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We derive an explicit form for the electronic friction as felt by a molecule near a metal surface for
the general case that molecule-metal couplings depend on nuclear coordinates. Our work generalizes
a previous study by von Oppen et al. [Beilstein J. Nanotechnol. 3, 144 (2012)], where we now go
beyond the Condon approximation (i.e., molecule-metal couplings are not held constant). Using
a non-equilibrium Green’s function formalism in the adiabatic limit, we show that fluctuating
metal-molecule couplings lead to new frictional damping terms and random forces, plus a correction
to the potential of mean force. Numerical tests are performed and compared with a modified classical
master equation; our results indicate that violating the Condon approximation can have a large effect
on dynamics. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4965823]

I. INTRODUCTION

The coupled electron-nuclear dynamics of molecules near
metal surfaces underlie many electrochemical phenomena,
and have gained a lot of interest recently. For example,
vibrationally promoted electron transfer and vibrational
relaxation for NO molecules scattering from gold surface
have been reported1,2 experimentally and followed up by many
theoretical studies.3,4 Coupled electron-nuclear dynamics also
play an important role in molecular junctions, and are
presumed to account for a great deal of exotic phenomena,
including inelastic scattering signatures,5–8 hysteresis,9–12

vibrational heating, and cooling.13–16

In the presence of metal surfaces, a manifold of electronic
degrees of freedom (DoFs) take part in the dynamics, such
that no simple solution is obvious. One attempt to simplify
the dynamics is to treat the electronic bath as a source
of friction for the nuclear DoFs.17,18 Decades ago, Head-
Gordon and Tully (HGT) derived a model for electronic
friction based on a smeared view of derivative couplings
in the adiabatic limit.19 Such a formalism has been used
successfully in many systems20–22 and yet apparently fails in
other cases.2,23 Following a non-equilibrium Green’s function
and scattering matrix approach, von Oppen and co-workers
have given an alternative formalism for electronic friction, one
which can be generalized to the out of equilibrium case.24,25

Similar results are reported from other approaches.26–28 In a
recent paper, we showed that a classical master equation
(CME) gives the same friction as von Oppen’s model,
provided that the level broadening can be discarded.29 In
that same paper, we also showed the connection between
the model of friction of HGT and von Oppen, both of
which share several common features as well as some
differences.

It should be emphasized that von Oppen’s friction model
relies on a constant molecule-metal coupling. For many
systems, such as gas molecule scattering from metal surface,

the molecule-metal couplings clearly depend on nuclear
coordinates. In this paper, we will generalize von Oppen’s
model to include such non-Condon effects, and give a compact
form of electronic friction in general. Interestingly, similar
results for friction have previously been derived using purely
time-dependent formalisms (without any nuclear motion);30–32

in fact, our final form of friction can be viewed as a
generalization of the HGT model to nonzero temperature; see
Subsection 5 of the Appendix. In the present article, we will go
beyond previous work by showing that non-Condon frictional
terms come along with additional non-Condon contributions to
the random force. At equilibrium, the fluctuation-dissipation
theorem is satisfied automatically. Finally and perhaps
most importantly, one finds non-Condon effects change the
potential of mean force and these changes can be very
large.

One shortcoming of our analysis here is that we restrict
ourselves to the adiabatic regime, whereby we assume that
the nuclear motion is much slower than the electronic motion.
Now, over the past year, we have argued that it is possible
to construct a broadened classical master equation (BCME)
valid in both non-adiabatic and adiabatic regimes.29,33,34

That being said, we will show below that incorporating
non-Condon effects is nontrivial in practice and can be
done most easily with only a partial treatment (whereby
only the contribution to the mean force is incorporated).
Numerical tests will show that incorporating such a
contribution to the mean force can dramatically affect the
dynamics.

We organize this paper as follows. In Sec. II, we
introduce our model, and use an adiabatic expansion to derive
the correct form of friction. In Sec. III, we introduce our
modified classical master equation. We discuss the results
in Sec. IV and conclude in Sec. V. In the Appendix, we
provide additional details for all derivations as well as show
an explicit connection between the HGT model and our
analysis.
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II. THEORY

A. Anderson-Holstein model

We consider a generalized Anderson-Holstein (AH)
model, where an impurity level (with creation [annihilation]
operator d+ [d]) couples both to a set of nuclear degrees
of freedom (DoFs) and a manifold of electronic states (with
creation [annihilation] operator c+

k
[ck]).

H = Hs + Hb + Hc, (1)

Hs = h(x)d+d + p2

2m
+U(x), (2)

Hb =

k

ϵkc+kck, (3)

Hc =

k

Vk(x)(d+ck + c+kd). (4)

Here, without loss of generality, we have considered only
a single nuclear DoF (x, p); for more general results, see
Subsection 3 of the Appendix.

The main difference between our Hamiltonian
(Eqs. (1)-(4)) and the Hamiltonian in Ref. 24 is that, in our
model, the molecule-metal coupling Vk(x) depends on nuclear
coordinates, which will become the source of new frictional
damping forces and random forces. Below, to simplify our
discussion, we will assume that Vk(x) is independent of k,
and we will apply the wide band approximation (such that the
real part of the retarded self-energy ΣR(ϵ, x) vanishes, and the
imaginary part (−Γ(x)/2) is energy independent),

Σ
R(ϵ, x) ≡


k

V 2
k
(x)

ϵ − ϵk + iη
= −iπ


k

V 2
k (x)δ(ϵ − ϵk)

= −iπV 2(x)ρ(ϵ) ≡ −iΓ(x)/2. (5)

In the above equation, η is a positive infinitesimal.
In our discussion, we will consider only classical nuclei.

If ω is a frequency for the nuclear motion as estimated
by ω =


∂2
xU/m, we assume kT ≫ ~ω. Then, Newtonian

mechanics can be applied for the classical nuclei,

−mẍ = ∂xU + ∂xh d+d +

k

∂xVk(d+ck + c+kd)

= ∂xU + ∂xh d+d +
∂xΓ

2Γ(x)

k

Vk(x)(d+ck + c+kd). (6)

The last equality in the above equation comes from the
assumptions that Vk(x) is independent of k, such that
∂xVk
Vk(x) =

∂xΓ
2Γ(x) (see Eq. (5)).

In Eq. (6), the nuclear motion is highly coupled with the
electronic DoFs. For a useful frictional model, we would like
to transform Eq. (6) into a closed set of Langevin equations
for purely nuclear DoFs,

−mẍ = ∂xU − F(x) + γ(x)ẋ + δ f (x, t), (7)

where F(x), γ(x), and δ f (x, t) are the mean force, frictional
damping coefficient, and random force that the nuclei
experience as caused by the electronic DoFs. In the adiabatic
limit, where the electronic motion is much faster than the
nuclear motion, Γ ≫ ~ω, such a transformation is possible.

We will show below that is natural to write

F(x) = F1(x) + F2(x), (8)
γ(x) = γ1(x) + γ2(x) + γ3(x) + γ4(x), (9)
D(x) = D11(x) + D12(x) + D21(x) + D22(x), (10)

where D(x) is the correlation function of the random force

⟨δ f (x, t)δ f (x, t ′)⟩ = D(x)δ(t − t ′). (11)

All terms above will be defined below.

B. Green’s functions

We will now show how to transform Eq. (6) into Eq. (7)
using the language of Green’s functions. To do so, we require
a few preliminary definitions.

1. Equilibrium (frozen) Green’s functions

Without nuclear motion, the Hamiltonian in Eqs. (1)-(4)
is the trivial resonant level model and can be solved with
equilibrium Green’s functions35 that assume fixed nuclei and
depend only on the time difference,

GR(t − t ′, x) ≡ − i
~
θ(t − t ′)⟨{d(t),d+(t ′)}⟩x, (12)

G<(t − t ′, x) ≡ i
~
⟨d+(t ′)d(t)⟩x. (13)

Here {,} denotes the anti-commutator. Frozen, equilibrium
Green’s functions are most naturally expressed in the energy
domain, G(t − t ′, x) = 

dϵ
2π~G(ϵ, x)e−iϵ(t−t′)/~ as follows:

GR(ϵ, x) = 1
ϵ − h(x) − ΣR , (14)

G<(ϵ, x) = iA(ϵ, x) f (ϵ), (15)

where A(ϵ, x) is the spectral function,

A(ϵ, x) = Γ(x)
(ϵ − h(x))2 + (Γ(x)/2)2 , (16)

and f (ϵ) ≡ 1
exp( β(ϵ−µ))+1 is the Fermi function.

2. Nonequilibrium Green’s functions

Now, when nuclear motion is included, frozen Green’s
functions can be invoked only if nuclear motion is
infinitesimally slow, such that the electrons have no memory
of any nuclear motion and x(0) is sampled from a static
distribution. More generally, we can define time-dependent
nonequilibrium Green’s functions as follows:

G̃R(t, t ′) ≡ − i
~
θ(t − t ′)⟨{d(t),d+(t ′)}⟩x(t), (17)

G̃<(t, t ′) ≡ i
~
⟨d+(t ′)d(t)⟩x(t). (18)

Here, ⟨. . . ⟩x(t) implies an average over electronic DoFs for a
given trajectory x(t). Whereas G(t − t ′) does not depend on
the velocity of the nuclei at time t, G̃(t, t ′) does depend on
such velocity. (Formally, we should write G̃(t, t ′, [x(t)]), but
this notation would be very cumbersome.)
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Note that G(t − t ′) and G̃(t, t ′) are only one element of a
bigger set of Green’s functions. Below we will also need

G̃<
d,k(t, t ′) ≡

i
~
⟨c+k (t ′)d(t)⟩x(t). (19)

Using these definitions, we can separate the operator on
the right hand side of Eq. (6) into an average part and a
random part. For example, for the ∂xh(d+d) term, we write
d+d = ⟨d+d⟩ + (d+d − ⟨d+d⟩). Eq. (6) then becomes

−mẍ = ∂xU + ∂xh(−i~G̃<(t, t))
+
∂xΓ

2Γ


k

Vk2ℜ(−i~G̃<
d,k(t, t)) + δ f (x, t), (20)

where δ f (x, t) is the random force,

δ f (x, t) = δ f1(x, t) + δ f2(x, t), (21)

δ f1(x, t) = ∂xh(d+d + i~G̃<(t, t)), (22)

δ f2(x, t) = ∂xΓ

2Γ


k

Vk

�
d+ck + c+kd + 2ℜ(i~G̃<

d,k(t, t))
�
. (23)

Below we will calculate explicit forms for all terms in
Eq. (20) in the limit of slow nuclear motion using a gradient
expansion of the Green’s functions. Because non-equilibrium
Green’s functions are nonstandard in chemistry, we will refer
the reader to Ref. 36 for the relevant background when
necessary.

3. Wigner transformation

Below, to perform a gradient expansion, we will require
the frequent use of a Wigner transformation which allows us
to separate fast electronic motion from slow nuclear motion.
The Wigner transformation of C(t1, t2) is defined as

CW(t, ϵ) =


dτeiϵτ/~C(t + τ/2, t − τ/2). (24)

As is well known,37 the Wigner transformation of a
convolution C(t1, t2) =


dt3A(t1, t3)B(t3, t2) can be expressed

with a “Moyel operator” as

CW(t, ϵ) = exp

i~
2
�
∂A
ϵ ∂

B
t − ∂B

ϵ ∂
A
t

�
AWBW

≈ AWBW +
i~
2
∂ϵAW∂tBW − i~

2
∂ϵBW∂t AW . (25)

On the far right hand side of Eq. (25), the expansion is correct
to order ~. Eq. (25) is sometimes called a gradient expansion.

4. Notation

From now on, unless otherwise noted, we will use G̃
(G) to denote G̃(t, ϵ , [x(t)]) (G(ϵ, x)). In other words, for
frozen Green’s functions (G), we will work almost always
in the energy domain (rather than the time domain). For
non-equilibrium Green’s functions (G̃), we will work almost
exclusively with the Wigner transformation. When we want
to work in the time domain explicitly, we will write G̃(t, t ′)
(G(t − t ′)).

C. Gradient expansion

1. Gradient expansion of G̃R(t, t ′)
We begin by analyzing the retarded Green’s function

G̃R(t, t ′). In Ref. 24, von Oppen et al. showed that, for the
case of a single impurity level and constant Γ, the full G̃R is
equal to the frozen GR up to the linear order in the velocity
of the nuclei, G̃R = GR. Let us now show that G̃R = GR still
holds when Γ depends on nuclear coordinates.

To demonstrate the equivalence, following the work of
von Oppen et al., note that the equation of motion for the
retarded Green’s function (as a function of t ′) is given by

− i~∂t′G̃R(t, t ′) = δ(t − t ′) +


dt1G̃R(t, t1)ΣR(t1, t ′)
+ G̃R(t, t ′)h. (26)

We emphasize that the derivative of the fully time-dependent
Green’s function G̃R(t, t ′) (Eq. (17)) with respect to t ′ is the
same as the derivative with respect to t ′ of the frozen Green’s
function GR(t − t ′) (Eq. (12)). This statement is not true for
the derivative with respect to t.

After a Wigner transformation (and a gradient expansion),
Eq. (26) becomes

G̃R(ϵ − ΣR − h) = 1 +
i~
2
∂ϵG̃R∂th +

i~
2
∂ϵG̃R∂tΣ

R

+
i~
2
∂tG̃R(1 − ∂ϵΣ

R) (27)

and dividing by (GR)−1 = ϵ − ΣR − h, we find

G̃R = GR

+
i~
2
�
∂ϵG̃R∂th + ∂ϵG̃R∂tΣ

R + ∂tG̃R(1 − ∂ϵΣ
R)�GR.

(28)

At this point, the only difference between our treatment of
the problem and von Oppen’s derivation in Ref. 24 is that,
in our case, since ΣR depends on x, ∂tΣR , 0. Instead, note
that ∂t = ẋ∂x, so that all of the terms in brackets on the right
hand side of Eq. (28) are already first order in velocity. Thus,
inside the brackets in Eq. (28), to first order in velocity we
can approximate G̃R = GR. Thus, we find

G̃R ≈ GR +
i~
2
�
∂ϵGR∂th + ∂ϵGR∂tΣ

R + ∂tGR(1 − ∂ϵΣ
R)�GR

= GR +
i~
2
[∂ϵGR∂th + ∂ϵGR∂tΣ

R

+ (∂th + ∂tΣ
R)(GR)2(1 − ∂ϵΣ

R)]GR (29)

= GR +
i~
2
[∂ϵGR∂th + ∂ϵGR∂tΣ

R

− (∂th + ∂tΣ
R)∂ϵGR]GR = GR. (30)

Here, we have differentiated GR = 1/(ϵ − h − ΣR) (Eq. (14)),
and used the fact that ∂tGR = (∂th + ∂tΣ

R)(GR)2, and
∂ϵGR = −(1 − ∂ϵΣ

R)(GR)2. This proves our hypothesis that
G̃R = GR to first order in ẋ.

2. Gradient expansion of G̃<

We are now ready to perform a gradient expansion of
the lesser Green’s function G̃< (as it appears in Eq. (20)).



092304-4 W. Dou and J. E. Subotnik J. Chem. Phys. 146, 092304 (2017)

We begin by considering the Langreth relation G̃<(t, t ′)
=


dt1dt2G̃R(t, t1)Σ<(t1, t2)G̃A(t2, t ′) (Eq. 39 of Ref. 36) for
the Dyson equation of the contour-ordered Green’s function.
We perform a Wigner transformation using Eq. (25) two times,
and we find

G̃< ≈ G< +
i~
2
∂th[∂ϵG<GA − G<∂ϵGA − GR∂ϵG<

+∂ϵGRG<] − i~
2
∂tΣ

R[∂ϵG<GA

−G<∂ϵGA + GR∂ϵG< − ∂ϵGRG<]
+

i~
2
∂tΣ

<[∂ϵGRGA − GR∂ϵGA]. (31)

Here, we have used the same Langreth relation for the
frozen lesser Green’s function, G< = GRΣ<GA, and we
have differentiated GA = (GR)∗ = 1/(ϵ − h + ΣR), such that
∂tGA = (∂th − ∂tΣ

R)(GA)2. Note that we have replaced G̃R/A

with GR/A on the right hand side of Eq. (31), which is correct
to the first order in velocity.

When we examine Eq. (31), the frozen retarded Green’s
function G< gives a mean force F1(x) on the nuclei as seen in
Eq. (8) (and using Eq. (15)),

F1(x) = −∂xh


dϵ
2π

(−iG<) = −∂xh


dϵ
2π

A(ϵ, x) f (ϵ). (32)

Knowing ∂t = ẋ∂x, the second set of terms on the right hand
side of Eq. (31) gives a friction term γ1(x) (Eq. (9)),

γ1(x) = ~(∂xh)2


dϵ
2π

[∂ϵG<(GA − GR)]. (33)

In the above equation, we have used integration by parts,
dϵX∂ϵY = −


dϵY∂ϵX . Below we will require this trick

repeatedly.
The last two terms in Eq. (31) give another friction term

γ2(x),
γ2(x) = (∂xh∂xΓ) i~2


dϵ
2π

[∂ϵG<(GA + GR)
+(∂ϵGRGA − GR∂ϵGA) f (ϵ)], (34)

where we have used Σ< = iΓ f (ϵ). γ1(x) and γ2(x) can be
recast into a compact form with all frozen Green’s functions
known explicitly (see Subsection 1 of the Appendix),

γ1(x) = −(∂xh)2~
2


dϵ
2π

A2(ϵ, x)∂ϵ f (ϵ) = −(∂xh)2~
2

×


dϵ
2π

(
Γ(x)

(ϵ − h(x))2 + (Γ(x)/2)2
)2

∂ϵ f (ϵ), (35)

γ2(x) = −~2 (∂xh∂xΓ)


dϵ
2π

(ϵ − h(x))A2(ϵ, x)
Γ(x) ∂ϵ f (ϵ). (36)

3. Gradient expansion of G̃<
d,k

Finally, we evaluate the last Green’s function G̃<
d,k

appearing in Eq. (20). Again, we use the Langreth trick
(Eq. 54 of Ref. 36) for the Dyson equation. We find

G̃<
d,k(t, t ′) =


dt1G̃R(t, t1)Vkg

<
k (t1, t ′) + G̃<(t, t1)Vkg

a
k (t1, t ′).

(37)

Here, gk(t, t ′) = G0
kk
(t, t ′) is the noninteracting Green’s

function for an electron in the lead, and is easily written
in the energy domain, gk(t, t ′) =


dϵ

2π~gk(ϵ)e−iϵ(t−t
′)/~, with

gak (ϵ) =
1

ϵ − ϵk − iη
, (38)

g<
k (ϵ) = i2πδ(ϵ − ϵk) f (ϵ). (39)

As above, we perform a Wigner transformation, and using
the fact that ∂tg<(ϵ) = ∂tg

a
k
(ϵ) = ∂ϵVk = 0, we find that, to the

first order in velocity,

G̃<
d,k ≈ (GRVkg

<
k + G̃<Vkg

a
k ) −

i~
2

Vk(∂tGR∂ϵg
<
k + ∂tG<∂ϵg

a
k )

+
i~
2
(∂ϵGRg<

k − GR∂ϵg
<
k + ∂ϵG<gak − G<∂ϵg

a
k )∂tVk .

(40)

Let us now discuss the individual terms on the right hand
side of Eq. (40). The frozen GRVkg

<
k

term gives a second
contribution to the mean force F2(x) (in Eq. (8)),

F2(x) = − ∂xΓ

2Γ(x)

k

Vk


dϵ
2π

2ℜ(−iGRVkg
<
k ). (41)

Using Eq. (A10) in the Appendix, one can write down an
explicit form for F2(x). As discussed in detail in the Appendix
of Ref. 38, the integral in Eq. (41) will blow up if we integrate
from −∞ to∞. Thus, as in Ref. 38, we introduce a bandwidth
(−W , W ) to evaluate F2(x) (while still insisting that W ≫ Γ
so that we can ignore dynamical effects beyond the wide-band
limit). The final answer is

F2(x) = − ∂xΓ

Γ(x)
 W

−W

dϵ
2π

(ϵ − h(x))A(ϵ, x) f (ϵ). (42)

The contribution of the term G̃<Vkg
a
k

(in Eq. (40)) to the force
(Eq. (8)) is zero because ℜ

k V 2
k
ga
k
= 0 (i.e., the wide band

limit). The second and third set of terms on the right hand
side of Eq. (40) make further contributions to the frictional
damping (γ3(x) and γ4(x) in Eq. (9)). See Subsection 1 of the
Appendix for details. We find

γ3(x) = − ~∂xΓ2Γ(x)

k

V 2
k (x)


dϵ
2π
ℜ(∂xGR∂ϵg

<
k + ∂xG<∂ϵg

a
k )

= −~(∂xΓ)
2

4


dϵ
2π

( A(ϵ, x)
Γ(x) −

A2(ϵ, x)
2

)∂ϵ f (ϵ)

−~∂xΓ∂xh
2


dϵ
2π

A2(ϵ, x)
Γ(x) (ϵ − h(x))∂ϵ f (ϵ), (43)

γ4(x) = − ~∂xΓ2Γ(x)

k

Vk(x)∂xVk


dϵ
2π

2ℜ(GR∂ϵg
<
k + G<∂ϵg

a
k )

= −~(∂xΓ)
2

4


dϵ
2π

A(ϵ, x)
Γ(x) ∂ϵ f (ϵ). (44)

D. Fluctuation-dissipation theorem

Now we will evaluate the correlation functions of
the random force δ f (x, t) = δ f1(x, t) + δ f2(x, t) (Eqs. (22)
and (23)). In the adiabatic limit, we would like the correlation
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function of the random force to be Markovian,

⟨δ f i(x, t)δ f j(x, t ′)⟩ = Di j(x)δ(t − t ′), i, j = 1,2. (45)

We start by applying Wick’s theorem,

⟨δ f1(x, t)δ f1(x, t ′)⟩ = ~2(∂xh)2G̃>(t, t ′)G̃<(t ′, t), (46)
⟨δ f1(x, t)δ f2(x, t ′)⟩

= ~2∂xh∂xΓ
2Γ

2ℜ

k

VkG̃>
d,k(t, t ′)G̃<(t ′, t), (47)

⟨δ f2(x, t)δ f1(x, t ′)⟩
= ~2∂xh∂xΓ

2Γ
2ℜ


k

VkG̃>(t, t ′)G̃<
d,k(t ′, t), (48)

⟨δ f2(x, t)δ f2(x, t ′)⟩
= ~2

(
∂xΓ

2Γ

)2

2ℜ

k,k′

VkVk′G̃>
k,d(t, t ′)G̃<

k′,d(t ′, t)

+ ~2
(
∂xΓ

2Γ

)2

2ℜ

k,k′

VkVk′G̃>
k,k′(t, t ′)G̃<(t ′, t). (49)

In the above equations, G̃> is the greater Greens function
defined as

G̃>(t, t ′) = − i
~
⟨d(t)d+(t ′)⟩x(t), (50)

G̃>
d,k(t, t ′) = −

i
~
⟨d(t)c+k (t ′)⟩x(t), (51)

G̃>
k,k′(t, t ′) = −

i
~
⟨ck(t)c+k′(t ′)⟩x(t). (52)

For Markovian dynamics, we must replace the corre-
sponding full Green’s functions in Eqs. (46)-(49) by the
frozen Green’s functions, so that all Green’s functions depend
only on τ = t − t ′. In such a case, the correlation function can
be evaluated explicitly. For instance,

D11(x) = ~2(∂xh)2


dτG>(τ)G<(−τ) (53)

= ~(∂xh)2


dϵ
2π

G>(ϵ)G<(ϵ) (54)

= ~(∂xh)2


dϵ
2π

A2(ϵ, x) f (ϵ)(1 − f (ϵ)). (55)

In Subsection 2 of the Appendix, we evaluate the other
terms. The end results are

D12(x) = D21(x) = ~∂xh∂xΓ


dϵ
2π

(ϵ − h(x))A2(ϵ, x)
Γ(x)

× f (ϵ)(1 − f (ϵ)), (56)

D22(x) = ~(∂xΓ)2


dϵ
2π

(ϵ − h(x))2A2(ϵ, x)
Γ2(x)

× f (ϵ)(1 − f (ϵ)). (57)

E. Putting it all together

Now we collect together all of the correlation functions
for the random force,

D(x) =


i, j=1,2

Di j(x)

= ~


dϵ
2π

(
∂xh + (ϵ − h(x)) ∂xΓ

Γ(x)
)2

× A2(ϵ, x) f (ϵ)(1 − f (ϵ)), (58)

and friction,

γ(x) =

i=1,4

γi(x)

= −~
2


dϵ
2π

(
∂xh + (ϵ − h(x)) ∂xΓ

Γ(x)
)2

× A2(ϵ, x)∂ϵ f (ϵ). (59)

We may also evaluate the mean force,

F(x) = F1(x) + F2(x)
= −

 W

−W

dϵ
2π

(
∂xh + (ϵ − h(x)) ∂xΓ

Γ(x)
)

A(ϵ, x) f (ϵ). (60)

Because ∂ϵ f (ϵ) = − f (ϵ)(1 − f (ϵ))/kT , we find that our
analysis satisfies the fluctuation-dissipation theorem D(x)
= 2kTγ(x). Note that Eq. (59) was reported previously in
Refs. 30–32.

III. BROADENED CLASSICAL MASTER EQUATION
(BCME) AND ELECTRON-FRICTION LANGEVIN
DYNAMICS (EF-LD)

In 2015, we analyzed a simple classical master equation
(CME) for modeling dynamics in the limit of Γ < kT33

(i.e., assuming weak system-bath coupling), and we showed
that this CME should be valid both in the non-adiabatic
(Γ < ~ω) and adiabatic (Γ > ~ω) limits.29,34 In a more
recent paper, we proposed a straightforward, extrapolated
approach to incorporate level broadening, such that one
could extend the range of validity for the CME to include
Γ > kT .39 All of our previous work assumed the Condon
approximation, such that Γ(x) = Γ does not depend on
nuclear coordinate x. In this section, we would like
to incorporate the extra effect of breaking the Condon
approximation (∂xΓ) into our classical master equation
(CME). We will show that this can be done, at least partially, by
ansatz.

To achieve such a general, broadened classical master
equation, we will use the following set of equations (which
constitute a broadened classical master equation (bCME)),
which is valid when Γ is a constant:

∂P0(x,p, t)
∂t

= − p
m

∂P0(x,p, t)
∂x

+
(
∂xU − f (h(x))∂xh − F1(x)

) ∂P0(x,p, t)
∂p

− Γ
~

f (h(x))P0(x,p, t) + Γ
~

�
1 − f (h(x))�P1(x,p, t), (61)
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∂P1(x,p, t)
∂t

= − p
m

∂P1(x,p, t)
∂x

+
(
∂xU +

�
1 − f (h(x))� ∂xh − F1(x)

) ∂P1(x,p, t)
∂p

+
Γ

~
f (h(x)) P0(x,p, t) − Γ

~

�
1 − f (h(x))�P1(x,p, t), (62)

where F1(x) is defined in Eq. (32). Eqs. (61) and (62) are
slightly different from our previous work in Ref. 39 but
basically very similar. See Subsection 4 of the Appendix for
more details. P0(x,p, t) �

P1(x,p, t)� in the above equations
is the probability density for the level in the molecule to
be unoccupied (occupied) with nuclei at position x with
momentum p. We emphasize that Eqs. (61) and (62) correctly
extrapolate between the limits of strong and weak molecule-
metal couplings, while always assuming nuclear motion is
classical (kT > ~ω). To gain intuition for Eqs. (61) and (62),
the most important points to keep in mind are follows: (i)
For small Γ, F1(x) → − f (h(x))∂xh, so that Eqs. (61) and (62)

recover the unbroadened CME;29,39 (ii) in the adiabatic limit,
following Ref. 39, Eqs. (61) and (62) yield the same Langevin
equation as found by von Oppen et al.,24 whereby the system
evolves adiabatically on a broadened potential of mean force
Upm f ,

Upm f (x) = U(x) −
 x

x0

dx ′F1(x ′). (63)

See Ref. 39 for instructions on taking the adiabatic limit.
Eqs. (61) and (62) are very suggestive, as now one

can easily incorporate the extra mean force F2(x) (Eq. (42))
coming from ∂xΓ,

∂P0(x,p, t)
∂t

= − p
m

∂P0(x,p, t)
∂x

+
(
∂xU − f (h(x))∂xh − F1(x) − F2(x)

) ∂P0(x,p, t)
∂p

− Γ(x)
~

f (h(x))P0(x,p, t) + Γ(x)
~

�
1 − f (h(x))�P1(x,p, t), (64)

∂P1(x,p, t)
∂t

= − p
m

∂P1(x,p, t)
∂x

+
(
∂xU +

�
1 − f (h(x))�∂xh − F1(x) − F2(x)

) ∂P1(x,p, t)
∂p

+
Γ(x)
~

f (h(x))P0(x,p, t) − Γ(x)
~

�
1 − f (h(x))�P1(x,p, t). (65)

Thus, it is very simple to incorporate any violation of the
Condon approximation into a classical master equation, at
least regarding the potential of mean force. The new potential
of mean force is simply

Upm f (x) = U(x) −
 x

x0

dx ′F1(x ′) −
 x

x0

dx ′F2(x ′). (66)

Lastly, to incorporate broadening, we always39 broaden
the probability densities P0(x,p, t) and P1(x,p, t) as follows:

P̃0(x,p, t) = �
1 − n(h(x)) + f (h(x))�P0(x,p, t)
−
�
n(h(x)) − f (h(x))�P1(x,p, t)

+
�
n(h(x)) − f (h(x))��P0(x,p, t) + P1(x,p, t)�

× exp
�
−
 t

0
dt Γ(x(t))�, (67)

P̃1(x,p, t) = �
1 + n(h(x)) − f (h(x))�P1(x,p, t)
+
�
n(h(x)) − f (h(x))�P0(x,p, t)

−
�
n(h(x)) − f (h(x))��P0(x,p, t) + P1(x,p, t)�

× exp
�
−
 t

0
dt Γ(x(t))�. (68)

Here P̃0(x,p, t) and P̃1(x,p, t) are probability densities that
include ad hoc broadening. In the above equations, the
exponential factors should be understood as an average over

all trajectories x(t) that start at time t = 0; n(h(x)) is the local
population defined as

n(h(x)) ≡


dϵ
2π

A(ϵ, x) f (ϵ)

=


dϵ
2π

Γ(x)
(ϵ − h(x))2 + (Γ(x)/2)2 f (ϵ). (69)

To get the total electronic population N , we calculate (for the
BCME)

N =


dxdp P̃1(x,p, t). (70)

For the electronic friction-Langevin dynamics (EF-LD,
Eq. (7)), we average the local population n(h(x)),

N = ⟨n(h(x))⟩ =


dxdpPLD(x,p, t)n(h(x)), (71)

where PLD(x,p, t) is the total probability densities in phase
space at position x and p from EF-LD.

Now, as far as friction is concerned, following Ref. 39,
one can show that Eqs. (64) and (65) are consistent with a
electronic friction of the form

γc(x) = ~
Γ

1
kT

f (h(x)) �1 − f (h(x))�(∂xh)2. (72)

Eq. (72) is an unbroadened version of the friction term γ1(x)
(in Eq. (35)). Including the effect of broadening on friction is
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discussed in detail in Ref. 39, where we have shown that such
broadening effects do not usually affect the dynamics very
much; the effect of broadening on the potential of mean force
surface is far stronger.

Finally, we must emphasize that Eqs. (64) and (65) do not
incorporate any non-Condon effects with regards to frictional
damping. Thus, the terms γ2(x), γ3(x), γ4(x) in Eq. (9) are
completely absent from our bCME in Eqs. (64) and (65). While
we would like to include these additional frictional terms, it is
difficult to do so in a stable and easy manner because there is no
guarantee that γ2(x) + γ3(x) + γ4(x) is greater than zero. All
we are guaranteed is that γ1(x) + γ2(x) + γ3(x) + γ4(x) > 0.
See Eq. (59).

IV. RESULTS

Let us now apply the theory above to a simple model
problem which extends the Anderson-Holstein model beyond
the Condon approximation. For this problem, looking at
Eqs. (2) and (5), we set

U(x) = 1
2

mω2x2, (73)

h(x) = Ed + g


2mω/~x, (74)

Γ(x) = Γ0(1 + exp(−Kmωx2/~)). (75)

A. Statics

In Fig. 1, we plot the potentials of mean force (as well as
the diabatic potentials U(x) and U(x) + h(x)) as a function of
nuclear position, and we consider explicitly the effect of F2(x)
(compare Eq. (63) with Eq. (66)). From Eq. (42), we know
that F2(x) will distort the potential of mean force in regions
where ∂xΓ is large. This distortion of the potential of mean
force can dramatically affect the dynamical and equilibrium
electronic population. Interestingly, in Fig. 1, we find that the

FIG. 1. ∂xΓ (up) and Diabatic potentials as well as potentials of mean
force (down) for the non-Condon Hamiltonian in Eqs. (73)-(75): K = 1,
~ω = 0.003, Γ0= 0.02, kT = 0.01, g = 0.02, Ēd = 0, µ = 0, W = 1. Ēd

= Ed−g 2/~ω is the renormalized energy level. Notice that the presence of
F2 coming from ∂xΓ strongly modifies the potential of mean force.

FIG. 2. Three different approximations for electronic friction. K = 1,
~ω = 0.003, Γ0= 0.02, kT = 0.01, g = 0.0075, Ēd = 0, µ = 0. The total fric-
tion γ(x)=γ1(x)+γ2(x)+γ3(x)+γ4(x) (Eq. (59)) appears bimodal because
of a dip around x = 0 where ∂xΓ is large. This dip is not present either
for γ1(x) (Eq. (35)) or γc(x) (Eq. (72), i.e., the friction incorporated in the
bCME).

potential of mean force shows a dip in the region where Γ
has a peak, which indicates that the nuclei are attracted to
positions of space where they hop back and forth frequently.
This effect can be quantified by integrating Eq. (42). Suppose,
for example, the integral

 W

−W
dϵ
2π (ϵ − h(x))A(ϵ, x) f (ϵ) = −α

does not strongly depend on x (the integral is negative, so
that α > 0). Then, the potential of mean force coming from
the F2(x) term (see Eq. (66)) will be Upm f (x) = −α log(Γ(x)),
which indeed creates a dip where Γ(x) is peaked.

In Fig. 2, we plot the electronic friction as a function
of nuclear position. We do this for three cases: γ(x)
= γ1(x) + γ2(x) + γ3(x) + γ4(x), γ1(x), and γc(x). Here γc(x)
is the CME friction (Eq. (72)), which is the unbroadened
version of γ1(x) (Eq. (35)), and neither γ1(x) nor γc(x)
includes any terms dependent on ∂xΓ (γ2(x), γ3(x), γ4(x)).
Note that γ1(x) and γc(x) have only one maximum where
the two PES’s cross and the nuclei hop back and forth most
frequently. The total friction γ(x) is bimodal because of a dip
around x = 0, where ∂xΓ is large (see Eq. (59)). For all three
cases, D(x) = 2kTγ(x) holds. Thus, we may expect that all
three cases give the same equilibrium electronic population
and nuclear distribution (as long as the friction is not zero).

B. Dynamics

We now compare both electronic and nuclear dynamics
(electronic population and kinetic energy as a function of time)
from (i) our bCME (Eqs. (64) and (65)) and (ii) electronic
friction-Langevin dynamics (EF-LD, Eq. (7)). For EF-LD,
the nuclei simply move along the adiabatic potential of mean
force (Eq. (8)) and feel friction γ(x) (Eq. (9), Eq. (59)) and a
random force δ f (x, t) (Eq. (10), Eq. (58)). Thus, we emphasize
that EF-LD dynamics correctly incorporate all non-Condon
frictional components.

For both algorithms, we initialize dynamics with
the nuclei equilibrated as a Gaussian distribution with
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FIG. 3. Electronic population N as a function of time for the generalized AH
model in Eqs. (1)-(4): K = 1, ~ω = 0.003, Γ0= 0.02, kT = 0.01, g = 0.0075,
Ēd = 0, µ = 0, W = 1. See Eqs. (73)-(75) for definition of the parameters.
And see Eqs. (70)-(71) for the definition of the electronic population N .
Note that our bCME starts from correct initial conditions and agrees with
EF-LD at later time. The mean force F2(x) affects the electronic population
dramatically at long times. bCME (Eqs. (64) and (65)), and EF-LD (Eq. (7)
with F(x)= F1(x)+F2(x)), bCME without F2(x) (Eqs. (61) and (62)),
EF-LD without F2(x) (Eq. (7), with F(x)= F1(x)). In both cases, EF-LD
dynamics include all of the contributions to the total non-Condon friction
γ(x)=γ1(x)+γ2(x)+γ3(x)+γ4(x).

a initial temperature 5kT and centered at position x1
= −
√

2~/mωg/~ω. For the bCME, we initialize the electronic
state for the molecule as being occupied, N = 1. For EF-LD,
the electronic population is always evaluated by averaging the
local population n(h(x)) (Eq. (69)) over the position x of each
trajectory (Eq. (71)).

As Fig. 3 shows, our bCME can recover the correct initial
electronic population (N = 1, see Ref. 39), whereas EF-LD
cannot. As expected, at longer time, the bCME does agree
with EF-LD. In the absence of any non-Condon contributions
to the potential mean force (i.e., F2(x)), both the bCME and
EF-LD reach an incorrect steady electronic population. Hence,
it is essential to include the extra mean force (F2(x)) arising
from ∂xΓ into any dynamics. The results here are consistent
with our observations regarding Fig. 1, where the contribution
of F2(x) yields a significant dip in the region around x = 0.

Finally, in Fig. 4, we plot the average kinetic energy of the
nuclei as a function of time for both the bCME and EF-LD.
The relaxation rate for the nuclear motion is a measure of
the amount friction. When ∂xh is not too small (Fig. 4(a),
g = 0.0075), we find a good agreement between the bCME
and EF-LD dynamics, even though our bCME friction is
different from EF-LD total friction (see Fig. 2). Generally
speaking, we see an overall larger friction in EF-LD (see
Fig. 2), which results in a slightly faster relaxation rate in
Fig. 4(a). By contrast, if we take the extreme case that g = 0
so that ∂xh = 0, the frictional damping terms for bCME and
EF-LD are extremely different. In such a case, as Fig. 4 shows,
we see very large differences in the nuclear dynamics between
bCME and EF-LD.

In practice, we anticipate that ∂xh will rarely be zero
globally and so we cannot be sure how important such

FIG. 4. Average kinetic energy as a function of time for the generalized
AH model in Eqs. (1)-(4): K = 1, ~ω = 0.003, Γ0= 0.02, kT = 0.01, Ēd = 0,
µ = 0, W = 1. See Eqs. (73)-(75) for definition of the parameters. (a) For
g = 0.0075, we get good agreement between bCME and EF-LD, even
though the bCME friction (Eq. (59)) is different from total EF-LD friction
(Eq. (72)). (b) However, the bCME does fail when ∂xh is very small. Here,
∂xh =

√
2g = 0 so that the kinetic energy does not relax at all according to the

bCME.

frictional effects will be. In fact, for a condensed phase
problem, it is possible that other sources of friction from
the environment may well overwhelm all of the effects of
electronic friction. These questions will be addressed in future
application studies.40

V. CONCLUSION

We have derived explicit forms for the electronic friction
and random force from the generalized Anderson-Holstein
(AH) model in the case that the Condon approximation
is violated (∂xΓ , 0)—provided that the electronic motion
is much faster than the nuclear motion (i.e., large Γ).
At equilibrium, the friction and random force satisfy the
fluctuation-dissipation theorem. Our results can be generalized
to the case of many nuclear degrees of freedom (see Subsection
3 of the Appendix). These results should be very useful in
simulating frictional dynamics near metal surfaces in the
adiabatic limit. In general, our simulations show that violating
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the Condon approximation can dramatically affect both the
dynamics and the equilibrium distribution.

Focusing on dynamics, we have shown how to incorporate
the extra mean force coming from ∂xΓ into a broadened
classical master equation (bCME). After incorporating that
extra mean force, our bCME agrees much better with
electronic-friction langevin dynamics (EF-LD) in the adiabatic
regime. However, our proposed bCME does not incorporate
the effect of ∂xΓ on the random force and friction, and thus
will fail when ∂xh is much smaller than ∂xΓ. Further work will
explore approaches to incorporate these additional frictional
forces.

ACKNOWLEDGMENTS

We thank Abe Nitzan for very useful conversations. This
material is based upon work supported by the (U.S.) Air
Force Office of Scientific Research (USAFOSR) PECASE
award under AFOSR Grant No. FA9950-13-1-0157. J.E.S.
acknowledges a Cottrell Research Scholar Fellowship and a
David and Lucille Packard Fellowship.

APPENDIX: DETAILS OF THE CALCULATIONS

In the appendix, we provide additional details of the
calculations for friction and random force, we generalize
our results to the case of many nuclear DoFs, we compare

the result from two bCMEs, and we establish a connection
between our model and the Head-Gordon/Tully (HGT) model.
For shorthand, we do not include dependence on ϵ or x for
functions. Thus, we write f ≡ f (ϵ), A ≡ A(ϵ, x), etc.

1. Evaluating friction

In this appendix, we evaluate all frictional terms explicitly.
We first look at the γ1 term (Eq. (33)). Knowing the frozen
Green’s function exactly, one can derive Eq. (35) by repeatedly
integrating by parts,

γ1 = ~(∂xh)2


dϵ
2π

[∂ϵG<(GA − GR)]

= ~(∂xh)2


dϵ
2π

[∂ϵ(iA f )(iA)] = ~(∂xh)2


dϵ
2π

A f ∂ϵA

= ~(∂xh)2 1
2


dϵ
2π

f ∂ϵA2 = −(∂xh)2~
2


dϵ
2π

A2∂ϵ f . (A1)

For γ2, from Eq. (34), we have

γ2 = (∂xh∂xΓ) i~2


dϵ
2π

× [∂ϵG<(GA + GR) + (∂ϵGRGA − GR∂ϵGA) f ]
= −~(∂xh∂xΓ)


dϵ
2π

[∂ϵ(A f ) A(ϵ − h)
Γ

+
A2

2Γ
f ]. (A2)

Again, we use integration by parts repeatedly for the first term
on the right hand side of the above equation,


dϵ
2π

∂ϵ(A f )A(ϵ − h) = −


dϵ
2π

A f ∂ϵ[A(ϵ − h)]

= −


dϵ
2π

(
A2 f + A f (ϵ − h)∂ϵA

)
= −


dϵ
2π

(
A2 f +

1
2

f (ϵ − h)∂ϵA2
)

= −


dϵ
2π

(
A2 f − 1

2
A2∂ϵ[ f (ϵ − h)]) = −1

2


dϵ
2π

(
A2 f − A2(ϵ − h)∂ϵ f

)
. (A3)

Plugging Eq. (A3) back into Eq. (A2), we arrive at a compact form of γ2 (Eq. (36)).
To construct γ3, we must recall that ∂x f = 0 (of course). Then, if we evaluate the terms,

k

V 2
kℜ(∂xGR∂ϵg

<
k + ∂xG<∂ϵg

a
k ) =


k

V 2
k

(
∂x(− i

2
A)∂ϵ�i2πδ(ϵ − ϵk) f

�
+ ∂x(iA f )∂ϵ(iπδ(ϵ − ϵk))

)
= π


k

V 2
k δ(ϵ − ϵk)∂xA∂ϵ f =

Γ

2
∂xA∂ϵ f . (A4)

γ3 (Eq. (43)) eventually becomes

γ3 = −
~∂xΓ

4


dϵ
2π

∂xA∂ϵ f

= −~(∂xΓ)
2

4


dϵ
2π

( A
Γ
− A2

2
)∂ϵ f

− ~(∂xΓ)(∂xh)
2


dϵ
2π

A2

Γ
(ϵ − h)∂ϵ f . (A5)

Similarly, γ4 can be expressed as

γ4 = −
~∂xΓ

2Γ


k

Vk∂xVk


dϵ
2π

2ℜ(GR∂ϵg
<
k + G<∂ϵg

a
k )

= −~∂xΓ
2Γ


k

∂xV 2
k


dϵ
2π

πAδ(ϵ − ϵk)∂ϵ f

= −~∂xΓ
2Γ

∂xΓ

2


dϵ
2π

A∂ϵ f . (A6)
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2. Evaluating the correlation functions
for the random force

Evaluating the correlation functions for the random force
is very similar to evaluating the current noise for a resonant
model and can be found, for example, in Ref. 41. To evaluate
the correlation function, we work in the energy domain,

D12 =
∂xh∂xΓ

2Γ
2~ℜ


k

Vk


dϵ
2π

G>
d,kG<, (A7)

D21 =
∂xh∂xΓ

2Γ
2~ℜ


k

Vk


dϵ
2π

G>G<
d,k, (A8)

D22 =

(
∂xΓ

2Γ

)2

2~ℜ

k,k′

VkVk′


dϵ
2π

G>
k,dG<

k′,d

+

(
∂xΓ

2Γ

)2

2~ℜ

k,k′

VkVk′


dϵ
2π

G>
k,k′G

<. (A9)

We then evaluate the following terms by using the Langreth
decomposition:

k

VkG<
d,k =


k

V 2
k (GRg<

k + G<gak )

= GR
Σ
< + G<

Σ
A = i f A(ϵ − h). (A10)

Similarly, one can show that
k

VkG>
d,k = −i(1 − f )A(ϵ − h), (A11)

k

VkG<
k,d = i f A(ϵ − h), (A12)

k

VkG>
k,d = −i(1 − f )A(ϵ − h). (A13)

We also need to evaluate terms such as


k,k′

VkVk′G>
k,k′ =


k,k′

VkVk′δk,k′g
>
k + V 2

k V 2
k′[grkGRg>

k′ + g
r
kG>gak′ + g

>
k GAgak′]

= Σ> + ΣRGR
Σ
> + ΣRG>

Σ
A + Σ>GA

Σ
A

= −i(1 − f )(Γ + (−iΓ/2)GR
Γ + A(Γ/2)2 + ΓGA(iΓ/2))

= −i(1 − f )(Γ − Γ2

4
A
)
= −i(1 − f )A(ϵ − h)2. (A14)

Plugging Eqs. (A10)-(A14) into Eqs. (A7)-(A9), one can
easily get Eqs. (56) and (57).

3. Multiple nuclear degrees of freedom

For N nuclear degrees of freedom, the system
Hamiltonian and the interaction Hamiltonian from Eqs. (2)
and (4) become

Hs = h(x1, . . . , xN)d+d +
N

α=1

p2
α

2mα
+U(x1, . . . , xN), (A15)

Hc =

k

Vk(x1, . . . , xN)(d+ck + c+kd). (A16)

One can follow the exact derivation as in the main body
of this paper and show that the resulting Langevin equation
becomes

− mα ẍα = ∂xαU − Fα +

β

γαβ ẋβ + δ fα(t), (A17)

where the mean force is

Fα = −
 W

−W

dϵ
2π

(
∂xαh + (ϵ − h)∂xαΓ

Γ

)
A f (A18)

and friction is

γαβ = −
~

2


dϵ
2π

(
∂xαh + (ϵ − h)∂xαΓ

Γ

)
×

(
∂xβh + (ϵ − h)∂xβΓ

Γ

)
A2∂ϵ f . (A19)

The random force again is Markovian, ⟨δ fα(t) fβ(t ′)⟩
= Dαβδ(t − t ′), with

Dαβ = ~


dϵ
2π

(
∂xαh + (ϵ − h)∂xαΓ

Γ

)
×

(
∂xβh + (ϵ − h)∂xβΓ

Γ

)
A2 f (1 − f ). (A20)

4. A comparison of two bCMEs

In Ref. 39, we previously used a slightly different bCME
to incorporate level broadening. The bCME in Ref. 39 (which
we refer to as bCME1) reads
∂P0(x,p, t)

∂t
= − p

m
∂P0(x,p, t)

∂x
+ ∂xU

∂P0(x,p, t)
∂p

− Γ
~

f (h)P0(x,p, t) + Γ
~

�
1 − f (h)�P1(x,p, t)

+
�
− F1(x) − f (h)∂xh

�(1 − f (h))

×
∂
�
P0(x,p, t) + P1(x,p, t)�

∂p
, (A21)
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∂P1(x,p, t)
∂t

= − p
m

∂P1(x,p, t)
∂x

+
(
∂xU + ∂xh

) ∂P1(x,p, t)
∂p

+
Γ

~
f (h)P0(x,p, t) − Γ

~

�
1 − f (h)�P1(x,p, t)

+
�
− F1(x) − f (h)∂xh

�
f (h)

×
∂
�
P0(x,p, t) + P1(x,p, t)�

∂p
. (A22)

Eqs. (A21) and (A22) work well for a constant Γ (i.e., the
Condon approximation). Comparing this bCME with the
alternate bCME we are using in the main body of the paper
(bCME2, Eqs. (61) and (62)), we notice that momentum
jumps are required to solve bCME1 (Eqs. (A21) and (A22))
with trajectories (because ∂P0/∂t (∂P1/∂t) includes ∂P1/∂p
(∂P0/∂p)). However, momentum jumps are not present in
bCME2 (Eqs. (61) and (62)). Obviously, because we have
constructed our bCMEs by extrapolation from the diabatic
limit to the adiabatic limit, we cannot expect to find a
single unique set of equations. That being said, because
the momentum jump is only a first order approximation for
solving a series of entangled partial differential equations, we
expect momentum jump solutions may fail for very large g.
By contract, bCME2 should be still trustworthy even for very
large g. Thus, we have worked with bCME2 in the present
paper. Moreover, Fig. 5 shows that these two bCMEs agree
with each other for a large range of parameters.

5. Head-Gordon and Tully friction model

Previously, in Ref. 29, we argued that there is a disconnect
between our frictional model and the HGT model when
we go from a finite system to a manifold of electronic
states. At this point, however, we will show that a natural
connection can be constructed if one extrapolates the HGT
model properly to the limit of infinitely many electronic
states. For the HGT model, the electronic friction is given

FIG. 5. Average kinetic energy as a function of time: ~ω = 0.003, kT = 0.01,
g = 0.01, Ēd = 0, µ = 0. bCME1 refers to Eqs. (A21) and (A22). bCME2
refers to Eqs. (61) and (62). Note the near perfect agreement between the two
bCMEs.

by3,19

γ = π~d2
l,l′ = π~

|⟨l |∂xHe|l ′⟩|2
(ϵ l − ϵ l′)2 , (A23)

where |l⟩ (|l ′⟩) is the adiabatic state just below (above) the
Fermi level. We have used the Hellmann-Feynman theorem in
the last equality with the electronic Hamiltonian He defined
as

He = h(x)d+d +

k

ϵkc+kck +

k

Vk(x)(d+ck + c+kd). (A24)

In the context of infinite electronic DoFs, the HGT friction
is19

γ = π~(⟨l |∂xHe|l⟩)2ρ2(ϵ l)|ϵl=ϵF . (A25)

Here ρ(ϵ l) is the density of states |l⟩ with an energy ϵ l. ϵF is
the Fermi level.

We note that the HGT model was derived for zero
temperature. We propose that, at finite temperature, the natural
extension of the HGT model should be

γ = −π~


dϵ l∂ϵl f (ϵ l)(⟨l |∂xHe |l⟩)2ρ2(ϵ l). (A26)

At zero temperature, Eq. (A26) reduces to Eq. (A25) by noting
−∂ϵl f (ϵ l) = δ(ϵ l − ϵF). Now we will show that Eq. (A26) is
exactly the same as what we derived in the main body of the
paper.

We first evaluate the term

⟨l |∂xHe |l⟩ = ⟨l |∂xhd+d +

k

∂xVk(d+ck + c+kd)|l⟩. (A27)

We proceed by expressing He in a basis of adiabatic states,35,42

He =

l

ϵ lC+l Cl, (A28)

where

d =

l

αlCl,αl =
Vl

ϵ l − h −
l′

V 2
l′

ϵl−ϵl′+iη

, (A29)

ck =

l

βklCl, βkl = δkl −
Vkαl

ϵk − ϵ l + iη
. (A30)

Here, we apply the wide band approximation (Eq. (9)), such
that αl =

Vl
ϵl−h+iΓ/2 .

Now we are ready to evaluate

⟨l |d+d |l⟩ = α∗lαl =
V 2
l

(ϵ l − h)2 + (Γ/2)2 (A31)

and
k

∂xVk⟨l |(d+ck + c+kd)|l⟩ = 2

k

∂xVkℜ(⟨l |d+ck |l⟩)

= 2

k

∂xVkℜ(α∗l βkl)

= 2∂xVlℜ(α∗l ) − 2α∗lαl


k

ℜ Vk∂xVk

ϵk − ϵ l + iη

=
(ϵ l − h)∂xV 2

l

(ϵ l − h)2 + (Γ/2)2 . (A32)
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In the last equality, we have assumedℜ
k

∂xV
2
k

ϵk−ϵl+iη
= 0 (as a

result of the wide band approximation). Using 2πV 2
l
ρ(ϵ l) = Γ

(and 2πρ(ϵ l)∂xV 2
l
= ∂xΓ), and switching integration variables

from ϵ l to ϵ , we arrive at the same friction as Eq. (59),

γ =
~

2


dϵ
2π

f (ϵ)(1 − f (ϵ))

× 1
kT

(
∂xh +

∂xΓ(ϵ − h)
Γ

)2

A2(ϵ, x). (A33)

Here we have used the fact that ∂ϵ f (ϵ) = − f (ϵ)
(1 − f (ϵ))/kT . Thus, Eq. (A26) is a suitable extension of
HGT model to finite temperature that agrees with our (and
that of von Oppen et al.24) picture of friction. Note that
Eq. (A33) was derived previously in Refs. 30–32.
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