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In this paper we explore the effects of nonadiabatic external driving on the dynamics of an electronic system
coupled to two electronic leads and to a phonon mode, with and without damping. In the limit of slow driving,
we establish nonadiabatic corrections to thermodynamic and transport quantities. In particular, we study the
first-order correction to the work done by the driving, the charge current, and the vibrational excitation using a
perturbative expansion. We then compare the results to the numerically exact hierarchical equations of motion
(HEOM) approach. Furthermore, the HEOM analysis spans both the weak and strong system-bath coupling
regime and the slow- and fast-driving limits. We show that the electronic friction and the nonadiabatic corrections
to the charge current provide a clear indicator for the Franck-Condon effect and for nonresonant tunneling
processes. We also discuss the validity of the approximate quantum master equation approach and the benefits
of using HEOM to study nonadiabatically driven open quantum systems out of equilibrium.
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I. INTRODUCTION

The rapidly growing field of single-molecule or atomic
electronics [1–5] has implications for the development of
thermoelectric devices [6–8], molecular diodes [9,10], op-
toelectronic molecular switches [11–13], molecular sensors
[14,15], computing devices, and more. It further enables the
study of thermodynamic properties in the quantum regime
[16,17], including entropy production, and energy and charge
transport on the atomic scale. Miniaturizing electronic devices
reveals the significance of physical phenomena that are absent
in the thermodynamic limit and bulk materials such as the
Coulomb and the Franck-Condon blockade, quantum interfer-
ence, and quantum correlations.

Theoretical models exploring these effects and treating
strong system-lead couplings with stationary Hamiltonians
have been studied extensively in the literature using differ-
ent approaches including the multilayer multiconfiguration
time-dependent Hartree approach [18–20], path integral and
quantum Monte Carlo methods [21–24], the hierarchical
equations of motion (HEOM) [25–29], the numerical renor-
malization group [30–35], nonequilibrium Green’s functions
[36–40], scattering theory [41–43], and mapping techniques
[44–49]. Yet the effects of nonadiabatic driving on the trans-
port properties have received much less attention, mainly
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because of the difficulties of solving such complex dynamics.
This is despite the fact that the ultimate goal of the field is
to control and manipulate microelectronic devices to perform
a certain task. The control itself is typically achieved by
applying external fields to the system that can be expressed
theoretically using time-dependent Hamiltonians [50–59].

One of the main characteristics of nonadiabatic driving of
an open quantum system is electronic [43,60–62] and quan-
tum [63–65] friction. These phenomena are directly related
to the dissipation into the environment of the excitations and
coherence induced by the external driving. The environment
itself can be composed of several leads with different temper-
atures and/or chemical potentials that impose nonequilibrium
dynamics on the system, which manifest as energy, charge,
and entropy flows in and out of the system. In Ref. [66] we
established a thermodynamic description capturing the effects
of finite-time driving on quantum impurity models out of equi-
librium. We employed a perturbative expansion around the
adiabatic, slow-driving, limit and explored the corrections to
thermodynamic properties such as the entropy production and
energy flows. The analysis was applied to the driven Anderson
impurity model that exhibits Coulomb-blockade signatures in
nonadiabatic correction of charge current.

In this paper, we present a comprehensive study exploring
the effects of electron-phonon or electron-photon couplings
on the dynamics of a driven resonant level model. To unravel
the phonons’ contribution, we first study the driven resonant
level model coupled to two electric leads in and out of equilib-
rium. We then add, layer by layer, the contribution of a single
phonon and finally assume that this phonon is further coupled
to a phononic thermal bath. The analysis is based both on
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the perturbation expansion introduced in Ref. [66] combined
with a quantum master equation (QME) approach [67], and
on the numerically exact hierarchical equations of motion
(HEOM) approach. The latter allows us to expand the study
to the strong system-environment coupling regime and to fast
driving—much faster than the perturbation theory is valid for.
We note in passing that an approximate QME can be applied
in certain cases to fast driving as well. It requires deriving
a time-dependent master equation [68] or using perturbative
expansion of the dissipative part of the QME [69].

The comparison between the results obtained from the
QME and the HEOM reveals the role of cotunneling pro-
cesses in electronic friction with and without the presence of
electron-phonon couplings. This comparison also helps us to
understand to what extent the approximate QME approach is
reliable when the open system is externally driven. We further
show that nonadiabatic correction to the charge current, the
vibrational excitation, and the work provides signatures to
nonresonant processes in the resonant level model and to the
Franck-Condon principle when phonons are included in the
model.

The paper is organized as follows. In Sec. II, we briefly
review the nonadiabatic expansion in the driving field for
generic open quantum systems. In Sec. III, we introduce our
model with electron-phonon couplings and the HEOM ap-
proach as well as the QME technique. In Sec. IV, we analyze
the results with focus on the nonadiabatic limit. Finally, we
conclude in Sec. V.

II. NONADIABATIC CORRECTION TO THE CHARGE
CURRENT AND WORK

Here, we briefly review the basic idea of using a nonadia-
batic expansion in the driving field for generic open quantum
systems. A more detailed description, including the formu-
lation of a general quantum thermodynamical framework for
slow driving, was given in Ref. [66]. The total system consists
of a dot, left and right baths, and the interactions between
them,

H = Hs +
∑

α=L,R

(Hα + HIα ). (1)

Without driving, we assume that the total system reaches a
steady state

ρss = e−β̄(H−Y )/�, (2)

where � = tr(e−β̄(H−Y ) ) is the normalization factor with the
reduced inverse temperature β̄ and Y is the particle (or heat)
transport operator [70]. To include the driving, let us consider
that the Hamiltonian depends on a set of parameters Ri, which
vary slowly as a function of time. With the steady-state density
operator, we can define thermodynamic or transport proper-
ties, such as work rate and charge current in the adiabatic limit
[66]:

Ẇ (1) =
∑

i

Ṙitr(∂iHρss), (3)

I (0)
α = tr(−i[H, Nα]ρss), (4)

where we denote ∂
∂Ri

≡ ∂i, Ṙi is the driving speed, and Nα is
the number operator for the α = L, R leads. We have used (n)

to denote the nth order in driving speed. In the case in which
only the dot Hamiltonian depends on the external parameter
and the dot only consists of one level (Hs = εd d†d), we have

Ẇ (1) = ε̇d N (0), (5)

N (0) = tr(d†dρss). (6)

Here, N (0) is the dot population in the adiabatic limit, and ε̇d

is the driving speed of the dot level energy (see also Sec. III).
Now we consider the case where we have finite driving

speeds. The equation of motion for the density reads

∂tρ +
∑

i

Ṙi∂iρ = −i[H, ρ]. (7)

We further expand the density into a series in the power of
driving speed,

ρ = ρ (0) + ρ (1) + ρ (2) + · · · . (8)

With the steady state ρ (0) = ρss, we can solve for the first-
order nonadiabatic correction to the density:

ρ (1) =
∫ ∞

0
e−iHt

∑
j

Ṙ j∂ jρsse
iHt dt . (9)

Here, we have used the Markovian approximation in the
above equation. Note that the Markovian approximation here
is different from the Born-Markovian approximation in the
Redfield or Lindblad equation for weak couplings. Rather,
the Markovian approximation is consistent with the adiabatic
limit, i.e., the driving is much slower than the relaxation of the
system [66,71]. Using the first-order correction to the state,
we can calculate the nonadiabatic correction to the thermody-
namic quantities:

Ẇ (2) =
∑

i j

ṘiṘ j

∫ ∞

0
tr(e−iHt∂ jρsse

iHt∂iH )dt, (10)

I (1)
α = tr(−i[H, Nα]ρ (1) ). (11)

The nonadiabatic correction Ẇ (2) is the dissipative work, and
we can further introduce a frictional tensor γi j , such that
Ẇ (2) = ∑

i j Ṙiγi j Ṙ j .
Note that the analysis above is general. We have applied

such analysis to the noninteracting electronic systems to ob-
tain analytical results [66,71]. For the interacting systems,
analytical results are not available. Below we will apply the
HEOM approach to analyze nonadiabatic corrections to the
charge current and work when including electron-phonon in-
teractions.

III. MODEL AND METHODS

For our scenario of vibrationally coupled and externally
driven electron transport through a nanostructure (see Fig. 1),
the Hamiltonian is given by (using units where h̄ = 1)

H = εd (t )d†d + λ(a† + a)d†d + �a†a (12a)

+
∑
kα

νkα
(c†

kα
d + d†ckα

) +
∑
kα

εkα
c†

kα
ckα

(12b)
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FIG. 1. Sketch of the model consisting of one driven electronic
state interacting with a single vibrational mode coupled to two elec-
tronic leads and one vibrational heat bath.

+
∑

j

ξ j (b†
j + b j )(a

† + a) +
∑

j

ω j b
†
jb j . (12c)

Here, the system part of the Hamiltonian consists of an
electronic state with an externally controlled energy εd (t ), a
harmonic mode with frequency �, and an adiabatic coupling
of the electronic state to the harmonic mode with a coupling
strength λ. The electronic state and the harmonic mode are
addressed by their creation (annihilation) operators d† (d) and
a† (a). We further assume that we have linear driving for the
electronic state energy εd (t ) = ε0 + vt, where v denotes the
driving velocity. On the one hand, the environment includes
two (left and right) macroscopic electron reservoirs, where the
kth electronic state in the electron reservoir α ∈ {L, R} with an
energy εkα is addressed by its creation (annihilation) operator
c†

kα
(ckα

) and the corresponding coupling to the system is
specified by νkα . Via the chemical potentials of the electron
reservoirs μα , we can apply bias voltages  = μL − μR to
the system. On the other hand, the environment also includes
a microscopic heat bath, where the jth harmonic mode with
a frequency ω j has the creation (annihilation) operator b†

j

(b j) and the coupling strengths ξ j . The entire environment is
considered to have a constant temperature T .

The influence of the environments on the system is further
characterized by their respective spectral densities

�α (ε) = 2π
∑

k

|νkα
|2δ(ε − εkα

) = �α

D2
α

D2
α + (ε − μα )2

,

(13a)

�(ω) = π
∑

j

|ξ j |2δ(ω − ω j ) = �
ω

�

ω2
c

ω2
c + ω2

. (13b)

Here, �α denotes the coupling strengths of the electron
reservoirs, and Dα denotes the bandwidth of the Lorentzian-

shaped spectral density. In the following, we effectively use
the wideband approximation by the choice of D = 30 eV and
assume symmetrically coupled reservoirs with �L = �R = �

2 .
In addition, the spectral density of the heat bath is Ohmic
with a Lorentzian cutoff with the cutoff frequency ωc and
a coupling strength �. Throughout this paper, we choose
ωc = �.

The isolated system can be diagonalized using the so-
called small polaron transformation [72,73], leading to the
renormalized electronic state energy of εd (t ) = εd (t ) − λ2

�
.

Note that for the model studied here, the population is
related to the work rate by a factor of ε̇d (here, ε̇d = v):

Ẇ =
∑

i

Ṙitr(∂iHρ) = ε̇d tr(d†dρ) = ε̇d〈d†d〉. (14)

Consequently, the nonadiabatic work rate correction is related
to the electronic friction by the following:

Ẇ (2) = ε̇2
dγ = ε̇2

dδ〈d†d〉. (15)

See also Eq. (10). In the following we focus on the electronic
population, but keep in mind its simple relation to the work
rate and its nonadiabatic correction.

A. HEOM with electron-phonon couplings
as well as time-dependent driving

In the following, we present the most important steps
of the derivation of the numerically exact HEOM approach
for the model under investigation. Thereby, we closely fol-
low Refs. [26,74]. More detailed derivations are presented in
Refs. [28,75].

The derivation of the HEOM is based on the system-
environment partitioning [see Eqs. (12a)–(12c)]. The central
quantity of the approach is the reduced density matrix ρ(t )
of the system, where the bath degrees of freedom are traced
out. The influence of the environment on the system dynam-
ics is taken into account by the Feynman-Vernon influence
functional. For our model Hamiltonian, all information about
system-environment coupling is encoded in the two-time cor-
relation functions of the free environments

C̃(t − τ ) =
∑

j

|ξ j |2〈b†
j (t )b j (τ ) + b j (t )b†

j (τ )〉, (16a)

Cs
α (t − τ ) =

∑
k

|νkα|2〈cs
kα (t )cs̄

kα (τ )
〉
, (16b)

which are determined by the respective spectral densities

C̃(t ) =
∫ ∞

0
dω

�(ω)

π

[
coth

(
βω

2

)
cos(ωt ) − i sin(ωt )

]
,

(17)

Cs
α (t ) = 1

2π

∫ ∞

−∞
dε esiεt/h̄�α (ε) f [s(ε − μα )]. (18)

Here, f (ε) = [exp(βε) + 1]−1 denotes the Fermi distribution,
and β = 1

T denotes the inverse temperature. Furthermore,
the notations c+ = c†, c− = c, and s̄ = −s are employed.
To derive a closed set of equations of motion within the
HEOM method, all correlation functions are expressed by
sums over exponentials [28]. To this end, the Fermi as
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well as the Bose distribution are represented by sum-over-
poles schemes employing Padé decompositions [76–78]. Thus
the correlation functions of the free baths are given by
C̃(t ) = �

∑pmax
p=0 η̃pe−γ̃pt and Cs

α (t ) = �α

∑qmax
q=0 ηα,qe−γα,s,qt ,

respectively. Therefore one obtains the HEOM in the form of

∂

∂t
ρ

(m|n)
g|h = −

(
iLS +

m∑
l=1

γ̃gl +
n∑

l=1

γhl

)
ρ

(m|n)
g|h

−
∑

hx

Ahx ρ
(m|n+1)
g|h+

x
−

n∑
l=1

(−1)lChl ρ
(m|n−1)
g|h−

l

+
∑

gx

Bgx ρ
(m+1|n)
g+

x |h +
m∑

l=1

Dgl ρ
(m−1|n)
g−

l |h , (19)

with the multi-indices g = (p) and h = (α, s, q), the notation
for the multi-index vectors v = v1 · · · vp, v+

x = v1 · · · vpvx,
and v−

l = v1 · · · vl−1vl+1 · · · vp, and LSO = [HS, O]. The su-
peroperators Ah, Ch, Bg, and Dg read

Ahρ
(m|n)
g|h = �αh

(
dshρ

(m|n)
g|h + (−1)(n)ρ

(m|n)
g|h dsh

)
, (20a)

Bgρ
(m|n)
g|h = �

[
(a† + a), ρ (m|n)

g|h
]
, (20b)

Chρ
(m|n)
g|h = (−1)nηhds̄hρ

(m|n)
g|h − η∗̄

hρ
(m|n)
g|h ds̄h , (20c)

Dgρ
(m|n)
g|h = η̃g(a† + a)ρ (m|n)

g|h − η̃∗
gρ

(m|n)
g|h (a† + a). (20d)

Due to system-environment interaction, these superopera-
tors couple the different levels of the hierarchy.

Here, ρ (0) ≡ ρ represents the reduced density matrix, and
ρ

(m|n)
g|h (n + m > 0) denote auxiliary density matrices, which

describe environment-related observables such as, e.g., the
charge current

Iα = −e

〈
dNα

dt

〉
= e �α

∑
hα

shtr
{
ds̄hα ρ

(0|1)
|hα

}
. (21)

The importance of the auxiliary density operators to the
system dynamics is estimated by assigning them the impor-
tance values [29,74]

I
(
ρ

(m|n)
g|h

) =

∣∣∣∣∣∣∣
n∏

l=1

�∑
a∈{1···l}

Re[γha ]

ηhl

Re[γhl ]

∣∣∣∣∣∣∣
×

∣∣∣∣∣∣∣
m∏

l=1

�∑
a∈{1···l}

Re[γga ]

ηgl

Re[γgl ]

∣∣∣∣∣∣∣. (22)

In the calculations presented in this paper, the results are
quantitatively converged for truncation of the hierarchy at
level m = 2 and n = 2, neglecting auxiliary density operators
having an importance value smaller 10−9.

B. Nonadiabatic corrections from HEOM calculations

In order to calculate nonadiabatic corrections to physical
properties of the system, such as the populations and the
currents, using HEOM calculations, and to compare them with
the linear response based on QME calculations, we perform
two types of calculations. First, we prepare the system in a

stationary state, where the electronic state energy is much
lower than both chemical potentials of the leads. Starting from
this stationary state, we increase the energy with a constant
velocity and track the time evolution of the system ρ(t ).
Thereby, we ensure that the time evolution in the energy range
of interest is independent of the initial electronic state energy.
Second, we calculate the system steady states ρss(εd ) for the
electronic state energies in our range of interest.

Using these two calculations, we quantify the nonadiabatic
correction of a system observable 〈O〉 from the HEOM calcu-
lations by

δ〈O〉 = 〈O〉(t ) − 〈O〉ss

v
. (23)

Here, 〈O〉(t ) = tr{Oρ(t )} is the expectation value of the
driven system, and the steady-state expectation value 〈O〉ss =
tr{Oρss[εd (t )]} is evaluated at the instantaneous energy εd (t )
of the driven system. Thereby, the nonadiabatic correction
δ〈O〉 from the HEOM calculations includes corrections of first
and higher order in the driving velocity.

In this paper we will focus on the electronic friction
represented by the nonadiabatic correction of the electronic
population 〈d†d〉

γ = δ〈d†d〉 = 〈d†d〉(t ) − 〈d†d〉ss

v
(24)

as well as the nonadiabatic correction to the current

δI = I (t ) − Iss

v
(25)

and the corrections to the vibrational excitation δ〈a†a〉 that
can be calculated in a similar manner.

C. Quantum master equation analysis

In the limit of weak system-leads couplings, a reduced
description of the system can be achieved by solving the
quantum master equation

∂tρs = −ε̇d∂εd ρs − i[Hs, ρs] − Dρs. (26)

Here, D = DL + DR is a superoperator representing the (left
and right) system-lead couplings and is responsible for dissi-
pation and decoherence processes. In the weak coupling limit,
D can be expressed in Lindblad form [79]. Below, we denote
L(·) = i[Hs, ·] + D(·). Similar to the analysis in Sec. II, we
can expand the system density matrix into the power of the
driving speed. When matching the order from both sides of
the above equation, we obtain

∂tρ
(0)
s = −Lρ (0)

s , (27)

∂tρ
(1)
s = −ε̇d∂εd ρ

(0)
s − Lρ (1)

s , (28)

where ρ (0)
s is the steady-state solution of the system density in

the adiabatic limit, which can be obtained by solving for the
nontrivial solution of Lρ (0)

s = 0. With ρ (0)
s at hand, we can

proceed to solve for the nonadiabatic corrections,

ρ (1)
s = ε̇d

∫ t

0
e−Lt ′

∂εd ρ
(0)
s dt ′. (29)
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In the limit where the driving is slower than the timescale for
the system response, we can invoke the Markovian approxi-
mation for the first-order correction to the density matrix:

ρ (1)
s = ε̇d

∫ ∞

0
e−Lt∂εd ρ

(0)
s dt = −ε̇dL−1∂εd ρ

(0)
s . (30)

In the above equation, since ∂εd ρ
(0)
s is traceless, L−1 can be

acted on ∂εd ρ
(0)
s properly. In the weak coupling limit, the

population and electron current can be expressed using the
system density operator alone,

N = tr(d†dρs), (31)

Iα = tr(d†dDαρs). (32)

Again, Dα is a superoperator representing the couplings be-
tween the α = {L, R} lead and the system. Replacing ρs by
ρ (1)

s will give us the nonadiabatic correction to these quanti-
ties. The friction γ is related to the nonadiabatic correction to
the population via

N (1) = ε̇d tr
(
d†dL−1∂xρ

(0)
s

) = ε̇dγ , (33)

and, similarly, the first-order correction to the current is given
by

I (1)
α = tr

(
d†dDαρ (1)

s

)
. (34)

Below, we compare our weak coupling analytical results with
the numerical results from the HEOM calculations and focus
on the charge current, the vibrational excitation, and the fric-
tion which also reflects the corrections to the work done by
the driving [see Eq. (15)].

IV. RESULTS

In the following, we discuss the response of electronic-
vibrationally coupled systems under a linear drive of the
electronic system energy. In Secs. IV A and IV B, we focus on
the system with and without electronic-vibrational interaction
at equilibrium; that is, we do not apply any bias voltage.
We continue to investigate the system response to the linear
drive for situations in which a bias voltage is applied to the
system in Secs. IV C and IV D. Next, in Sec. IV E, we study
the effect of environmental damping of the vibrational mode
on the system response. Finally, in Sec. IV F we discuss the
response of the system for fast driving in which the linear
response treatment is no longer valid.

A. Zero bias voltage (equilibrium): Resonant level model

We begin our investigation with the simple resonant level
model. In this case, no bias voltage is applied to the system,
and no electronic-vibrational couplings are considered, i.e.,
 = 0 = λ

�
. As there is no current or electronically induced

vibrational excitation, we focus on the electronic population
and driving-induced friction shown in Fig. 2. At this point,
we recall the close relation between the work rate and the
electronic population [see Eqs. (14) and (15)].

When the electronic state energy is significantly below the
chemical potentials, the electronic population is 1. As the
energy approaches and passes the value of the chemical poten-
tials of the leads, the population drops down to 0. Accordingly,

FIG. 2. Electronic population 〈d†d〉 and the corresponding fric-
tion for a noninteracting system without bias voltage and for different
driving velocities v as a function of the time-dependent energy
εd (t ) = ε0 + vt . When the electronic state energy passes by the
chemical potentials of the electron reservoirs, i.e., εd (t ) = 0, we find
a drop in the electronic population and a peak in the corresponding
friction. Further parameters are kBT = � = 0.025 eV and λ = 0 eV.

we observe a peak in the electronic friction centered at the po-
sition of the chemical potentials, i.e., εd (t ) = μL = μR = 0.

The drop in the population and the friction peak are broad-
ened by the temperature T and by the environment-system
coupling �. The coupling-induced broadening is caused by
cotunneling processes, which are included in the HEOM re-
sults but disregarded in the analytical weak coupling result.
Since the friction obtained from QME and that obtained from
HEOM barely show any differences even though �

kBT = 1,
we conclude that the cotunneling processes are not of great
importance for the friction in the resonant-level-model case.
This is in contrast to what seems to happen in the presence of
phonon coupling as discussed below.

The chosen finite driving velocities in the HEOM cal-
culations lead to a slightly visible delay in the electronic
population drop. For faster driving velocities, the delay be-
comes more pronounced and leads to a shift of the friction
peak position in the direction of the driving. This friction peak
shift is a nonadiabatic effect of higher order in the driving
velocity.

B. Zero bias voltage (equilibrium): Influence
of electron-phonon coupling

Next, we consider a system with strong electronic-
vibrational interaction without applying a bias voltage, i.e.,
 = 0 and λ

�
= 1.5. In Fig. 3 we depict the system re-

sponse to linear driving of the electronic state energy and the
corresponding nonadiabatic corrections for different driving
velocities. Here, we also plot the vibrational excitation, which
is simply linked to the vibrational energy:

Ev = h̄�〈a†a〉. (35)

Therefore the nonadiabatic contribution to the vibrational en-
ergy due to driving of εd is directly related to the nonadiabatic
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FIG. 3. (a) The system response (electronic population 〈d†d〉 and
vibrational excitation 〈a†a〉) and (b) the corresponding nonadiabatic
correction induced by drives with different velocities v as a func-
tion of the time-dependent energy εd (t ) = ε0 + vt . The parameters
are  = 0 V, � = 0.2 eV, λ

�
= 1.5, kBT = 0.025 eV, � = 0.025 eV,

and � = 0. Here, the stationary state results are denoted by “stat.”.

correction to the vibrational excitation:

E (1)
v = ε̇d h̄�δ〈a†a〉. (36)

In the electronic population we observe the transition from
the occupied state to the unoccupied state as the polaron
shifted ground-state energy of the system, εd (t ) = ε0 − λ2

�
+

vt , passes the chemical potentials. Apart from the clear visi-
bility of the delay with faster driving velocity, the drop has a
very similar form to that in the noninteracting case (compare
with Fig. 2).

Due to the electronic-vibrational coupling, the change in
the electronic population affects the vibrational equilibrium
position and the vibrational excitation. As shown in Fig. 3,
the vibrational excitation drops in the same way as the elec-
tronic population from 〈a†a〉 = λ2

�2 to 〈a†a〉 = 0, which can
be explained within the small polaron picture [80–84]. For

the electronically unoccupied system the vibrational mode
is not affected by the electronic-vibrational coupling. Hence
the unoccupied system has a vibrational equilibrium position
〈a† + a〉 = 0, which allows for a vanishing vibrational ex-
citation. On the other hand, for the electronically occupied
system, the electron forms a polaron together with vibrational
excitation which leads to a displaced equilibrium position
〈a† + a〉 = 2λ

�
, where the minimal vibrational excitation is

〈a†a〉 = λ2

�2 . Since the electronic state energy enforces the
transition from an electronically occupied to an electronically
unoccupied system, the vibrational excitation exhibits a cor-
responding transition. At faster driving velocities, the delay in
the dynamics of the vibrational excitation is similar to that in
the electronic population.

In contrast to the noninteracting case of Fig. 2, in Fig. 3, the
comparison of the electronic populations and the vibrational
excitations for different driving velocities shows an obvious
delay already for v = �2

5 . This reflects that the population
dynamics is actually slower than indicated by �. The effec-
tive weakening of the electronic system-environment coupling
has been discussed in detail by Eidelstein et al. [85] and

is approximately described by �eff ≈ �e− λ2

�2 ≈ 0.1� for our
parameters.

Concentrating on the HEOM results in Fig. 3, the nonadia-
batic corrections for the electronic population and vibrational
excitation exhibit a similar behavior. They are both peaked
around the chemical potential and shifted in the driving di-
rection with increasing driving velocity. We also note that the
peak of the nonadiabatic correction is reduced at higher driv-
ing velocity (see the dotted vs the dashed and solid curves);
however, this artifact is a result of the definition in Eq. (23)
of the nonadiabatic correction which is divided by the driving
velocity. This definition is inspired by a perturbation theory
assuming a slow driving velocity, and as such, it fails to
describe the nonadiabatic corrections induced by fast driving
velocities.

Comparing the height of the peaks in Figs. 3 and 2, we
observe a factor of ∼10 increase in the latter. This enhance-
ment of the nonadiabatic correction is induced by the effective
reduction of the coupling strength of the system to the elec-
tronic environment. As a result, the timescale for changes in
the electronic population is prolonged.

In contrast to the resonant level model of Sec. IV A, we
observe a significant difference in the nonadiabatic correc-
tions obtained by the QME and HEOM approaches. The QME
peaks are higher than the HEOM peaks. Since such deviations
are not visible in the noninteracting case and the QME ap-
proach does not capture cotunneling processes, we conclude
that the cotunneling processes weaken the reduction of the
effective electronic environmental coupling strengths.

C. Nonvanishing bias voltage (out of equilibrium):
Resonant level model

In this section we investigate the electric friction and the
nonadiabatic correction to the charge current in the reso-
nant level model where no electronic-vibrational coupling is
present but the system is held out of equilibrium by applying
a bias voltage symmetrically, i.e.,  = 2μL = −2μR. These
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FIG. 4. (a) The nonvanishing bias voltage system response (elec-
tronic population 〈d†d〉 and symmetrized charge current I = IL−IR

2 )
and (b) the corresponding nonadiabatic correction induced by drives
with different velocities as a function of the time-dependent en-
ergy εd (t ) = ε0 + vt . The parameters are  = 0.8 V, kBT = � =
0.025 eV, and λ = 0 eV.

quantities are plotted in Fig. 4. Since the two leads have
different chemical potentials, the driven energy of the system
is crossing their values one after the other; as a result, the
electronic population drops in two steps, and the current is
maximal between these two values, μR � εd (t ) � μL. In this
regime there are two competing processes of populating and
depopulating the system by the two leads.

For the nonadiabatic correction of the electronic popula-
tion, we find two positive peaks centered at the chemical
potentials of the leads. In this case, we observe a good agree-
ment between the results obtained by the HEOM and by the
QME. Yet, for the charge current correction, this is not the
case, and we will explain the origin of this difference in more
detail later.

The nonadiabatic correction to the charge current in the
HEOM approach is also peaked at the chemical potentials of
the leads. However, the two main peaks have opposite signs.

FIG. 5. Nonadiabatic corrections to different charge currents for
the nonvanishing bias voltage system. The parameters are  = 0.8 V,
kBT = � = 0.025 eV, and λ = 0.

Taking a closer look at the peak structure, we notice that both
main peaks are accompanied by smaller peaks in opposite di-
rections. This peak structure looks similar to contributions to
the differential conductance at the resonance due to cotunnel-
ing [86]. However, we find that these secondary peaks are also
present in first-tier truncated HEOM calculations, which in-
clude only sequential tunneling processes. Furthermore, they
are still occurring for a weak system-environment coupling
of �

kBT = 1
25 (see Appendix). Therefore our focus for explain-

ing these smaller peaks is on sequential tunneling processes.
Without driving, the system obeys a time-translational and
time-reversal symmetry. Due to the time-translational sym-
metry, only resonant processes are determining the stationary
state. By the linear energy shift both symmetries are broken,
and nonresonant processes are taking part in the dynamics.

Nonresonant processes are especially important near the
(de)activation of resonant processes. In the following, we
concentrate on the first chemical potential crossover (first peak
of δI from the left in Fig. 5) that represents an increase in the
current. Before resonant processes become active, nonreso-
nant processes contribute and increase the current. Thereby,
these processes lead to the increase in the nonadiabatic cor-
rection before the resonant processes are dominating and we
observe the main minimum. After the resonant processes are
activated, we again observe a current increase beyond the
stationary value that is caused by the coherent superposition
of nonresonant processes. For a more extreme situation of a
sudden voltage change, these processes are known to induce
the so-called “current ringing” [87,88]. The QME approach
does not show any nonadiabatic corrections to the charge
current. This suggests that our QME not only excludes higher-
order tunneling processes, but also ignores the contribution of
nonresonant processes.

Since the symmetrized charge current might not be ac-
cessible for experimentalists, we present the nonadiabatic
correction to the current out of the individual leads IL/R as
well as for the symmetrized charge current in Fig. 5. We
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FIG. 6. System response to linear drives in comparison to the
stationary limit. Shown are the electronic population 〈d†d〉, the
vibrational excitation 〈a†a〉, and the charge current I for different
driving velocities v as a function of the electronic state energy
εd (t ) = ε0 + vt . With the thin dashed gray lines, we indicate the
energetic position of the right chemical potential with an exchange of
n vibrational quanta μR + n�. The thin dotted gray lines indicate the
the left chemical potential with an exchange of m vibrational quanta
μL − m�. Further parameters are  = 0.9 V, � = 0.2 eV, λ

�
= 1,

kBT = � = 0.025 eV, and � = 0.

find that our QME approach predicts for both the left and
right lead identical nonadiabatic corrections, resulting in a
vanishing correction to the symmetrized charge current I =
IL−IR

2 . Furthermore, the nonadiabatic correction to the current
of the left or right lead is proportional to the derivative of
the stationary electronic population with respect to εd . This
is in agreement with the theoretical considerations given by
Splettstoesser et al. [89] for an electron-electron interacting
system.

In contrast, the HEOM approach reveals that the nonadi-
abatic correction peak in the current from a single electron
reservoir is broader when its own chemical potential crosses
the energy level of the system. This asymmetry in the peak
heights and width in the nonadiabatic correction to the cur-
rents of the individual leads with respect to εd further supports
the contribution of nonresonant processes to the nonadiabatic
correction. In the Appendix we present more details of the
side peaks.

D. Nonvanishing bias voltage (out of equilibrium): Influence
of electron-phonon coupling

Next, we add to the model of the previous section the
electron-phonon coupling term. The results are illustrated in
Figs. 6 and 7. We begin by focusing on the stationary state re-
sults with respect to the instantaneous Hamiltonian (the black
solid curves in Fig. 6), which recover the well-understood
Franck-Condon step structure with increasing electronic state
energy [80,81,83,84,90].

The electronic population decreases stepwise from the
completely occupied to the fully depleted electronic state for
an energy range μR � εd (t ) � μL. While in this case the steps
are only slightly visible, when considering the charge current,

FIG. 7. Nonadiabatic correction to the electronic population
δ〈d†d〉, the charge current δI , and the vibrational excitation δ〈a†a〉
for different driving velocities v as a function of the electronic
state energy εd (t ) = ε0 + vt . With the thin dashed gray lines, we
indicate the energetic position of the right chemical potential with
an exchange of n vibrational quanta μR + n�. The thin dotted gray
lines indicate the the left chemical potential with an exchange of
m vibrational quanta μL − m�. Further parameters are  = 0.9 V,
� = 0.2 eV, λ

�
= 1, kBT = � = 0.025 eV, and � = 0.

the steps occur more distinctly near the harmonic oscillator
frequency shifted chemical potentials εd (t ) = μR/L ± n�. At
these energies, (dis)charging processes with an exchange of n
vibrational quanta between the electronic reservoir (R) L and
the system become energetically (allowed) forbidden.

Since the vibrational excitation is less frequently discussed
in the literature, we discuss the onset and termination of dif-
ferent processes based on this observable in more detail here.
Similar to the zero-bias-voltage case, the lowest vibrational
excitation in the electronically occupied state is 〈a†a〉 = λ2

�2 .
At energy values εd (t ) = μR + n�, discharging by the right
lead with an additional excitation of the vibrational mode by
n quanta occurs, and thereby transport through the system be-
comes possible. Moreover, charging processes accompanied
with an excitation of m vibrational quanta become succes-
sively forbidden at εd (t ) = μL − m�.

For the chosen electronic-vibrational coupling λ
�

= 1, off-
diagonal elements of the Franck-Condon matrix connected
to processes with a large energy transfer into the vibrational
mode are suppressed [81,83,84]. Hence the corresponding
steps are barely visible. For high energies of the elec-
tronic state, no charging process is energetically allowed, and
therefore the transport and the vibrational excitation vanish.
Overall, the alternating activation and deactivation of the dif-
ferent transport processes leads to the structured vibrational
excitation as a function of the electronic state energy.

In Fig. 7, we depict the nonadiabatic correction cor-
responding to the system response for different driving
velocities. According to the step positions in the system re-
sponse, we observe peaks in the nonadiabatic correction to
the different physical quantities. In general, the nonadiabatic
correction peaks illustrate the deactivation or activation of the
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transport processes described earlier. Here, we note that the
nonadiabatic correction of the electronic population and the
vibrational excitation are both explained by the delay in the
underlying observables. In contrast, the nonadiabatic charge
current correction reflects a delayed dynamics for the peaks
at εd (t ) ≈ μR/L but is ahead of the stationary limit at εd (t ) ∈
{μR + n�,μL − m�} with n, m ∈ {1, 2, 3}. Since a reduced
vibrational excitation can enhance the charge current [82,91],
the delayed increase in the current-induced vibrational excita-
tion causes the dynamic charge current increase ahead of the
stationary limit increase. This is an example of the dynamical
interplay of the charge current and the present state of the
vibrational mode.

Similar to the equilibrium case studied above, we observe
a deviation between the peak heights obtained by HEOM
and QME which is caused by cotunneling processes in the
weakening of the effective system-environment coupling [92].

Moreover, focusing on the peaks involving one or no
vibrational quantum, we find clear deviations from the
energetic position expected from the bare polaron shift,
i.e., εd (t ) ∈ {μR + n�,μL − m�} with n, m ∈ {0, 1}. This
renormalization effect is known for purely electronic inter-
acting open quantum systems [93–95]. Here, we observe
the system-environment-coupling-induced renormalization of
an electronic-vibrational interacting open quantum system.
We emphasize that we obtain this renormalization within
the numerically exact HEOM as well as the perturbative
QME.

Next, we consider the higher-order nonadiabatic effects
by comparing the nonadiabatic corrections based on dif-
ferent driving velocities as shown in Fig. 7. We find that
the higher-order nonadiabatic effects become apparent at a
driving velocity of v = �2

25 and are most pronounced at the
energies with the largest peaks in the nonadiabatic correction.
For the fastest shown driving velocity of v = �2

5 , the higher-
order nonadiabatic effects in the current and the vibrational
excitation are more pronounced at the smaller peaks than in
the electronic population.

We recall that the effective coupling strength between
the system and the environment, which sets the timescale
for the electronic population dynamics, is weakened by the
electronic-vibrational interaction [85]. For our parameters,
the effective decay rate is �eff = e−1�. This means that the
driving velocity of v = �2

5 ≈ 1.48�2
eff is already comparable

to the timescale of the electronic population dynamics. From
this perspective, a delay in the population dynamics is ex-
pected especially at energies εd (t ) with significant changes
in the electronic population. However, the driving velocity is
sufficiently slow that the population dynamics do not exhibit a
significant delay for energies in the range μL − 4� < εd (t ) <

μR + 4�, where the change in the electronic population with
the electronic energy is smaller.

Including electronic-vibrational coupling, we no longer ob-
serve side peaks in the nonadiabatic correction to the charge
current. These side peaks are explained as contributions from
coherent superposition of nonresonant processes. Therefore
the absence of the peaks means that the electronic-vibrational
coupling induces a strong decoherence, which has already
been reported in a different context [29].

(a)

(b)

FIG. 8. The effects of phonon damping on (a) the electronic
population 〈d†d〉, the charge current I , and the vibrational exci-
tation 〈a†a〉, and (b) the corresponding nonadiabatic correction,
as a function of the time-dependent energy εd (t ) = ε0 + vt and
for different phonon-bath coupling strengths �. Further parame-
ters are  = 0.9 V, � = 0.2 eV, λ

�
= 1, kBT = � = 0.025 eV, and

v = �2

25 .

E. Effect of vibrational relaxation

In the previous sections, we disregarded the effect of a
damping of the vibrational mode by the environment. In this
section, we include this mechanism and investigate its effect
on the nonadiabatic corrections in Fig. 8 for different values
of the damping-related coupling strengths � and a relatively
strong electronic-vibrational coupling λ

�
= 1.

For � � �
102 , we barely observe an effect of the damping

on the stationary states [see Fig. 8(a)] as well as the nonadia-
batic correction [see Fig. 8(b)]. Hence the damping influence

075419-9



BÄTGE, LEVY, DOU, AND THOSS PHYSICAL REVIEW B 106, 075419 (2022)

is weak in comparison to the current-induced vibrational
excitation. Its impact becomes clearly visible for the strongest
damping strengths � = �

10 . As expected in the limit � �
kBT , the damping generally reduces the vibrational excitation.
This effect is particularly strong for energetic situations with
a strong current-induced vibrational excitation. Accordingly,
we also observe a significant reduction of the nonadiabatic
correction to the vibrational excitation.

As already reported in Refs. [74,82], we notice an increase
in the charge current along with the decrease in the vibrational
excitation. Furthermore, we observe a similar reduction in the
nonadiabatic correction of the charge current and of the vi-
brational excitation with increasing damping strengths, which
again illustrates the dependence of the charge current on the
present state of the vibrational mode.

Since the highest peaks in the nonadiabatic correction of
all observables, especially in the electronic population, are
shifted towards μR and μl , respectively, we conclude that the
damping reduces the interaction-induced renormalization.

Similar to the significant effect of faster driving velocities
on the highest nonadiabatic correction peaks (see Fig. 7), we
find a clear reduction in the nonadiabatic correction in the
highest nonadiabatic correction peaks of the electronic popu-
lation. Here, the damping attenuates the reduction in coupling
between the electronic system and the environment caused
by the electronic-vibrational interaction. Consequently, this
allows the population to adapt more quickly to the ener-
getic situation and explains the decrease in the nonadiabatic
correction.

F. Fast driving

In this section we present results for fast driving velocities.
As mentioned before, the nonadiabatic correction defined in
Eq. (23) is no longer meaningful outside the linear response
regime of slow driving. Hence, in Fig. 9, we focus on the
parametrized time traces in comparison to their stationary
state values for two different electronic-vibrational coupling
strengths. We begin our discussion with weak electronic-
vibrational coupling λ

�
= 0.1. For the driving speed v = �2, a

significant delay is only visible in the time trace of the vibra-
tional excitation in comparison to its stationary state values.
With increasing driving velocity, the delay increases visibly
not only in the vibration excitation but also in the electronic
population. In contrast, the delay occurring in the current
is smaller. However, additionally, the coherent superposition
of the nonresonant processes leads to the so-called current
ringing, which is known from instantaneous switches of the
bias voltage [87].

Even though the electronic population decreases more
uniformly with increasing energy for a strong electronic-
vibrational interaction λ

�
= 1.5, the weakened effective

system-environment coupling leads to a more obvious de-
lay for v = �2. At faster driving velocities, the delay in the
electronic population and vibrational excitation increases in a
manner qualitatively similar to the weak electronic-vibrational
interaction. In the current, we also observe an enhanced de-
lay and an increase beyond the maximal steady-state value.
The latter is a clear fingerprint of nonresonant processes that

(a)

(b)

FIG. 9. The system response (electronic population 〈d†d〉,
charge current I , and vibrational excitation 〈a†a〉) as a function of
the time-dependent energy εd (t ) = ε0 + vt for fast driving veloci-
ties and two different electronic-vibrational couplings (a) λ

�
= 0.1

and (b) λ

�
= 1.5. Further parameters are  = 1.2 V, � = 0.2 eV,

kBT = 0.025 eV, � = 0.005 eV, and � = 0.025 eV.

coherently overlap despite the vibrationally induced decoher-
ence, especially at fast driving velocities.

V. CONCLUSIONS

We have analyzed nonadiabatic corrections to the charge
current, work, and vibrational excitation for a nonequilib-
rium system under external modification. More specifically,
we have investigated a system with and without electronic-
vibrational interactions under a linear drive of the electronic
state energy, utilizing the numerically exact HEOM as well as
a perturbative quantum master equation approach.

Without electronic-vibrational coupling, we found peaks in
the friction and the nonadiabatic contribution to the charge
current when the system energy εd crosses the chemical
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potentials of the electronic reservoirs. In accordance with the
more complex onset and termination of transport processes in-
duced by the electronic-vibrational interaction and understood
in the Franck-Condon picture, we observed more complex
responses in the nonadiabatic correction of the different
quantities. Furthermore, the results for different driving veloc-
ities, as well as different environmental vibrational damping,
illustrated the dynamical interplay of the electrons and the
vibrational mode.

Surprisingly, the QME fails to reproduce the nonadia-
batic current correction without electron-phonon coupling,
while it qualitatively recovers the nonadiabatic current cor-
rection in the adiabatic limit with electron-phonon coupling.
Moreover, the comparison of QME- and HEOM-based cal-
culations reveals the contribution of cotunneling processes to
the electronic-vibrational, interaction-induced weakening of
the system-environment coupling.

For transport scenarios with negligible electronic-
vibrational coupling, our numerically exact approach
reveals a significant effect of coherent nonresonant processes
contributing to the nonadiabatic correction to the charge
current. In contrast, we observe decoherence of the
nonresonant processes in the adiabatic limit for systems
with electronic-vibrational interaction. Only for very fast
driving velocities we do recover fingerprints of coherent
nonresonant processes, including electronic-vibrational
interaction related to the so-called “current ringing” [87].
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FIG. 10. The charge current I through a noninteracting system
and its nonadiabatic correction δI as a function of the energy εd (t )
obtained within second- and first-tier truncated HEOM calculations
denoted by HEOM2 and HEOM1, respectively. The parameters are
 = 0.8 V, kBT = 0.025 eV, and � = 0.001 eV.

FIG. 11. The nonadiabatic correction to different charge currents
as a function of the energy εd (t ) for different system-environment
coupling strengths �. The parameters are  = 0.8 V and kBT =
0.025 eV.

APPENDIX: DETAILS OF THE CONTRIBUTION OF
NONRESONANT PROCESSES TO THE

NONADIABATIC CORRECTION

In this Appendix, we show more results supporting our dis-
cussion on the contribution of nonresonant transport processes
to the nonadiabatic correction.

In Fig. 10, we show explicitly a comparison of HEOM re-
sults with a truncation in the first and second tiers. In first-tier
calculations only sequential tunneling processes are included,
and higher-order processes such as cotunneling processes
are excluded. We emphasize that second-tier calculations are
exact for noninteracting systems [28]. For the chosen weak
coupling � = 0.04kBT , we do not observe a visible difference
on the natural scale of the plot. Thereby, we validated our

FIG. 12. The nonadiabatic correction to different charge currents
as a function of the energy εd (t ) for different environmental temper-
atures T . The parameters are  = 0.8 V and � = 0.01 eV.
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FIG. 13. The derivative of the stationary charge current with
respect to εd , the nonadiabatic correction to the charge current, and
rescaled nonadiabatic corrections to the charge current as a function
of an aligned energy ελ(t ) = εd (t ) + Cλ. The λ-dependent energy
shift Cλ ensures that the first peak in the derivative of the stationary
charge current with respect to the energy is located at ελ(t ) = 0. The
parameters are  = 0.9 V, � = 0.2 eV, kBT = � = 0.025 eV, and
� = 0.

statement on the visibility of the side peaks in the nonadia-
batic correction to the charge current within first-tier HEOM
calculations.

Next, we demonstrate the dependence of the side peaks in
the symmetrized charge current on the system-environment
coupling strength � and the environmental temperature T in
Figs. 11 and 12, respectively. Our results demonstrate that the
nonadiabatic correction to the currents of the individual elec-
tron reservoirs becomes more similar with decreasing � and
increasing temperature. Moreover, the nonadiabatic correction
to the symmetrized charge current vanishes roughly linearly
with decreasing � and quadratically with increasing T . Fur-
thermore, the temperature leads to a roughly linear broadening
of the peak. Overall, we emphasize that the visibility of the
nonresonant processes remains. The slowest driving speed
corresponds to 0.7596 eV/ns.

Last, we show the effect of the decoherence on the side
peaks for different electronic-vibrational interaction strengths
λ in Fig. 13. Even for the weakest shown electronic-
vibrational interaction λ

�
= 0.2, we cannot find a clear

fingerprint of the coherent superposition of nonresonant pro-
cesses in the nonadiabatic correction to the charge current.
Since the internal dynamics of the system becomes slower
with decreasing λ, the HEOM calculations become numeri-
cally expensive.
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