂
�
P0(x,p, t) + P1(x,p, t)�

∂p
, (23)

~
∂P1(x,p, t)

∂t
= −~ωp

∂P1(x,p, t)
∂x

+ (~ωx +
√

2g)∂P1(x,p, t)
∂p

+ Γ f (E(x))P0(x,p, t) − Γ(1 − f (E(x)))P1(x,p, t)

+
√

2g(n(E(x)) − f (E(x))) f (E(x))∂
�
P0(x,p, t) + P1(x,p, t)�

∂p
. (24)
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Henceforward, we will refer to the set of Equations (23)
and (24) as one BCME. Several comments must now be made.

• Compared with the original CME (Eqs. (6) and (7)),
one finds new terms in the BCME proportional to
∂
�
P0(x,p, t)+P1(x,p, t)

�
∂p

. Interestingly, these new terms
correspond not only to modified forces, but also to
dynamical momentum jumps (which are also present
in the usual, Tully style surface hopping algorithm32

for molecular photochemistry).
• In the limit of small Γ, i.e., Γ ≪ kT , level broadening

can be disregarded and n(E(x)) ≈ f (E(x)). Thus, in
this case, the BCME obviously reduces to the original
CME (Eqs. (6) and (7)).

• In the limit of large Γ, where we can make an adiabatic
approximation if Γ ≫ ~ω, the potential of mean force
in Eq. (22) agrees exactly with the work of von
Oppen et al.: the potential of mean force is broadened
(i.e., f (E(x)) is replaced by n(E(x))).

• Regarding the definition of electronic friction γe(x),
Eq. (18) agrees only partially with the work von
Oppen et al.26 Whereas we invoke a frictional damping
value without broadening (i.e., the raw Fermi function
appears in Eq. (18)), von Oppen et al. derive a damping
term with broadening. See Eq. (A1). Both frictional
terms will be identical in the limit of large temperature,
Γ ≪ kT .

In practice, our BCME (Eqs. (23) and (24)) can be
further corrected to account for a broadened frictional
damping term; see Appendix A. For most problems,
such a broadened correction for the friction is small
(Eq. (A1) versus Eq. (18)) relative to the broadened
correction for potential of mean force (Eq. (22) versus
Eq. (14)). Below, we do not include such corrections
in our discussion of a surface hopping algorithm.

III. MODIFIED SURFACE HOPPING PROCEDURE

We use a modified surface hopping (SH) procedure to
solve the BCME (Eqs. (23) and (24)). As in any Monte
Carlo algorithm, we use a swarm of trajectories to sample
the probability densities.20,32 The modified SH algorithm is as
simple as the following.

1. We initialize the positions, momenta and active surface
for each trajectory. In this paper, we will usually prepare
our initial state in the following distribution (unless stated
otherwise):

P1(x,p,0) = C exp
(
−1

2
~ω(x − x1)2/kTi −

1
2
~ωp2/kTi

)
,

(25)
P0(x,p,0) = 0, (26)

such that N ≡


dxdp P1(x,p,0) = 1. The constant
x1 ≡ −

√
2g/~ω is the center of potential surface 1. Ti

is some initial temperature that can be different from the
temperature of the electronic bath. C is a normalization
factor.

2. For each trajectory, suppose the active potential surface is
1 [or 0]. At each time step, we generate a random number
ξ from 0 to 1. If ξ > Γ(1 − f (E(x)))dt [ξ > Γ f (E(x))dt],
the oscillator continues to move along potential surface
1 [surface 0] for a time step dt. The force felt by the
oscillator on surface 1 is

F1 ≡
dṼ 1

diab

dx
= −~ω(x − x1)
−
√

2g(n(E(x)) − f (E(x))) f (E(x)), (27)

and the force felt on surface 0 is

F0 ≡
dṼ 0

diab

dx
= −~ωx −

√
2g(n(E(x))

− f (E(x)))(1 − f (E(x))). (28)

We refer to the corresponding potentials as broadened
diabatic potential surfaces Ṽα

diab =
 x

x0
Fαdx ′, α = 0,1.

3. if ξ < Γ(1 − f (E(x)))dt [ξ < Γ f (E(x))dt], the oscillator
hops to the potential surface 0 [surface 1]. When the
oscillator hops, the momentum changes by

∆p = −
√

2g(n(E(x)) − f (E(x)))/Γ, (29)

while the position remains unchanged. This momentum
adjustment always pushes the particle in the direction of
the crossing. Thereafter, the trajectory moves along its new
surface for the next time step dt.

4. We repeat steps 2-3 for all trajectories until we reach the
desired time slice.

Now, to calculate observables, we will define new
densities,

P̃0(x,p, t) = (1 − n(E(x)))A(x,p, t) + B(x,p, t)
+ (n(E(x)) − f (E(x)))A(x,p, t)
× exp(−

 t

0
dt Γ(x(t))), (30)

P̃1(x,p, t) = n(E(x))A(x,p, t) − B(x,p, t)
− (n(E(x)) − f (E(x)))A(x,p, t)
× exp(−

 t

0
dt Γ(x(t))). (31)

Initially, at time zero, by construction we have
P̃α = Pα (α = 0,1). Afterwards, at longer times, both the
second and third term (in the above equations) will decay, so
that

P̃0(x,p, t) → (1 − n(E(x)))A(x,p, t), (32)

P̃1(x,p, t) → n(E(x))A(x,p, t). (33)

Thus, it is obviously true that our algorithm will find the
correct long time electronic population,33

N =


dxdp P̃1(x,p, t)
Γt≫1
−−−−−→


dxdp n(E(x))A(x,p, t).

(34)
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IV. RESULTS

A. Potential energy surfaces

Before considering dynamics, we study the different
potential surfaces (broadened and unbroadened). Because
broadened diabatic potentials are defined only up to a
constant, we fix the minimum of each potential to have
value V (x)min = 0.

From Fig. 2, we notice that, by incorporating level
broadening, the barrier between wells along the potential
of mean force is lowered significantly, and the crossing
point between diabats is similarly lowered. Furthermore,
even though the broadened diabatic potential surfaces can be
shifted from the unbroadened diabatic surfaces asymptotically,
the two quantities will predict identical forces far from the
crossing region. Finally, to convince the reader that our SH
solution to the BCME with momentum jumps is accurate, in
Fig. 2, we also plot minus the log of the position distribution
of the oscillator (times kT) from SH trajectories, −kT ln(A).
This quantity agrees with the broadened potential of mean
force very well, indicating that our SH procedure does capture
the correct equilibrium distribution.

B. Electronic dynamics

We now turn to dynamics, and we begin with electronic
properties. In Fig. 3, we plot the electronic population (N) as a
function of time for the different theoretical approaches. Here,
Γ is larger than kT , Γ = 2kT ≈ 6~ω. To estimate an electronic
population with an unbroadened FP equation, we average
the Fermi function f (E(x(t))) over simulation trajectories
x(t);30 for a broadened BFP equation, we average the function
n(E(x(t))) where n is defined in Eq. (20).

FIG. 2. Potential surfaces (diabatic and adiabatic, with and without broad-
ening) for the AH model. ~ω = 0.003, g = 0.015, Γ= 0.03, kT = 0.01,
Ēd = 0 (Ēd ≡ Ed−g 2/~ω is the renormalized energy level). We
also plot minus the log of equilibrium total density, −kT ln(A),
A(x)=  dp(P0(x, p)+P1(x, p)) from surface hopping simulation (black
dots); the latter quantity agrees with the broadened potential of mean force
Ṽ 0

adia very well. Diabat 1 corresponds to the molecular level being occupied.
Diabat 0 corresponds to the molecular level being unoccupied.

(a)

(b)

FIG. 3. Electronic population as a function of (a) shorter time (b) longer time:
Γ= 0.02, ω = 0.003, g = 0.0075, kT = 0.01, Ēd = 0.01 (Ēd ≡ Ed−g 2/~ω
is the renormalized energy level). We set ~= 1. We prepare the initial temper-
ature as Ti = 5T for symmetry with Fig. 4. For notation, FP = Fokker-Planck
(unbroadened), BFP = broadened Fokker-Planck, CME = classical master
equation (unbroadened), BCME=broadened classical master equation. See
Fig. 1. Note that the BCME results agree with CME at short time and BFP at
long time, as one would hope.

From Fig. 3, we find that, on the one hand, at long
times, the BCME/SH results agree with BFP results. Thus,
our BCME approach does recover the correct long time
equilibrium population (on a broadened surface). Note that,
at long times, our broadened results do not agree with the
unbroadened results. Thus, for such a large Γ, broadening
the potential energy surface will clearly be important for
dynamics. At short times, on the other hand, we note that
BCME/SH results agree with unbroadened CME/SH results
and disagree with BFP results. As discussed earlier and in
Ref. 30, all FP equations (broadened or unbroadened) cannot
be trusted at very early times if the simulation does not start
from near equilibrium. In this case, because of the inevitable
mixing of surfaces, the FP approaches cannot even recover the
correct initial electronic population at time zero (N = 1).30

In the end, only a BCME approach is reliable in the short
and long time limits.
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C. Nuclear dynamics

Finally, we consider nuclear dynamics and begin by
plotting the kinetic energy of the oscillator in Fig. 4. As
should be expected, when Γ is less than or nearly equal to kT ,
Γ ≤ kT , Fig. 4(a) shows that the level broadening does not

(a)

(b)

(c)

FIG. 4. Average kinetic energy as a function of real time: ω = 0.003,
g = 0.0075, kT = 0.01, Ēd = 0.01 (Ēd ≡ Ed−g 2/~ω is the renormalized
energy level). We set ~= 1. We prepare the initial temperature as Ti = 5T .
Note that the BCME agrees with the CME for small Γ. Same notation as in
Fig. 1. (a) Γ= 0.002. (b) Γ= 0.02. (c) Γ= 0.1.

affect the real time dynamics. Fig. 4(a) also shows that, when
Γ < ~ω, the CME and FP methods do not agree with each
other. As shown in Fig. 4(b), the CME and FP methods agree
only for large Γ, Γ ≫ ~ω, where the adiabatic approximation
is valid.

Next, consider the case where Γ ≫ kT . Here, one might
expect to find large signature of broadening. However, even
for very large Γ, the average kinetic energy does not seem
to be very different with or without broadening, as shown
in Fig. 4(c). Thus, the average kinetic energy would not
appear to be the most useful reporter on the effect of broad-
ening.34

In Fig. 5, we plot the average position of the oscillator as
a function of time for different Γ according to CME/SH and
FP. We take the symmetric case, Ēd = 0 (Ēd ≡ Ed − g2/~ω
is the renormalized energy level), so that at long times, all
positions should relax to 0.5x1 (where x1 is the minimum of
diabat 1 and 0 is the minimum of diabat 0). We consider two
separate cases.

• The nuclei are initialized to be in equilibrium with the
donor diabat 1 as in Eqs. (25) and (26), so that the
nuclei start off in the left well and the molecular level
is occupied. See Fig. 2. This configuration is denoted
“quasi equilibrium initial states” in Fig. 5.

• The nuclei are initialized in a photo-excited initial state,
for which we prepare

P0(x,p,0) = C exp
(
−1

2
~ω(x − x1)2/kTi −

1
2
~ωp2/kTi

)
,

(35)
P1(x,p,0) = 0. (36)

In other words, nuclei are positioned initially in the
left well (corresponding to diabat 1), even though the
molecular level is unoccupied (which corresponds to
diabat 0 and is minimized in the right well).

Note that, with a FP equation, one cannot distinguish these
two different cases because FP equations depend only on the
total nuclear density A(x,p) = P0(x,p) + P1(x,p), and these
densities are identical above.

Fig. 5 succinctly summarizes the results of this
manuscript. When Γ is small, broadening does not affect
the dynamics (see subplots (a) and (b)). That being said,
CME and FP approaches will disagree here because Γ < ~ω.
Furthermore, for photo-excited initial conditions, CME
trajectories reflect the dramatic effects of electronic relaxation
over a long time scale while FP results cannot treat this
electronic relaxation correctly.

As Γ increases, the BFP data agrees more and more
with BCME/SH (see subplots (c) and (d)), since now Γ
is slightly larger than ω and an adiabatic approximation is
reasonable. Moreover, as Γ increases, the differences between
the quasi equilibrium initial conditions and photo excited
initial conditions become smaller. This convergence can be
explained by recognizing that, for large Γ, electronic relaxation
is swift and the remaining (slow) nuclear dynamics will occur
along the unique potential of mean force.
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FIG. 5. Average position of the oscillator as a function of time. ω = 0.003, g = 0.015, kT = 0.01, Ēd = 0 (Ēd ≡ Ed−g 2/~ω is the renormalized energy level).
We have set ~= 1. We prepare the initial temperature as Ti =T . x1 corresponds to the position that minimizes the energy of the occupied diabat, x1=−

√
2g/~ω.

The nuclei are initialized either to be in quasi-equilibrium with the electron (Eqs. (25) and (26)) or to be photoexcited and out of equilibrium with the electron
(Eqs. (35) and (36)). Note that the BCME correctly agrees with the CME for small Γ (Γ≪ kT ) and with the BFP for large Γ (Γ≫ ~ω). Same notation as in
Fig. 1.

Lastly we consider very large Γ in subplots (e) and ( f ).
Here, as before, the effects of initial conditions are, of course,
minimal and the FP and SH approaches agree. The interesting
new feature is that, because broadening lowers the barrier
between left and right wells, the dynamics on the broadened
surfaces undergo large oscillations and relax rather quickly.
By contrast, the unbroadened trajectories relax very slow. Note
that the reorganization energy here is Er = g2/~ω = 7.5 kT ,
so that the diabatic crossing point is 7.5 kT/4 ≈ 1.88 kT ,
whereas with broadening the crossing point becomes 0.6 kT .

There is one quirk to point out regarding the speed
of relaxation. Consider the unbroadened CME/SH algorithm
in subplot (b). Note that, for small Γ and photo-excited
initial conditions, relaxation occurs much faster than it
does for larger Γ in subplots (e) and ( f ). This inversion,
whereby smaller Γ leads to faster relaxation, comes about
because there is no direct barrier to relaxation with
photo-excited initial conditions; moreover, a photo-excited
electronic state will live longer with smaller Γ so that
nuclei can explore more of phase space before relaxation.
This realization will perhaps have fruitful consequences
for modeling photo-induced electron transfer at metal
surfaces.

V. CONCLUSION

In this paper, we have used a BCME to model
nonadiabatic dynamics for the cases of both strong and weak
molecule-metal couplings. On the one hand, in the limit of

strong molecule-metal coupling, the BCME can be mapped
to a BFP equation and captures level broadening correctly.
On the other hand, in the limit of weak molecule-metal
coupling, the BCME can be reduced to the (unbroadened)
CME. Numerically, the BCME (in Eqs. (23) and (24)) can be
solved easily with a SH procedure. Using such a procedure,
we have shown that level broadening can affect electronic
and nuclear dynamics dramatically by lowering the barrier
between wells along the lower adiabatic surface. In the
future, it will be crucial to benchmark this result against
rigorous quantum dynamics; this research is now in progress.
Furthermore, because we have introduced broadening in an
ad hoc manner, by extrapolation, there may well be other effi-
cient approaches that can compete with this BCME. Numerical
tests will be needed. If this BCME proves as accurate and
efficient as we would like, looking forward, this algorithm
should be a very important tool for modeling nonadiabatic
dynamics for realistic systems, e.g., scattering of gas mole-
cules from metal surfaces8–10 and hopefully electrochemical
catalysis.11
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APPENDIX A: HOW TO ACCOUNT FOR BROADENING
THE ELECTRONIC FRICTION DAMPING PARAMETER

According to Ref. 26, the correctly broadened friction is
of the form

γB
e =

2g2

Γ

ω

kT
D(E(x)), (A1)

where we have defined

D(Z) ≡ Γ


dϵ
π

(
Γ/2

(ϵ − Z)2 + (Γ/2)2
)2

f (ϵ)(1 − f (ϵ)). (A2)

This damping parameter should be contrasted with Eq. (18).
Let us now show how we can alter our BCME in

Eqs. (23) and (24) such that we match the correctly
broadened electronic friction. To do so, it is important

to consider two cases. First, there is the case that
D(E(x)) > f (E(x))(1 − f (E(x))). (Below, for the sake of
brevity, we do not include the inner variables E(x) explicitly
for D or f .) In such a case, one can simply include extra
frictional damping (with corresponding random force) on top
or our BCME.

Second, however, is the opposite case, whereby
D < f (1 − f ). In such a case, our BCME includes
too much friction already. To correct this deficiency,
we propose replacing the term −

√
2g f (1 − f ) ∂A(x,p, t)

∂p

in Eq. (13) by −
√

2gD ∂A(x,p, t)
∂p

, and ~ω ∂ f
∂x

pA(x,p, t) by
−
√

2g ~ω
kT
DpA(x,p, t). Such a replacement will give us the

correctly broadened friction from a BFP equation. Then, if
we transform back from A and B to P0 and P1 using the
definitions in Eqs. (10) and (11), we find

~
∂P0(x,p, t)

∂t
= −~ωp

∂P0(x,p, t)
∂x

+ ~ωx
∂P0(x,p, t)

∂p
− Γ f P0(x,p, t)

+ Γ(1 − f )P1(x,p, t) +
√

2g(n − f )(1 − f )∂
�
P0(x,p, t) + P1(x,p, t)�

∂p

−
√

2g
~ω

kT
(D − f (1 − f ))p�P0(x,p, t) + P1(x,p, t)�

−
√

2g
�
D − f (1 − f )�∂

�
P0(x,p, t) + P1(x,p, t)�

∂p
, (A3)

~
∂P1(x,p, t)

∂t
= −~ωp

∂P1(x,p, t)
∂x

+ (~ωx +
√

2g)∂P1(x,p, t)
∂p

+ Γ f P0(x,p, t)

− Γ(1 − f )P1(x,p, t) +
√

2g(n − f ) f
∂
�
P0(x,p, t) + P1(x,p, t)�

∂p

+
√

2g
~ω

kT
(D − f (1 − f ))p(P0(x,p, t) + P1(x,p, t))

+
√

2g(D − f (1 − f ))∂
�
P0(x,p, t) + P1(x,p, t)�

∂p
. (A4)

Equations (A3) and (A4) can be solved via a surface hopping
procedure as well. As compared with the surface hopping
procedure described in Sec. III, the hopping rates now depend
on both position and momentum, and we also find additional
force and momentum jumps.

Of course, one might wonder: why not apply Eqs. (A3)
and (A4) more generally, instead of Eqs. (23) and (24),
if one wants to correctly extrapolate between the small
and large Γ limits? To answer this question, we note
that the new momentum jump terms are proportional to
(D − (1 − f ) f )/ f (or (D − (1 − f ) f )/(1 − f )). These factors
will be unstable in practice when (D − (1 − f ) f ) > 0. Because
of this practical limitation, if one requires the correctly
broadened electronic friction, we propose switching between
Eqs. (A3) and (A4) and Eqs. (23) and (24). We have
found empirically that such a combination works very
well.

We may now sum up this final SH algorithm.

1. Initialize all positions, momenta and active potential
surfaces for all trajectories.

2. For each trajectory, if we suppose the active potential
surface is 0 [or 1], we compare D with (1 − f ) f .

3. If (D − (1 − f ) f ) > 0, we compare Γ f dt [Γ(1 − f )dt]
with a random number ξ in the range [0, 1].
• If ξ > Γ f dt [ξ > Γ(1 − f )dt], the oscillator continues to

move along potential surface 0 [surface 1] for a time step
dt. In addition to the mean force F0 [F1], the oscillator
feels an extra frictional damping 2g2

Γ

ω
kT

(D − (1 − f ) f )
and an extra random force. The mean force F0 and F1
are defined as

F0 = −~ωx −
√

2g(n − f ) f , (A5)

F1 = −~ω(x − x1) −
√

2g(n − f ) f . (A6)
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And the random force is chosen from a Gaussian
distribution with variance σ2 =

4g2

Γ
(D − (1 − f ) f )/dt.

• Otherwise, the oscillator jumps to potential surface 1
[surface 0], with the same position, and the momentum
is adjusted by −

√
2g(n − f )/Γ. Thereafter, the oscillator

moves for a time step dt with the mean force
F1 [F0], extra frictional damping 2g2

Γ

ω
kT

(D − (1 − f ) f )
and an extra random force. Again, the random force
is chosen from a Gaussian distribution with variance
σ2 =

4g2

Γ
(D − (1 − f ) f )/dt.

4. If (D − (1 − f ) f ) < 0, we compare γ̄0→1dt [γ̄1→0dt] with
a random number ξ in the range [0, 1], where

γ̄0→1 = Γ f +
√

2g
~ω

kT
(D − f (1 − f ))p, (A7)

γ̄1→0 = Γ(1 − f ) − √2g
~ω

kT
(D − f (1 − f ))p. (A8)

• If ξ > γ̄0→1dt [ξ > γ̄1→0dt], the oscillator continues
moving along potential surface 0 [surface 1] for a time
step dt with the force F̄0 [F̄1], where

F̄0 = −~ωx −
√

2g(n − f )(1 − f ) + √2g(D − f (1 − f )),
(A9)

F̄1 = −~ω(x − x1) −
√

2g(n − f ) f −
√

2g(D − f (1 − f )).
(A10)

• Otherwise, the oscillator jumps to surface 1 [surface 0]
with the same position but the momentum is adjusted
by ∆p0→1 [∆p1→0], where

∆p0→1 = −
√

2g
Γ

((n − f ) f − D + f (1 − f ))/ f , (A11)

∆p1→0 = −
√

2g
Γ

((n − f )(1 − f ) +D − f (1 − f ))/(1 − f ).
(A12)

Thereafter, the oscillator moves for a time step dt with
the force F̄1 [F̄0].

5. Repeat steps 2-4 for all trajectories until one reaches the
desired final time.

APPENDIX B: MULTIPLE NUCLEAR DEGREES
OF FREEDOM, BEYOND THE HARMONIC
APPROXIMATION

The Hamiltonian for the case of multiple, arbitrary nuclear
degrees of freedom is

H = Hs + Hb + Hc, (B1)

Hs = E(X)d+d +


i

P2
i

2mi
+U0(X), (B2)

Hb =


k
(ϵk − µ)c+kck, (B3)

Hc =


k
Vk(c+kd + d+ck). (B4)

For such a Hamiltonian, the CME is

∂P0(X,P, t)
∂t

= −

i

Pi

mi

∂P0(X,P, t)
∂Xi

+

i

∂U0(X)
∂Xi

∂P0(X,P, t)
∂Pi

− Γ
~

f (E)P0(X,P, t)

+
Γ

~
(1 − f (E))P1(X,P, t), (B5)

∂P1(X,P, t)
∂t

= −

i

Pi

mi

∂P1(X,P, t)
∂Xi

+

i

(
∂E(X)
∂Xi

+
∂U0(X)
∂Xi

)
∂P1(X,P, t)

∂Pi

+
Γ

~
f (E)P0(X,P, t)

− Γ
~
(1 − f (E))P1(X,P, t), (B6)

where f (E) is the Fermi function f (E) = 1
eE(X)/kT+1

. As above,
we define new densities A(X,P, t) and B(X,P, t),

P0(X,P, t) = (1 − f (E))A(X,P, t) + B(X,P, t), (B7)

P1(X,P, t) = f (E)A(X,P, t) − B(X,P, t). (B8)

Following the same procedures as we described in Sec. II,
after incorporating level broadening for the potential of mean
force, we arrive at a BFP equation

∂A(X,P, t)
∂t

= −

i

Pi

mi

∂A(X,P, t)
∂Xi

+

i

∂U(X)
∂Xi

∂A(X,P, t)
∂Pi

+

i j

γi j

m j

∂

∂Pi

�
PjA(X,P, t)�

+ kT

i j

γi j
∂2A(X,P, t)
∂Pi∂Pj

. (B9)

Here, U(X) is the potential of mean force,

∂U(X)
∂Xi

=
∂U0(X)
∂Xi

+ n(E)∂E(X)
∂Xi

, (B10)

where n(Z) is defined as

n(Z) =


dϵ
2π

Γ

(ϵ − Z)2 + (Γ/2)2 f (ϵ), (B11)

γi j is the frictional damping coefficient

γi j =
~

Γ

1
kT

f (E)(1 − f (E))dE(X)
dX j

dE(X)
dXi

. (B12)

Finally, we transform back to the original variables P0
and P1 and we find
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∂P0(X,P, t)
∂t

= −

i

Pi

mi

∂P0(X,P, t)
∂Xi

+

i

∂U0(X)
∂Xi

∂P0(X,P, t)
∂Pi

− Γ
~

f (E)P0(X,P, t)

+
Γ

~
(1 − f (E))P1(X,P, t) + (n(E) − f (E))(1 − f (E))


i

∂E(X)
∂Xi

∂
�
P0(X,P, t) + P1(X,P, t)�

∂Pi
, (B13)

∂P1(X,P, t)
∂t

= −

i

Pi

mi

∂P1(X,P, t)
∂Xi

+

i

(∂E(X)
∂Xi

+
∂U0(X)
∂Xi

)∂P1(X,P, t)
∂Pi

+
Γ

~
f (E)P0(X,P, t)

− Γ
~
(1 − f (E))P1(X,P, t) + (n(E) − f (E)) f (E)


i

∂E(X)
∂Xi

∂
�
P0(X,P, t) + P1(X,P, t)�

∂Pi
. (B14)

1. A correction for electronic friction

At this point, we remind the reader that Eq. (B12) does not incorporate broadening correctly. The correct friction should
read

γi j =
~

Γ

1
kT
D(E)dE(X)

dXi

dE(X)
dX j

, (B15)

where D(Z) is

D(Z) ≡ Γ


dϵ
π

(
Γ/2

(ϵ − Z)2 + (Γ/2)2
)2

f (ϵ)(1 − f (ϵ)). (B16)

If we want to use the prescription discussed above in Appendix A to correctly broaden the electronic friction, the corresponding
CME becomes

∂P0(X,P, t)
∂t

= −

i

Pi

mi

∂P0(X,P, t)
∂Xi

+

i

∂U0(X)
∂Xi

∂P0(X,P, t)
∂Pi

− Γ
~

f (E)P0(X,P, t) + Γ
~
(1 − f (E))P1(X,P, t)

+ (n(E) − f (E))(1 − f (E))

i

∂E(X)
∂Xi

∂
�
P0(X,P, t) + P1(X,P, t)�

∂Pi

−

i

1
kT

(D(E) − f (E)(1 − f (E)))∂E(X)
∂Xi

Pi

mi

�
P0(X,P, t) + P1(X,P, t)�

−

i

�
D(E) − f (E)(1 − f (E))�∂E(X)

∂Xi

∂
�
P0(X,P, t) + P1(X,P, t)�

∂Pi
, (B17)

∂P1(X,P, t)
∂t

= −

i

Pi

mi

∂P1(X,P, t)
∂Xi

+

i

(∂E(X)
∂Xi

+
∂U0(X)
∂Xi

)∂P1(X,P, t)
∂Pi

+
Γ

~
f (E)P0(X,P, t)

− Γ
~
(1 − f (E))P1(X,P, t) + (n(E) − f (E)) f (E)


i

∂E(X)
∂Xi

∂
�
P0(X,P, t) + P1(X,P, t)�

∂Pi

+

i

1
kT

(D(E) − f (E)(1 − f (E)))∂E(X)
∂Xi

Pi

mi

�
P0(X,P, t) + P1(X,P, t)�

+

i

�
D(E) − f (E)(1 − f (E))�∂E(X)

∂Xi

∂
�
P0(X,P, t) + P1(X,P, t)�

∂Pi
. (B18)

The surface hopping procedure for solving Eqs. (B13)
and (B14) or Eqs. (B17) and (B18) is effectively the same as
the one phonon case described in Sec. III and Appendix A.
For brevity, we do not repeat the algorithm here.
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