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We present a very general form of electronic friction as present when a molecule with multiple orbitals
hybridizes with a metal electrode. To develop this picture of friction, we embed the quantum-classical
Liouville equation (QCLE) within a classical master equation (CME). Thus, this article extends our
previous work analyzing the case of one electronic level, as we may now treat the case of multiple
levels and many electronic molecular states. We show that, in the adiabatic limit, where electron
transitions are much faster than nuclear motion, the QCLE-CME reduces to a Fokker-Planck equation,
such that nuclei feel an average force as well as friction and a random force—as caused by their
interaction with the metallic electrons. Finally, we show numerically and analytically that our fric-
tional results agree with other published results calculated using non-equilibrium Green’s functions.
Numerical recipes for solving this QCLE-CME will be provided in a subsequent paper. Published by
AIP Publishing. [http://dx.doi.org/10.1063/1.4959604]

I. INTRODUCTION

The non-adiabatic dynamics of coupled electron-nuclear
motion have gained a lot of interest recently, as such
motions fundamentally underlie many chemical reactions,
transition state theory, photochemistry, and many other
processes. Due to the breakdown of the Born-Oppenheimer
approximation,1 propagating non-adiabatic dynamics is still
challenging theoretically and computationally.2

With only a few electronic states, there are nowadays
a few semiclassical dynamics methods available.3–9 Among
the many possible algorithms, surface hopping, Ehrenfest
dynamics, and multiple spawning are used widely for both
realistic and model systems.3,10–19 Direct propagation of
the Quantum-Classical Liouville Equation (QCLE)20,21 is
yet another option, though numerical instabilities can be
problematic. As will be important below, the QCLE can be
derived either directly from a Wigner transformation of a
Liouville equation or from a linearized influence functional
formalism.22 Recent work has shown a connection between
Tully’s surface hopping algorithm and the QCLE.23

Now, at a molecule-metal interface, with a manifold of
electronic degrees of freedom (DoFs), the coupled electron-
nuclear motion is obviously more tricky and there are far
fewer dynamical options; some of the schemes described
above carry over easily and some do not. On the one hand,
for mean-field dynamics, it is known that the simplest way
to model the effects of a metal surface on the motion of a
nearby molecule is the incorporation of “electronic” friction,
as has been derived independently by Head-Gordon/Tully,24,25

Brandbyge et al.,26,27 Mozyrsky et al.,28 and von Oppen et al.29

On the other hand, an extension of traditional surface hopping
has also been proposed to include many electronic DoFs
through the Independent-Electron Surface Hopping (IESH)
formalism.30,31 More recently, a classical master equation
(CME) approach has been derived, which represents in

a sense another (different) extension of surface hopping
to describe coupled electron-nuclear at a molecule-metal
interface.32–38

Last year, in Ref. 35, we considered in detail the case of a
molecule with two different charge states in the adiabatic limit
where electron transitions occur much faster than nuclear
motion. In that adiabatic limit, as shown in Ref. 35, we
showed that a CME/surface hopping approach correctly
reduces to Langevin dynamics with the correct electronic
friction (agreeing with von Oppen and Tully), provided that
the effects of level broadening effect are not very large.
See Appendix C for a brief review. Galperin and Nitzan37

have also studied the connection between surface hopping
and electronic friction from the framework of nonequilibrium
Green’s functions for the case of one molecular orbital and
two electronic states.

In the present paper, we will now extend the results of
Ref. 35 to the case of many electronic orbitals. Our approach
is as follows: First, we will embed a molecular system in
the Hamiltonian of a metallic bath (leading to a CME) and
second we will take the Wigner transform of the system
(which leads to the QCLE). The resulting QCLE-CME hybrid
is suitable for describing the coupled electron-nuclear motion
near metal surfaces when considering multiple molecular
DoFs (electronic and nuclear) in the molecule. Finally, in the
adiabatic limit, we will show how to transform the QCLE-
CME into a Fokker-Planck equation, where the friction and
random force can be expressed in a compact form. Our final
form of the friction nearly agrees with von Oppen results (both
numerically and analytically) in the limit of weak broadening.

Before proceeding, we note that the QCLE-CME hybrid
equation below incorporates a great many non-adiabatic
effects and should be a very powerful master equation for
future simulations. In a follow-up paper, we will provide a
numerical recipe for propagating QCLE-CME dynamics with
a surface hopping algorithm.
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The remainder of this paper is organized as follows.
In Sec. II, we derive the QCLE-CME to describe coupled
electron-nuclear dynamics near metal surfaces, followed by
a transformation to a FP equation. In Sec. III, this QCLE-
CME is compared with another CME based on a reduced
density matrix description of all electronic DoFs (denoted
CME-1RDM). In Sec. IV we compare our friction results
with previously published results. We conclude in Sec. V.

Notation. Our notation will be as follows: A “hat” denotes
an operator, e.g., Ô, which can be nuclear or electronic (or
both) in nature. The subscript “el” signifies an exclusively
electronic operator, that will usually depend parametrically
on some nuclear coordinate, e.g., the partially Wignerized
density matrix ρ̂el = ρ̂el(X,P). Bold face denotes vectors,
e.g., X denotes the coordinates of the nuclei in configuration
space. The greek letters α and β index nuclear vectors and
roman letters (n,m, k, . . .) index electronic orbitals.

II. THEORY: QCLE-CME

To derive a general form of electronic friction, we begin
by decomposing the total Hamiltonian Ĥtot into a system
Hamiltonian Ĥs, a bath Hamiltonian Ĥb, and the interaction
Hamiltonian Ĥv (coupling the system and bath),

Ĥtot = Ĥs + Ĥv + Ĥb. (1)

Here, Ĥs describes a molecule (i.e., our system) which
consists of many electrons that can hop between molecule
and metal with orbital creation/annihilation operators d̂+m/d̂n.
These electrons are coupled to nuclear motion as follows:

Ĥs =

mn

hmn(X̂)d̂+md̂n +

α

P̂2
α

2Mα
+U(X̂). (2)

Ĥb describes a metal surface (i.e., our bath) which is a
manifold of non-interacting electronic orbitals (ĉ+

k
, ĉk),

Ĥb =

k

ϵk ĉ+k ĉk . (3)

The interaction Ĥv between the system and bath is defined to
be bilinear,

Ĥv =

km

Vkm(ĉ+k d̂m + d̂+mĉk). (4)

For the system-bath couplings, we will assume the wide-
band approximation, such that the hybridization function
Γmn(ϵ) is independent of ϵ ,

Γmn(ϵ) ≡ 2π

k

VkmVknδ(ϵ − ϵk) = Γmn. (5)

A. Born-Markovian approximation for weak
system-bath couplings

For a tractable approach, we apply the Born-Markovian
approximation to the system-bath couplings, such that the
equation of motion (EOM) for the system density matrix can
be written as

∂

∂t
ρ̂I = − ˆ̂L I ρ̂I . (6)

We have written the above equation in the interaction
picture, where an operator Ô (in Schrodinger picture) evolves
as ÔI(t) = ei(Ĥs+Ĥb)t/~Ôe−i(Ĥs+Ĥb)t/~. The Born-Markovian
approximation assumes weak system-bath couplings and
an uncorrelated system-bath density matrix in the kernel’s
dynamics. The superoperator ˆ̂L I can be written explicitly
as

ˆ̂L I ρ̂I =
1
~2

 ∞

0
dτtrb[ĤI v(t), [ĤI v(t − τ), ρ̂I(t)


ρ̂

eq
b
]],

(7)

where ρ̂
eq
b

is the equilibrium density matrix of the bath. trb
denotes tracing over the bath DoFs. Equation (6) is often
denoted as a “Redfield Equation.”39

If we transform Eq. (6) back into the Schrodinger picture
ρ̂ = e−i Ĥst/~ ρ̂Iei Ĥst/~, the Redfield equations become

∂

∂t
ρ̂ = − i

~
[Ĥs, ρ̂] − ˆ̂Lbs ρ̂, (8)

where ˆ̂Lbs now is given by

ˆ̂Lbs ρ̂ =
1
~2

 ∞

0
dτe−i Ĥst/~trb

([ĤI v(t), [ĤI v(t − τ),ei Ĥst/~ ρ̂(t)e−i Ĥst/~


ρ̂
eq
b
]]) ei Ĥst/~. (9)

B. A partial Wigner transform

In order to take the classical limit for the nuclei, we apply
a partial Wigner transform to the equation of motion of ρ̂
(Eq. (8)), where the partial Wigner transform of the density
matrix is defined as

ρ̂el(X,P) ≡ (2π~)−3N


dY⟨X − Y/2| ρ̂|X + Y/2⟩eiP·Y/~,

(10)

and the partial Wigner transform of an Operator Ô is

Ôel(X,P) ≡


dY⟨X − Y/2|Ô |X + Y/2⟩eiP·Y/~. (11)

As usual,20 the partial Wigner transform of the commutator in
Eq. (8) yields a quantum-classical Liouville equation (QCLE),

− i
~
[Ĥs, ρ̂]el → − i

~
[Ĥel

s (X,P), ρ̂el(X,P)]
+ {Ĥel

s (X,P), ρ̂el(X,P)}a. (12)
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After the Wigner transform, Ĥel
s is of the same form as Ĥs (in

Eq. (2)), but we replace the nuclear operators (X̂, P̂) with the
classical parameters (X,P),

Ĥel
s (X,P) =


mn

hmn(X)d̂+md̂n +

α

P2
α

2Mα
+U(X). (13)

In Eq. (12), {·, ·}a is defined as

{Ô1,Ô2}a = 1
2
{Ô1,Ô2} − 1

2
{Ô2,Ô1}, (14)

where {·, ·} is the usual Poisson bracket

{Ô1,Ô2} =

α

∂Ô1

∂Xα

∂Ô2

∂Pα
− ∂Ô1

∂Pα

∂Ô2

∂Xα
. (15)

Thus,

{Ĥel
s ,Ô}a = −


α

Pα

Mα

∂Ô
∂Xα

+
1
2


α

�∂Ĥel
s

∂Xα

∂Ô
∂Pα

+
∂Ô
∂Pα

∂Ĥel
s

∂Xα

�
. (16)

When we apply the partial Wigner transforms (Eqs. (10)
and (11)) to the Redfield operator ˆ̂Lbs in Eq. (8), we keep only
those terms up to the zeroth order in the gradient expansion.40

In other words, we replace the Wigner transform of the product
by the product of the Wigner transforms (Ô1Ô2)el = Ôel

1 Ôel
2 ,

such that

( ˆ̂Lbs ρ̂)el(X,P) → ˆ̂Lel
bs(X) ρ̂el(X,P). (17)

To be clear, let us write out ˆ̂Lel
bs
(X) ρ̂el(X,P) explicitly,

ˆ̂Lel
bs ρ̂el =

1
~2

 ∞

0
dτe−i Ĥ

el
s t/~trb

(
[Ĥel

I v(t), [Ĥel
I v(t − τ),ei Ĥel

s t/~ ρ̂el(t)e−i Ĥel
s t/~


ρ̂

eq
b
]]
)

ei Ĥ
el
s t/~, (18)

where we have defined Ĥel
I v(t) ≡ ei(Ĥel

s +Ĥb)t/~

Ĥve−i(Ĥ
el
s +Ĥb)t/~.

After a Wigner transform has been performed, Ĥel
s

depends only on X and P as parameters, and one can easily
evaluate Eq. (18) and write down ˆ̂Lel

bs
(X) explicitly (see

Appendix A). Moreover, since the free potential U(X) and
kinetic energy terms in Ĥel

s (Eq. (13)) commute with any
operators in Eq. (18), we note that the dependence of ˆ̂Lel

bs
on

X arises only through hmn(X).
Finally, the EOM for ρ̂el becomes

∂

∂t
ρ̂el(X,P, t) = {Ĥel

s (X), ρ̂el(X,P, t)}a − ˆ̂Lel(X) ρ̂el(X,P, t),
(19)

or more simply, if we drop the parametric dependence on
(X,P) for a moment,

∂

∂t
ρ̂el(t) = {Ĥel

s , ρ̂el(t)}a − ˆ̂Lel ρ̂el(t).

Here, for every position X, we have defined ˆ̂Lel(·)
≡ ˆ̂Lel

bs
(·) + i

~
[Ĥel

s , ·]. Because all of the relevant terms involve
commutators, it is straightforward to see that tre

ˆ̂Lel(·) = 0,
where tre represents a trace over the system electronic DoFs.
Furthermore, as above, it is easy to see that ˆ̂Lel depends
only on X (and not on P, i.e., ˆ̂Lel =

ˆ̂Lel(X)) and that all
dependence on X arises through hmn(X).

Eq. (19) is our starting point for studying friction: it is a
combination of the QCLE and CME for describing classical
nuclear motion with electron transitions for molecules near
metal surfaces; henceforward, we will abbreviate this equation
as the QCLE-CME. To further analyze Eq. (19), we consider

below the slow motion of nuclei (as compared with electron
transitions). We remind the reader that the discussion below is
completely analogous to the analysis in Ref. 35, even though
the math is necessarily more complicated.

C. Stationary states

To proceed further, we define σ̂el
eq(X) to be the local

equilibrium distribution satisfying ˆ̂Lel(X)σ̂el
eq(X) = 0, with

normalization condition treσ̂el
eq = 1 for all X. Recall that the

dependence of σ̂el
eq on X arises only through hmn(X). We now

define A(X,P, t) ≡ tre ρ̂el(X,P, t) to be total probability density
in phase space at position (X,P). The difference between ρ̂el
and Aσ̂el

eq is defined as B̂el,

ρ̂el(X,P, t) ≡ A(X,P, t)σ̂el
eq(X) + B̂el(X,P, t). (20)

With Eq. (19), the coupled EOM for A and B̂el is (for
brevity, we temporarily omit the dependence on variables
X,P)

∂

∂t
A = tre{Ĥel

s , Aσ̂el
eq}a + tre{Ĥel

s , B̂el}a

= −

α

Pα

Mα

∂A
∂Xα

+

α

tre
�∂Ĥel

s

∂Xα
σ̂el
eq

� ∂A
∂Pα

+

α

tre
�∂Ĥel

s

∂Xα

∂ B̂el

∂Pα

�
, (21)

∂

∂t
B̂el = {Ĥel

s , B̂el}a − σ̂el
eqtre{Ĥel

s , B̂el}a − ˆ̂Lel B̂el

+ {Ĥel
s , Aσ̂el

eq}a − σ̂el
eqtre{Ĥel

s , Aσ̂el
eq}a. (22)
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D. The approximation of slow nuclei

Finally, to conclude our frictional model, we must make
the approximation that the nuclei move slowly compared with
electronic motion, such that we can disregard the first 3 terms
in Eq. (22), and approximate ˆ̂Lel B̂el as41

ˆ̂Lel B̂el = {Ĥel
s , Aσ̂el

eq}a − σ̂el
eqtre{Ĥel

s , Aσ̂el
eq}a

= −

β

Pβ

Mβ

∂σ̂el
eq

∂Xβ
A

+
1
2


β

�∂Ĥel
s

∂Xβ
σ̂el
eq + σ̂

el
eq

∂Ĥel
s

∂Xβ

� ∂A
∂Pβ

−

β

tre
�∂Ĥel

s

∂Xβ
σ̂el
eq

� ∂A
∂Pβ

σ̂el
eq. (23)

Note that both sides of the above equation are traceless.
With this condition, we can solve for B̂el by formally inverting
the supermatrix ˆ̂Lel. Plugging the solution back into Eq. (21),
we get a Fokker-Planck (FP) equation for pure nuclear motion,

∂

∂t
A = −


α

Pα

Mα

∂A
∂Xα

−

α

Fα
∂A
∂Pα

+

α,β

γαβ
∂

∂Pα

� Pβ

Mβ
A
�
+


α,β

Dαβ
∂2A

∂Pα∂Pβ
. (24)

Here Fα, γαβ, Dαβ are the mean force, friction, and correlation
of the random force, respectively,

Fα(X) = −tre
�∂Ĥel

s

∂Xα
σ̂el
eq

�
, (25)

γαβ(X) = −tre
�∂Ĥel

s

∂Xα

ˆ̂L−1
el

∂σ̂el
eq

∂Xβ

�
, (26)

Dαβ(X) = 1
2

tre
( ∂Ĥel

s

∂Xα

ˆ̂L−1
el

( ∂Ĥel
s

∂Xβ
σ̂el
eq

+ σ̂el
eq

∂Ĥel
s

∂Xβ
− 2tre

�∂Ĥel
s

∂Xβ
σ̂el
eq

�
σ̂el
eq

))
. (27)

The Langevin equation that corresponds to the FP
equation in Eq. (24) is

Mα Ẍα = Fα(X) −

β

γαβ(X)Ẋβ + δFα(t). (28)

Here δFα is a random force with a correlation function that is
Markovian

⟨δFα(t)δFβ(t ′)⟩ = 2Dαβ(X)δ(t − t ′). (29)

Eqs. (24)-(27) are the main results of this paper. There
are a few important points to address below.

E. The fluctuation-dissipation theorem

For one electronic bath, if Ĥel
s (X) is diagonal at all

X in some fixed diabatic basis, the fluctuation-dissipation
theorem is automatically satisfied, i.e., Dαβ(X) = kTγαβ(X).
To prove this statement, we note that the solution to
ˆ̂Lel(X)σ̂el

eq(X) = 0 is σ̂el
eq(X) = e−Ĥ

el
s (X)/kT/Z(X) (where

Z(X) ≡ tree−Ĥ
el
s (X)/kT), no matter whether Ĥel

s is diagonal

or not (see Appendix A for a proof). If Ĥel
s (X) is diagonal,

the following equation is also true:

∂

∂Xβ
e−Ĥ

el
s (X)/kT

= − kT
2

(
∂Ĥel

s

∂Xβ
e−Ĥ

el
s (X)/kT + e−Ĥ

el
s (X)/kT ∂Ĥel

s

∂Xβ

)
. (30)

The fluctuation-dissipation theorem can then be verified by
plugging σ̂el

eq(X) = e−Ĥ
el
s (X)/kT/Z(X) into Eqs. (26) and (27)

and using Eq. (30). More generally, if Ĥel
s (X) is not diagonal,

Eq. (30) is correct to order of ~,21 such that the fluctuation-
dissipation theorem is satisfied to order ~.

F. Energy conservation and the symmetry
of the friction

One question of interest is whether the mean force
(Eq. (25)) is conservative or not. While this question is
tricky to answer in general,29 we can show easily that at
equilibrium (i.e., in the case of one electronic bath), if the
system Hamiltonian is diagonal in some fixed diabatic basis,
then the mean force is conservative. To prove this statement,
we must show that the curl of the mean force is equal to 0,

∂Fα

∂Xβ
−

∂Fβ

∂Xα
= tre

�∂Ĥel
s

∂Xβ

∂σ̂el
eq

∂Xα

�
− tre

�∂Ĥel
s

∂Xα

∂σ̂el
eq

∂Xβ

� ?
= 0.

(31)

As mentioned above, at equilibrium, σ̂el
eq(X) = e−Ĥ

el
s (X)/kT/

Z(X). Thus, if Ĥel
s is diagonal—such that we can apply

Eq. (30)—one can easily verify Eq. (31). More generally, the
mean force will always be conservative at equilibrium, even if
the system Hamiltonian is not diagonal. See the supplementary
material for details.

Another question of interest is whether the friction
(Eq. (26)) is symmetric in terms of the nuclear coordinates
α and β. In general, the exact friction is guaranteed to be
symmetric by time-reversal symmetry.42,43 While our derived
friction is not symmetric, for a system Hamiltonian that is
diagonal in some fixed basis, there are two cases for which the
friction will be symmetric: (i) if we operate in the Redfield
regime (where Γmn ≪ kT) or (ii) if we make the so-called
secular approximation. See Sec. III for more details.

III. A MASTER EQUATION BASED
ON THE ELECTRONIC ONE PARTICLE
REDUCED DENSITY MATRIX (CME-1RDM)

As stated above, Eqs. (24)-(27) are the main results of
this paper. That being said, these equations may well appear
difficult to interpret because we cannot write down an explicit
form for the inverse of the Redfield operator, ˆ̂L−1

el
. To that end,

using a different approach, we will now derive a second master
equation, for which some analytical results can be obtained
in the limit that the system Hamiltonian is diagonal in some
diabatic basis. By doing so, we will connect our results to

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-024629
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-024629
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other results from a well-established non-equilibrium Green’s
function formalism.29

The ansatz is to work directly with the one particle
reduced density matrix, rather than the many-body eigenstates
of the system. The former approach is less general than
the latter approach, but should work well if there are no
electron-electron interactions. The reader can safely skip this
section if the results are not relevant to his or her research
interests and proceed directly to Sec. IV.

We will follow Ref. 44, working with the Hamiltonian

Ĥ =

mn

hmnd̂+md̂n +

km

Vkm(ĉ+k d̂m + d̂+mĉk) +

k

ϵk ĉ+k ĉk .

(32)

The one particle reduced density matrix is

σmn = ⟨d̂+md̂n⟩. (33)

With knowledge of the commutators,

[d̂+m, Ĥ] = −

a

hamd̂+a −

k

Vkmĉ+k , (34)

[d̂n, Ĥ] =

a

hnad̂a +

k

Vknĉk, (35)

[ĉ+k , Ĥ] = −ϵk ĉ+k −

a

Vkad̂+a, (36)

[ĉk, Ĥ] = ϵk ĉk +

a

Vkad̂a, (37)

we can evaluate the EOM for σmn, ⟨ĉ+
k
d̂n⟩ and ⟨d̂+mĉk⟩,

i~σ̇mn = −

a

hamσan +

a

σmahna

−

k

Vkm⟨ĉ+k d̂n⟩ +

k

Vkn⟨d̂+mĉk⟩, (38)

i~∂t⟨ĉ+k d̂n⟩ = −ϵk⟨ĉ+k d̂n⟩ −

a

Vkaσan +

a

hna⟨ĉ+k d̂a⟩

+

k′

Vk′n⟨ĉ+k ĉk′⟩, (39)

i~∂t⟨d̂+mĉk⟩ = ϵk⟨d̂+mĉk⟩ +

a

Vkaσma −

a

ham⟨d̂+aĉk⟩

−

k′

Vk′m⟨ĉ+k′ĉk⟩. (40)

To get a closed EOM for σmn, we approximate
⟨ĉ+

k
ĉk′⟩ = f (ϵk)δk,k′, where f is the Fermi function. If we

further assume that ĥ is diagonal (hmn = hmmδmn), then
the final result can be written explicitly. After a Fourier
transformation of Eqs. (39) and (40), we get

(~ω + (ϵk − hnn))⟨ĉ+k d̂n⟩(ω)
= −


a

Vkaσan(ω) + Vkn f (ϵk)2πδ(ω), (41)

(~ω − (ϵk − hmm))⟨d̂+mĉk⟩(ω)
=


a

Vkaσma(ω) − Vkm f (ϵk)2πδ(ω). (42)

Plugging the above equations into the Fourier transform of
Eq. (38), we find

~ωσmn(ω) = −(hmm − hnn)σmn(ω) +

ka

VkmVkaσan(ω) 1
~ω + (ϵk − hnn) + iη

+

ka

VknVkaσma(ω) 1
~ω − (ϵk − hmm) + iη

−

k

VkmVkn2πδ(ω) f (ϵk) 1
~ω + (ϵk − hnn) + iη

−

k

VkmVkn2πδ(ω) f (ϵk) 1
~ω − (ϵk − hmm) + iη

. (43)

Here, η is a positive infinitesimal. In the limit of the wideband
approximation, we then arrive at the EOM for σmn (after a
Fourier transform back to real time),

σ̇mn =
i
~
(hmm − hnn)σmn −

1
2~


a

Γmaσan

− 1
2~


a

Γanσma +
1

2~
Γmn( f (hnn) + f (hmm)). (44)

We will denote Eq. (44) as a CME-1RDM. Equation (44)
has a simple equilibrium solution, σeq

mn = f (hmm)δmn. We can

rewrite the above equation in a matrix form,

˙̂σ = − ˆ̂LC(σ̂ − σ̂eq). (45)

Here ˆ̂LC can be written explicitly,

(LC)mnab = −
i
~
(hmaδnb − hbnδma)

+
1

2~
(Γmaδnb + Γbnδma). (46)

Or, ˆ̂LC(·) = − i
~
[ĥ, ·] + 1

2~ [Γ̂, ·]+, where [·, ·]+ is an anti-
commutator. At this point, if nuclear motion couples with the
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electronic Hamiltonian Ĥ (Eq. (32)) such that hmn depends
on the nuclear position X, the EOM for the nuclei becomes

− mα Ẍα =
∂U(X)
∂Xα

+

mn

∂hmn(X)
∂Xα

d̂+md̂n, (47)

where U(X) is the free potential of the nuclei. In the spirit
of a mean field approximation,29 we can replace d̂+md̂n with
its average σmn = ⟨d̂+md̂n⟩. Furthermore, to first order in the
velocity of the nuclear motion, we approximate Eq. (45) as

σ̂ = σ̂eq −

β

Ẋβ
ˆ̂L−1
C

∂σ̂eq

∂Xβ
. (48)

Plugging Eq. (48) into Eq. (47), the first term on the right
hand side of Eq. (48) gives a mean force, while the second
term gives a velocity (Ẋβ) dependent force with a frictional
coefficient γα,β,

γα,β = −tre
� ∂ ĥ
∂Xα

ˆ̂L−1
C

∂σ̂eq

∂Xβ

�
. (49)

When there are no electron-electron interactions, Eq. (49)
should be identical with Eq. (26); both results arise from
second order perturbation theory. In fact, in Appendix B we
show that the Redfield operator for the CME-1RDM can be
derived from the QCLE-CME.

A. Secular approximation

According to Eq. (49), we must invert a superoperator
in order to evaluate the electronic friction (just as found in
Eq. (26)); thus, we have not apparently made any progress
in gaining intuition. However, in this present case—where
we consider the 1-RDM—we can make one further, natural
approximation: the secular approximation. In doing so, we
assume that only the diagonal elements of σ̂ can be nonzero.
Equation (45) reduces to

σ̇mm = −
Γmm

~
(σmm − f (hmm)). (50)

Similar to the argument above, we find a friction of the form

γα,β = −

m

∂hmm

∂Xα

~

Γmm

∂ f (hmm)
∂Xβ

. (51)

B. Symmetry of the friction

Working within a secular approximation, we can easily
show that Eq. (51) is symmetric between nuclei α, β. That
being said, the more general expressions for friction (Eqs. (26)
and (49)) are not totally symmetric. However, we will now
show that, in the Redfield limit where kT ≫ Γmn, symmetry
is maintained.

To prove this claim, We first need to evaluate the inverse
of the superoperator ˆ̂LC,

ˆ̂LCŶ =
1

2~
(Γ̂ − i2ĥ)Ŷ + 1

2~
Ŷ (Γ̂ + i2ĥ) = ∂σ̂eq

∂Xβ
. (52)

The above equation has a formal solution,

Ŷ = ˆ̂L−1
C

∂σ̂eq

∂Xβ
= 2~

 ∞

0
dλe−(Γ̂−i2ĥ)λ

∂σ̂eq

∂Xβ
e−(Γ̂+i2ĥ)λ, (53)

which can be verified by plugging the above equation into
Eq. (52) and integrating by parts. Since ĥ is diagonal (in some
diabatic basis), with σ̂eq = f (ĥ), we have

∂σ̂eq

∂Xβ
= − 1

kT
e−ĥ/2kT

1 + e−ĥ/kT
∂ ĥ
∂Xβ

e−ĥ/2kT

1 + e−ĥ/kT
. (54)

If we assume that kT ≫ Γmn (i.e., the Redfield limit), such
that [ĥ/kT, Γ̂] ≈ 0, the friction in Eq. (49) can be written as

γα,β =
2~
kT

 ∞

0
dλtre

×
� ∂ ĥ
∂Xα

e−(Γ̂−i2ĥ)λ−ĥ/2kT

1 + e−ĥ/kT
∂ ĥ
∂Xβ

e−(Γ̂+i2ĥ)λ−ĥ/2kT

1 + e−ĥ/kT
�
. (55)

Let us now show that γα,β = γβ,α. To simplify the
formulae, we denote U ≡ e−(Γ̂−i2ĥ)λ−ĥ/2kT

1+e−ĥ/kT
.45 We note U+

= U ∗. Using the cyclic properties of the trace, we find

γ∗α,β =
2~
kT

 ∞

0
dλtre

(� ∂ ĥ
∂Xα
U ∂ ĥ

∂Xβ
U+)+)

=
2~
kT

 ∞

0
dλtre

�
U ∂ ĥ

∂Xβ
U+ ∂ ĥ

∂Xα
)

=
2~
kT

 ∞

0
dλtre

� ∂ ĥ
∂Xα
U ∂ ĥ

∂Xβ
U+) = γα,β (56)

so that γαβ is necessarily real. Similarly,

γ∗α,β =
2~
kT

 ∞

0
dλtre

(� ∂ ĥ
∂Xα
U ∂ ĥ

∂Xβ
U+)∗)

=
2~
kT

 ∞

0
dλtre

� ∂ ĥ
∂Xα
U+ ∂ ĥ

∂Xβ
U )

=
2~
kT

 ∞

0
dλtre

� ∂ ĥ
∂Xβ
U ∂ ĥ

∂Xα
U+) = γβ,α. (57)

Thus, we have proven that, in the Redfield limit, our friction
is symmetric. This result should hold both for Eq. (49) and,
because of the connection established in Appendix B, also for
Eq. (26) (the QCLE-CME friction).

IV. RESULTS

Eqs. (26) and (49) are not the first published, many-
orbital expressions for electronic friction. For the Hamiltonian
in Eqs. (1)-(4), Ref. 29 gives an alternative expression for
electronic friction using a non-equilibrium Green’s function,

γα,β = ~


dϵ
2π

tre

×
(
Ĝ< ∂ ĥ

∂Xα
∂ϵĜR ∂h

∂Xβ
− Ĝ< ∂ ĥ

∂Xβ
∂ϵĜA ∂ ĥ

∂Xα

)
, (58)

where ĥ is the matrix form of hmn in Eqs. (13) and (32). To
evaluate Eq. (58), we need the retarded Green’s function ĜR,
whose inverse can be written as

(GR−1)mn = ϵδmn − hmn + iΓmn/2. (59)

For the case of one metal surface, the lesser Green’s function
is G<

mn = −i2Im(GR
mn) f (ϵ), where f (ϵ) = 1

1+exp(ϵ/kT ) is the
Fermi function.
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Let us now compare our results versus Green’s function
results both analytically and empirically.

A. Analytical comparison

The different frictional expressions can be easily
compared in the special case that the system Hamiltonian
is diagonal (hmn = hmmδmn) and we invoke the secular
approximation.

Within the secular approximation, we neglect the off-
diagonal terms in the Green’s function results, so that Eq. (59)
can be inverted as (provided hmn is diagonal),

(GR)mn =
1

ϵ − hmm + iΓmm/2
δmn. (60)

The friction (Eq. (58)) can then be evaluated,

γα,β = −
~

2


m


dϵ
2π

(
Γmm

(ϵ − hmm)2 + (Γmm/2)2
)2

× ∂ϵ f (ϵ)∂hmm

∂Xα

∂hmm

∂Xβ
. (61)

In the limit of kT ≫ Γmm, when we can disregard the effects of

broadening, Γmm

(
Γmm

(ϵ−hmm)2+(Γmm/2)2
)2
→ 4πδ

�
ϵ − hmm

�
and

Eq. (61) reduces to Eq. (51).
Note that, for completeness, for the special case of

a one-level system, we provide all relevant equations in
Appendix C (that also addresses the effect of broadening on the
friction).

B. Numerical comparison

An analytical comparison of density matrix approaches
versus Green’s function approaches is difficult beyond the
secular approximation and/or in the case of a nondiagonal
Hamiltonian. Thus, we have found numerical comparisons to
be very useful.

To compare our results with the Green’s function results,
we choose a two-level electronic system coupled with a
harmonic oscillator

Ĥel
s = E1(x)d̂+1 d̂1 + E2(x)d̂+2 d̂2 + V (d̂+1 d̂2 + d̂+2 d̂1)
+

1
2

mω2x2 +
p2

2m
. (62)

This system is subsequently coupled to one metal surface. For
the exact form of system-bath couplings, we take the wide-
band approximation, such that Γmn ≡ 2π


k VkmVknδ(ϵ − ϵk)

is independent of energy for all electronic orbitals n and m.
We investigate our results for two models

1. E1(x) = gx
√

2mω/~, E2(x) = 0, Γ11 = Γ21 = Γ12 = 0, Γ22
= Γ, V , 0.

2. E1(x) = gx
√

mω/2~ −


mωg2x2/2~ + ∆2, E2(x) = gx√
mω/2~ +


mωg2x2/2~ + ∆2, V = 0, Γ11 = Γ22 = Γ, Γ12

= Γ21 = −Γ.

Note that, for model #2, the system Ĥel
s can be diagonalized

in a diabatic basis but for model #1, the system Ĥel
s is non-

diagonal in every diabatic basis. If we want to diagonalize the
system Hamiltonian of model #1 in a position dependent

adiabatic basis, we would need to introduce derivative
couplings and the mathematics would get necessarily more
involved. The forms of the supermatrix ˆ̂Lel

bs
for both cases are

given in Appendix A.

1. Non-diagonal system Hamiltonian

In Fig. 1, we compare our results (Eq. (26), which we
denote as QCLE-CME) with the Green’s function results (GF,
Eq. (58)) for model #1. For small Γ (Fig. 1(a)), we see good
agreement between the two answers. As we leave the Redfield
regime (Fig. 1(b), Γ > kT), the difference between the GF and
QCLE-CME results becomes larger, where we now find that
usually the QCLE-CME result has sharper dips or peaks. As
mentioned above, we are reasonably certain that all differences
between the QCLE-CME and GF results in Fig. 1 are due to
a lack of broadening in the QCLE-CME.

FIG. 1. Electronic friction as a function of x for model #1, with a non-
diagonal Ĥel

s . (a) In the Redfield regime (small Γ), our QCLE-CME result
(Eq. (26)) agrees with the Green’s function (GF) result (Eq. (58)) very well.
(b) For larger Γ, the QCLE-CME and GF results agree less well, where we
find that usually the QCLE-CME result has sharper dips or peaks due to a lack
of broadening. kT = 0.01, ~ω = 0.003, g = 0.0075, V = 0.01. (a) Γ= 0.01.
(b) Γ= 0.02.
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FIG. 2. Electronic friction as a function of x for model #2 where the sys-
tem Hamiltonian is diagonal. Results from the QCLE-CME (Eq. (26)) and
CME-1RDM (Eq. (49)) agree exactly and closely match the Green’s function
(GF) results (though without broadening). CME-1RDM-Sec results (Eq. (51))
perform less well, highlighting the limitations of the secular approximation,
which ignores off-diagonal contributions to the electronic friction (as caused
by intramolecular coherence). kT = 0.01, ~ω = 0.003, g = 0.0075, ∆= 0.01,
V = 0, Γ= 0.01.

2. Diagonal system Hamiltonian

Results for the diagonal Hamiltonian (model #2) are
plotted in Fig. 2. We plot the friction from Green’s function
(GF, Eq. (58)) theory versus the friction from all of the relevant
flavors of density matrix theory: QCLE-CME, CME-1RDM,
and CME-1RDM-Sec (i.e., CME-1RDM with the secular
approximation, Eq. (51)).

Note the exact agreement between the QCLE-CME
and CME-1RDM frictional results, as must be true (see
Appendix B). The QCLE-CME/CME-1RDM friction closely
approximates the GF result. That being said, notice that when
we make the secular approximation, the quality of the result
decreases noticeably. The secular approximation performs
well only when the energy spacing between the adiabatic levels
of the system (ignoring system-bath coupling) is much larger
than Γ. This analysis is consistent with the observation that
the CME-1RDM results and CME-1RDM-Sec results deviate
the most around x = 0 where |E2(x) − E1(x)| is smallest.

In the end, our QCLE-CME result for the electronic
friction in terms of the system eigenstates (Eq. (26)) captures
most of the relevant features for many-body friction (excluding
broadening). In the near future, we would like to apply this
frictional model to a more realistic, ab initio Hamiltonian,
where we can also investigate the spurious asymmetry of
Eq. (26). This work is ongoing.

V. CONCLUSION

We have formed a QCLE-CME hybrid set of equations
to describe the electron-nuclear coupled dynamics near
metal surfaces. In the adiabatic limit, where electronic
transitions are much faster than nuclear motion, we arrive
at a Fokker-Planck equation for pure nuclear motion, with
friction and random force given explicitly. Our final model

of friction mostly agrees with von Oppen’s results,29 provided
that level broadening can be disregarded. However, we must
emphasize that because our QCLE-CME works naturally
in a basis of many-body eigenstates of the system—whereas
von Oppen’s approach works naturally with a one electron
Hamiltonian—differences will arise when electron-electron
correlation becomes important. In such a case, we expect the
QCLE-CME friction in Eq. (26) will be a better prescription
than the CME-1RDM or Green’s function friction results.
In the future, we hope to investigate these approaches with
realistic ab initio electronic structure calculations where such
electron-electron correlation effects can be explored.

SUPPLEMENTARY MATERIAL

See supplementary material for a proof of energy
conservation and a guide for evaluating the Redfield relaxation
operator.
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APPENDIX A: REDFIELD OPERATOR
IN THE SYSTEM EIGENBASIS

In this appendix, we show how to evaluate Eq. (18)
explicitly and computate ˆ̂Lel

bs
. All manipulations will be at

one point in configuration space X, and so we drop all X
dependence for convenience henceforward. We will use the
indices N,M to denote electronic eigenstates of Ĥel

s .
To begin the calculation, we note that (in the interaction

picture),

Ĥel
I v(t) =


mk

Vmkei Ĥ
el
s t/~d̂+me−i Ĥ

el
s t/~ĉke−iϵk t/~ + h.c. (A1)

When we plug Eq. (A1) into Eq. (18), we will find 8 nonzero
terms (4 terms plus their h.c.) when we disentangle the
commutators. To be explicit, we show one term

1
~2

 ∞

0
dτ


mnk

VmkVnke−iϵkτ/~d̂+me−i Ĥ
el
s τ/~d̂nei Ĥ

el
s τ/~

× (1 − f (ϵk)) ρ̂el(t). (A2)

Here, we have used trb(ĉk ĉ+
k′ρ̂

eq
b
) = (1 − f (ϵk))δk,k′. To

proceed, we must diagonalize the system Hamiltonian, so
that we can express the N M matrix element as

(U+e−i Ĥel
s τ/~d̂nei Ĥ

el
s τ/~U)NM

= (U+d̂nU)NMe−i(ẼN−ẼM)τ/~, (A3)

where U and ẼN are the eigenvectors and eigenvalues of the
system Hamiltonian Ĥel

s . Then the integral in Eq. (A2) for the
N M matrix element becomes

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-024629
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k

VmkVnk

 ∞

0
dτ(1 − f (ϵk))e−iϵkτ/~

×
(
U+e−i Ĥ

el
s τ/~d̂nei Ĥ

el
s τ/~U

)
NM

(A4)

= π~

k

VmkVnk(1 − f (ϵk))

× (U+d̂nU)NMδ(ϵ − ẼM + ẼN) (A5)

=
~

2
Γmn(U+d̂nU)NM(1 − f (ẼM − ẼN)). (A6)

For convenience, we now define (D̃n)NM ≡ (U+d̂nU)NM

(1 − f (ẼM − ẼN)), so that Eq. (A2) becomes (with this
shorthand notation),

mn

Γmn

2~
d̂+mUD̃nU+ ρ̂el(t). (A7)

The final form for the Redfield operator is

ˆ̂Lel
bs ρ̂el =


mn

Γmn

2~
d̂+mUD̃nU+ ρ̂el(t)

+

mn

Γmn

2~
d̂mUD+nU

+ ρ̂el(t)

−

mn

Γmn

2~
d̂+m ρ̂el(t)UDnU+

−

mn

Γmn

2~
d̂m ρ̂el(t)UD̃+nU+ + h.c. (A8)

In the above equation, we have further defined (D+n)NM

≡ (U+d̂+nU)NM f (ẼN − ẼM), (Dn)NM ≡ (U+d̂nU)NM f (ẼM

− ẼN), and (D̃+n)NM ≡ (U+d̂+nU)NM(1 − f (ẼN − ẼM)).

1. Equilibrium solution

At this point, we remind the reader that Eq. (A8)
has a simple steady state solution to ˆ̂Lel

bs
ρ̂el = 0, namely

ρ̂el = e−Ĥ
el
s /kT/Z (where Z is a normalization factor).46 To

prove this statement, we notice that ˆ̂Lel
bs
ρ̂el = 0 is satisfied if

we have

UD̃nU+ ρ̂el = ρ̂elUDnU+, (A9)

UD+nU
+ ρ̂el = ρ̂elUD̃+nU

+. (A10)

Let us focus on Eq. (A9), which is equivalent to

D̃nU+ ρ̂elU = U+ ρ̂elUDn. (A11)

We can verify that (U+ ρ̂elU)NM = δNMe−ẼN/kT/Z is the
solution to Eq. (A11) by looking at the N M matrix element
on both sides of Eq. (A11),

(U+d̂nU)NM(1 − f (ẼM − ẼN))e−ẼM/kT

= e−ẼN/kT(U+d̂nU)NM f (ẼM − ẼN). (A12)

Similarly, Eq. (A10) can be also verified. Thus, ρ̂el
= e−Ĥ

el
s /kT/Z is indeed the steady state solution to ˆ̂Lel

bs
ρ̂el

= 0. Moreover, it is easy to see that ρ̂el = e−Ĥ
el
s /kT/Z

is also the solution to ˆ̂Lel ρ̂el = 0, where ˆ̂Lel(·) ≡ ˆ̂Lel
bs
(·)

+ i
~
[Ĥel

s , ·].

2. Case of two level systems

Eq. (A8) is a rather general form of the Redfield operator,
which we now apply to the two-level model systems in Sec. IV.
In matrix form, the system Hamiltonian is

Hel
s =

*.....
,

0
E1 V
V E2

E1 + E2

+/////
-

+

(
1
2

mω2x2 +
p2

2m

)
Îel,

(A13)

where Îel is the electronic identity operator. The annihilation
operators are

d1 =

*.....
,

0 1 0 0
0 0 0 0
0 0 0 −1
0 0 0 0

+/////
-

,d2 =

*.....
,

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

+/////
-

. (A14)

After diagonalizing the system, the eigenvalues of Hel
s are

denoted as ẼN , N = 1, . . . ,4, and the eigenvectors are

U =
*.....
,

1
cos θ sin θ
− sin θ cos θ

1

+/////
-

. (A15)

Using Eqs. (A8)-(A15), the Redfield operator can be
easily evaluated (we will leave details to the supplementary
material). For simplicity, we will use the notation fNM

≡ f (ẼN − ẼM).
For model #1 in Sec. IV, we find

− (Lel
bsρel)11 = −

Γ

~
(sin2θ f21 + cos2θ f31)ρel11

+
Γ

~
(sin2θ f12 + cos2θ f13)ρel33

+
Γ

2~
sin θ cos θ( f13 − f12)

× (ρel32 + ρel23), (A16)

(Lel
bsρel)33 = −(Lel

bsρel)11, (A17)

−(Lel
bsρel)22 = −

Γ

~
(cos2θ f42 + sin2θ f43)ρel22

+
Γ

~
(cos2θ f24 + sin2θ f34)ρel44

− Γ
2~

sin θ cos θ( f43 − f42)
× (ρel32 + ρel23), (A18)

(Lel
bsρel)44 = −(Lel

bsρel)22. (A19)

For the coherence term, we find

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-024629
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-024629
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− (Lel
bsρel)23 =

Γ

2~
sin θ cos θ

(( f31 − f21)ρel11 + ( f34 − f24)ρel44 − ( f43 − f42)ρel33

− ( f13 − f12)ρel22

)
− Γ

2~

(
sin2θ f12 + cos2θ f13 + cos2θ f42 + sin2θ f43

)
ρel23 (A20)

and (Lel
bs
ρel)32 = (Lel

bs
ρel)∗23.

For model #2, where the system Hamiltonian is already diagonal, the operator ˆ̂Lel
bs

can be written as

−(Lel
bsρel)11 = −(Γ11

~
f21 +

Γ22

~
f31)ρel11 +

Γ11

~
f12ρ

el
22 +
Γ22

~
f13ρ

el
33 +
Γ12

2~
( f12 + f13)(ρel32 + ρel23),

−(Lel
bsρel)22 = −(Γ11

~
f12 +

Γ22

~
f42)ρel22 +

Γ11

~
f21ρ

el
11 +
Γ22

~
f24ρ

el
44 −
Γ12

2~
( f13 − f43)(ρel32 + ρel23),

−(Lel
bsρel)33 = −(Γ11

~
f43 +

Γ22

~
f13)ρel33 +

Γ11

~
f34ρ

el
44 +
Γ22

~
f31ρ

el
11 −
Γ12

2~
( f12 − f42)(ρel32 + ρel23),

−(Lel
bsρel)44 = −(Γ11

~
f34 +

Γ22

~
f24)ρel44 +

Γ11

~
f43ρ

el
33 +
Γ22

~
f42ρ

el
22 −
Γ12

2~
( f42 + f43)(ρel32 + ρel23).

(A21)

The coherence term is

− (Lel
bsρel)23 =

Γ12

2~

(( f31 + f21)ρel11 − ( f12 − f42)ρel22 − ( f13 − f43)ρel33

− ( f24 + f34)ρel44

)
− 1

2~

(
Γ11 f12 + Γ22 f13 + Γ22 f42 + Γ11 f43

)
ρel23. (A22)

Again, (Lel
bs
ρel)32 = (Lel

bs
ρel)∗23.

APPENDIX B: DERIVING THE CME-1RDM
FROM THE QCLE-CME

Let us now show that if the system Hamiltonian is
diagonal, the QCLE-CME (Eq. (19)) can be mapped to the
CME-1RDM (Eq. (44)). Without nuclear motion, the QCLE-
CME (Eq. (19)) reduces to

∂

∂t
ρ̂el = −

i
~
[Ĥel

s , ρ̂el] − ˆ̂Lel
bs ρ̂el, (B1)

where ˆ̂Lel
bs

is given in Eq. (A8). If the system Hamiltonian
Ĥel

s is diagonal, Eq. (A8) becomes

ˆ̂Lel
bs ρ̂el =


mn

Γmn

2~
d̂+md̂n(1 − f (hnn)) ρ̂el

+

mn

Γmn

2~
d̂md̂+n f (hnn) ρ̂el

−

mn

Γmn

2~
d̂+m ρ̂el d̂n f (hnn)

−

mn

Γmn

2~
d̂m ρ̂el d̂+n(1 − f (hnn)) + h.c. (B2)

In Sec. III, we defined σmn in the CME-1RDM
as σmn = ⟨d̂+md̂n⟩ = Tre( ρ̂el d̂+md̂n). Of course, σ̂ is Her-
mitian, because σ∗mn = Tre( ρ̂el d̂+md̂n)+ = Tre(d̂+nd̂m ρ̂el) =
Tre( ρ̂el d̂+nd̂m) = σnm.

To derive the CME-1RDM (Eq. (44)), we multiply
Eq. (B1) by d̂+md̂n on the right hand side and take the trace

over the electronic DoFs,
∂

∂t
Tre( ρ̂el d̂+md̂n) = − i

~
Tre

�[Ĥel
s , ρ̂el]d̂+md̂n

�

−Tre
�( ˆ̂Lel

bs ρ̂el)d̂+md̂n

�
. (B3)

To be this explicit, let us first evaluate the commutator in
Eq. (B3),

Tre
�(Ĥel

s ρ̂el − ρ̂el Ĥel
s )d̂+md̂n

�

=

ab

hab

�
Tre(d̂+ad̂b ρ̂el d̂+md̂n) − Tre( ρ̂el d̂+ad̂bd̂+md̂n)�

=

ab

hab(⟨d̂+md̂nd̂+ad̂b⟩ − ⟨d̂+ad̂bd̂+md̂n⟩). (B4)

Because the Hamiltonian is quadratic, Wick’s theorem can be
applied

⟨d̂+md̂nd̂+ad̂b⟩ = ⟨d̂+md̂n⟩⟨d̂+ad̂b⟩ + ⟨d̂+md̂b⟩⟨d̂nd̂+a⟩
= σmnσab + σmb(δan − σan) (B5)

and

⟨d̂+ad̂bd̂+md̂n⟩ = σabσmn + σan(δmb − σmb). (B6)

Thus, the commutator in Eq. (B3) finally becomes

i
~

Tre
�[Ĥel

s , ρ̂el]d̂+md̂n

�
=

i
~


a

(σmahan − hmaσan). (B7)

Here, we have used the symmetry that hmn = hnm.
To evaluate the third term in Eq. (B3), we first rewrite

ˆ̂Lel
bs
ρ̂el =

ˆ̂L1 ρ̂el + ( ˆ̂L1 ρ̂el)+, where ˆ̂L1 ρ̂el represents the first
4 terms on the right hand side of Eq. (B2), and ( ˆ̂L1 ρ̂el)+ is the
Hermitian conjugate of ˆ̂L1 ρ̂el. Using Wick’s theorem again,
one can show that
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Tre
�( ˆ̂L1 ρ̂el)d̂+md̂n

�
=


ab

Γab

2~
�
δanσmb − δanδmb f (hbb) + σanδmb f (hbb) − σmaδbn f (hbb) + σmaσbn − σanσmb

�

+

ab

σmn(σab − σba)(1 − f (hbb)) + σmn(σab − σba) f (hbb). (B8)

Using the properties of the trace, we know that Tre
�( ˆ̂L1 ρ̂el)+d̂+md̂n

�
=

(
Tre

�( ˆ̂L1 ρ̂el)d̂+nd̂m

�)∗
, and thus

Tre
�( ˆ̂L1 ρ̂el)+d̂+md̂n

�
=


ab

Γab

2~
�
δamσbn − δamδnb f (hbb) + σmaδbn f (hbb) − σanδmb f (hbb) + σanσmb − σmaσbn

�

+

ab

σmn(σba − σab)(1 − f (hbb)) + σmn(σba − σab) f (hbb). (B9)

Above, we have used the fact that σ∗mn = σnm and the fact
that Γmn is real.

Eventually, the third term in Eq. (B3) becomes (with
Γmn = Γnm),

Tre
�( ˆ̂Lel

bs ρ̂el)d̂+md̂n

�
=

1
2~


a

Γmaσan +
1

2~


a

Γanσma

− 1
2~
Γmn( f (hnn) + f (hmm)). (B10)

Plugging Eqs. (B10) and (B7) into Eq. (B3), one arrives
at the CME-1RDM (Eq. (44)).

APPENDIX C: ONE-LEVEL CASE

For a one-orbital system Hamiltonian, all of the results
above are easily quantified and were reported in Ref. 35. The
system Hamiltonian is

Ĥel
s = h(X)d̂+d̂ +U(X) +


α

P2
α

2mα
. (C1)

Using Eq. (19), we can show that the QCLE-CME reduces to

∂ρel0

∂t
= −


α

Pα

mα

∂ρel0

∂Xα
+


α

∂U(X)
∂Xα

∂ρel0

∂Pα

− Γ
~

f
�
h(X)�ρel0 +

Γ

~

(
1 − f

�
h(X)�) ρel1 , (C2)

∂ρel1

∂t
= −


α

Pα

mα

∂ρel1

∂Xα
+


α

∂U(X) + h(X)
∂Xα

∂ρel1

∂Pα

+
Γ

~
f
�
h(X)�ρel0 −

Γ

~

(
1 − f

�
h(X)�) ρel1 . (C3)

The CME-1RDM/CME-1RDM-Sec (Eqs. (44) and (50))
equations of motion are

∂σ1

∂t
=
Γ

~

(
f
�
h(X)� − σ1

)
. (C4)

All three CMEs give the same friction,

γα,β =
1

kT
~

Γ
f
�
h(X)�(1 − f

�
h(X)�) ∂h(X)

∂Xα

∂h(X)
∂Xβ

. (C5)

The Green’s function (Eq. (58)) gives a broadened result

γα,β =
~

2


dϵ
2π

(
Γ

(ϵ − h(X))2 + (Γ/2)2
)2

×
f (ϵ)�1 − f (ϵ)�

kT
∂h(X)
∂Xα

∂h(X)
∂Xβ

. (C6)

In the limit of kT ≫ Γ, when we can disregard the

effects of broadening, Γ
(

Γ

(ϵ−h(X))2+(Γ/2)2
)2
→ 4πδ

�
ϵ − h(X)�,

and Eq. (C6) reduces to Eq. (C5).
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46E. Geva, E. Rosenman, and D. Tannor, J. Chem. Phys. 113, 1380 (2000).

http://dx.doi.org/10.1063/1.4908034
http://dx.doi.org/10.1063/1.4922513
http://dx.doi.org/10.1063/1.4927237
http://dx.doi.org/10.1063/1.4939734
http://dx.doi.org/10.1021/acs.jpclett.5b02331
https://nanohub.org/resources/1877
https://nanohub.org/resources/1877
https://nanohub.org/resources/1877
https://nanohub.org/resources/1877
https://nanohub.org/resources/1877
https://nanohub.org/resources/1877
https://nanohub.org/resources/1877
https://nanohub.org/resources/1877
https://nanohub.org/resources/1877
https://nanohub.org/resources/1877
https://nanohub.org/resources/1877
https://nanohub.org/resources/1877
https://nanohub.org/resources/1877
https://nanohub.org/resources/1877
https://nanohub.org/resources/1877
https://nanohub.org/resources/1877
https://nanohub.org/resources/1877
https://nanohub.org/resources/1877
https://nanohub.org/resources/1877
https://nanohub.org/resources/1877
https://nanohub.org/resources/1877
https://nanohub.org/resources/1877
https://nanohub.org/resources/1877
https://nanohub.org/resources/1877
https://nanohub.org/resources/1877
https://nanohub.org/resources/1877
https://nanohub.org/resources/1877
https://nanohub.org/resources/1877
https://nanohub.org/resources/1877
https://nanohub.org/resources/1877
https://nanohub.org/resources/1877
https://nanohub.org/resources/1877
https://nanohub.org/resources/1877
https://nanohub.org/resources/1877
http://dx.doi.org/10.1063/1.481928

