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When the coupled electron-nuclear dynamics are subjected to strong Floquet driving, there is a strong break-
down of the Born-Oppenheimer approximation. In this paper, we derive a Fokker-Planck equation to describe
nonadiabatic molecular dynamics with electronic friction for Floquet-driven systems. We first provide a new
derivation of the Floquet quantum-classical Liouville equation (QCLE) for driven electron-nuclear dynamics.
We then transform the Floquet QCLE into a Fokker-Planck equation with explicit forms of frictional force and
random force. We recast the electronic friction in terms of Floquet Green’s functions such that we can evaluate
the electronic friction explicitly. We show that the Floquet electronic friction tensor exhibits antisymmetric
terms even at the equilibrium for a real-valued Hamiltonian, suggesting that there is a Lorentz-like force in
Floquet-driven non-Born Oppenheimer dynamics even without any spin-orbit couplings.
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I. INTRODUCTION

There are increasing interests in understanding of the dy-
namics of molecular systems exposed to strong light-matter
interactions, which is helpful for interpreting photochemistry
and spectroscopy [1,2]. For example, photoinduced molecular
structure change in molecular junctions (MJs) is confirmed
experimentally which highlights the importance of molecular
dynamics in MJs [3,4]. In addition, theoretical solutions are
given to reduce heating (improving structural stability) in
MJs [5,6]. Light-driven phenomena is a broad ongoing re-
search topic closely related to the larger topic Floquet-driven
quantum systems which aims to understand the response of
quantum systems to a periodic driving force often taking into
account BO approximation [7–9]. In general, Floquet theorem
provides a powerful method for the analysis of dynamical
systems subjected to periodic external drivings. Effects, such
as phase transitions and pump-probe photoemission can be
explained by applying Floquet theorem in solving quantum
mechanical problems [10–12]. However, Molecular dynamics
near metallic surfaces can be nonadiabatic in nature and hence
Born-Oppenheimer (BO) approximation is not necessary cor-
rect [13–15]. Recent studies begin to explore nonadiabatic
contribution to the charge-current and thermodynamical prop-
erties of MJ [16]. In particular, people are interested in how to
use light/photon to manipulate chemical and physical systems
where the dynamical interplay between light and electronic
nonadiabatic transitions plays a significant role [1]. Lacking
approprate treatments, our prime goal is to employ Floquet
theorem for nonadiabatic molecular dynamics in presence of
a periodic driving.
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The electronic friction approach is considered as the first
order correction to the BO approximation [17], which can
be understood as a quantum mechanical damping force of a
manifold of fast relaxing electronic on classical nuclear mo-
tion. Electronic friction approache is a practical way to carry
out large-scale nonadiabatic molecular dynamics by replacing
the electronic effects by the concept of electronic friction and
were successful in explaining many experimental results such
as molecular beam experiments [18–20], electrochemistry
[21], charge/spin transport phenomena [22,23]. Quantita-
tively, electronic friction is a tensor which appears on the
generalized Langevin equation [24]. One of the first notable
quantum mechanical derivations of the electronic friction ten-
sor is given by Head-Gordon and Tully [25]. Later, more
rigorous expressions are derived from Keldysh Green’s func-
tion [26,27], the path integral [28,29], the quantum classical
Liouville equation (QCLE) [30], and the exact factorization
[31]. It has been shown that there is only one universal
electronic friction tensor in the Markovian limit [32,33]. Fur-
thermore, studies shows that the friction tensor can exhibit
antisymmetric terms in two situations: (1) out of equi-
librium and (2) when spin-orbit couplings/complex-valued
Hamiltonians are involved (even at equilibrium) [26,34]. The
antisymmetric part of the friction tensor give a rise to an
emergent Lorentz-like (Berry) force which in turn results in
a closed trajectory (limit-cycle) for the nuclear degrees of
freedom (DoFs) [26,35].

The coupled electron-nuclear dynamics with strong light-
matter interactions can be described by the Floquet quantum
classical Liouville equation (QCLE) successfully [36–38].
To confirm the correct Floquet QCLE, we offer a new
derivation for the Floquet QCLE, starting from Floquet Li-
ouville equation. Moreover, we map the Floquet QCLE into
a Langevin equation with all nonadiabatic correction being
incorporated into frictional effects. In the weak nonadiabatic
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limit, the frictional terms are memoryless. Finally, to demon-
strate usefulness of new derivations, we show that the Floquet
electronic friction tensor exhibits antisymmetric terms even at
the equilibrium for a real-valued Hamiltonian.

II. LIOUVILLE-VON NEUMANN EQUATION
IN THE FLOQUET REPRESENTATION

For the coupled electron-nuclear motion, we consider a
general Hamiltonian Ĥ that is divided into the electronic
Hamiltonian Ĥe and the nuclear kinetic energy:

Ĥ = Ĥe(R, t ) +
∑

α

P̂2
α

2Mα

. (1)

Here R = {Rα} and P̂ = {P̂α} are the position and momentum
operators for the nuclei, respectively. We use α to denote
nuclear DoFs. Note that the electronic Hamiltonian Ĥe(R, t )
is considered to be an explicit function of R and time t . Below,
we will consider the case that the system is subjected to
periodic driving, such that Ĥe(R, t + T ) = Ĥe(R, t ) in which
T is the period of the driving frequency.

The equation of motion for the coupled electron-nuclear
density operator follows Liouville-von Neumann (LvN):

d ρ̂(t )

dt
= − i

h̄
[Ĥ (t ), ρ̂(t )]. (2)

For any periodic driving system, we can derive a Floquet
Liouville-von Neumann (LvN) equation which describes the
time evolution of the coupled density operator in the Floquet
representation, as it will be denoted by ρF (t ). The motiva-
tion for such transformation steams form the fact the Floquet
representation of a periodic Hamiltonian is time independent.
Two major transformations are needed to derive Floquet rep-
resentation of LvN: (I) transformation of LvN into the Fourier
representation and (II) transformation from the Fourier repre-
sentation to the Floquet representation.

The first transformation has two parts: (1) discreet expan-
sion of the LvN in the Fourier space and (2) transferring
from Fourier expansion to the Fourier representation. Part one
begins by employing discreet Fourier expansions for both the
time-dependent Hamiltonian and density operators as

Ĥ (t ) =
∑

n

Ĥ (n)einωt , ρ̂ (t ) =
∑

n

ρ̂ (n)(t )einωt . (3)

Note that coefficients ρ̂ (n)(t ) are time-dependent whereas co-
efficients Ĥ (n) are not. We then substitute above expansions
on the LvN equation (4) as∑

n

(
d ρ̂ (n)(t )

dt
einωt + inωρ̂ (n)(t )einωt

)

= − i

h̄

∑
k,m

[Ĥ (k), ρ̂ (m)(t )]ei(k+m)ωt

= − i

h̄

∑
n,m

[Ĥ (n−m), ρ̂ (m)(t )]einωt . (4)

The step two of the first transformation begins by introducing
the Floquet Number N̂ and the Floquet Ladder operators L̂n as

N̂ |n〉 = n|n〉, L̂n|m〉 = |n + m〉. (5)

In the matrix form, N̂ can be understood as a matrix with
integer numbers on its diagonal and L̂n is an off-diagonal
identity matrix shifted by n. Following relations are hold for
these two operators:

[N̂, L̂n] = nL̂n, [L̂n, L̂m] = 0,

L̂nL̂m = L̂mL̂n = L̂n+m. (6)

Next, we introduce following Fourier representations as

Ĥ f (t ) =
∑

n

Ĥ (n)L̂neinωt , ρ̂ f (t ) =
∑

n

ρ̂ (n)(t )L̂neinωt , (7)

where we have modified Fourier expansions by adding the
Ladder operator L̂n. We stress that, the Ladder operator
turns the vector-like Fourier expansion into a matrixlike
representation. Same way as Eq. (4), we substitute Fourier
representations given above into Eq. (2) as∑

n

(
d ρ̂ (n)(t )

dt
L̂neinωt + inωρ̂ (n)L̂neinωt

)

= − i

h̄

∑
k,m

[Ĥ (k)L̂k, ρ̂
(m)L̂m]ei(k+m)ωt

= − i

h̄

∑
n,m

[Ĥ (n−m)L̂n−m, ρ̂ (m)L̂m]einωt

= − i

h̄

∑
n,m

[Ĥ (n−m), ρ̂ (m)]L̂neinωt , (8)

where we have used [L̂n−m, L̂m] = 0, and L̂n−mL̂m = L̂n in
the last line. Since for each n, two sides of Eqs. (4) and (8)
are equivalent then we have proven that the LvN equation in
Fourier representations keeps the original form as

d ρ̂ f (t )

dt
= − i

h̄
[Ĥ f (t ), ρ̂ f (t )]. (9)

The transformation (II) begins by transforming the coupled
density operator from its Fourier representation to the Floquet
representation by

ρ̂F (t ) = e−iN̂ωt ρ̂ f (t )eiN̂ωt =
∑

n

ρ̂ (n)(t )L̂n. (10)

By employing such a definition, the equation of motion for
ρ̂F (t ) now reads as

d

dt
ρ̂F (t ) = − i

h̄
[ĤF , ρ̂F (t )], (11)

where we have defined the following Floquet representation
for the Hamiltonian as

ĤF =
∑

n

Ĥ (n)L̂n + N̂ h̄ω. (12)

We have used the commutation relations between the Ladder
and Number operators, [N̂, L̂n] = nL̂n, and e−iN̂ωt L̂neiN̂ωt =
L̂ne−inωt to derive the above equations. We emphasize that
the Floquet LvN equation have the same structure as the
traditional LvN. The advantage of the Floquet LvN is to
allow us to program the dynamics using the time independent
Hamiltonian. Equation (2) will be used as the staring point
to derive the Floquet QCLE which further can be reduced to
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the Fokker-Planck equation, i.e., the equation of motion for
the nuclear DoFs. Notice that Eq. (11) is exact as long as the
Hamiltonian is periodic.

III. FLOQUET QCLE

To derive the Floquet QCLE, we perform the partial
Wigner transformation with respect to the nuclear DoFs on
the Floquet LvN equation Eq. (11) as

d

dt
(ρ̂F )W (R, P, t ) = − i

h̄
((ĤF ρ̂F )W − (ρ̂F ĤF )W ). (13)

We have used subscript W to denote the Wigner transforma-
tion. The Wigner transformation is given by

ÔW(R, P, t ) ≡
∫

dY e
−iR·P

h̄

〈
R − Y

2

∣∣∣∣Ô(t )

∣∣∣∣R + Y
2

〉
, (14)

where Ô(t ) is an arbitrary operator and |R〉 is the real space
representation of the nuclear DoFs. As a result of this transfor-
mation, R and P can be interpreted as position and momentum
variables in the classical limit. Note that the Wigner-Moyal
operator can be used to express the partial Wigner transform
of the product of operators Â and B̂:

(ÂB̂)W (R, P) = ÂW (R, P)e−ih̄
←→
� /2B̂W (R, P),

←→
� =

∑
α

←−−
∂

∂Pα

−−→
∂

∂Rα
−

←−−
∂

∂Rα

−−→
∂

∂Pα
. (15)

When truncating the Wigner-Moyal operator to the first order

in the Tayler expansion, e−ih̄
←→
� /2 ≈ (1 − ih̄

←→
� /2), we arrive

at the Floquet QCLE as

d

dt
ρ̂W F (R, P, t ) = −i/h̄[ĤW F , ρ̂W F (t )]

− 1

2
(ĤW F

←→
� ρ̂W F − ρ̂W F

←→
� ĤW F ), (16)

Here, we have denoted (ÔF )W (R, P) ≡ ÔW F (R, P). The sub-
script W F indicates that the Wigner transformation performed
after the Floquet transformation. For the coupled electron-
nuclear Hamiltonian in Eq. (1), we can rewrite the Floquet
QCLE as follows:

∂

∂t
ρ̂W F (t ) = − ˆ̂LW F (ρ̂W F (t )) −

∑
α

Pα

Mα

∂ρ̂W F (t )

∂Rα

+ 1

2

∑
α

{
∂Ĥe

W F

∂Rα

,
∂ρ̂W F (t )

∂Pα

}
. (17)

Here ˆ̂LW F (ρ̂W F (t )) ≡ i/h̄[Ĥe
W F , ρ̂W F (t )]. Ĥe

W F is the Floquet-
Wigner transformed electronic Hamiltonian He. We have
also denoted the anticommutator as {Â, B̂} = ÂB̂ + B̂Â. Equa-
tion (17) is what we refer to as Floquet QCLE. Notice that in
the literature, different ways of deriving Floquet QCLE are
mentioned [39]. Such a Floquet QCLE represents the nona-
diabatic dynamics of the coupled electron-nuclear motion
subjected to periodic driving. Hereafter, we drop the index W
for simplicity.

IV. DERIVATION OF FOKKER-PLANCK EQUATION

To arrive at an equation of motion just for the nu-
clear motion (Fokker-Planck equation), we denote the mixed
nuclear-electron Floquet density operator ρ̂F (R, P, t ) as

ρ̂F (R, P, t ) = A(R, P, t )ρ̂ss
F (R) + B̂(R, P, t ). (18)

Here the nuclear phase space density is denoted by A(R, P, t ).
The steady-state Floquet electronic density operator is de-
noted by ρ̂ss

F (R). The difference operator, B̂(R, P, t ) is the
density operator that counts for nonadiabatic effects. To be
more explicit, we shall trace out the electronic and Floquet
DoFs [30,40] as Tre,F (ρ̂W F ) = A(R, P, t ). Here, Tre,F de-
notes trace over both many-body electronic states and Fourier

space. Note that ˆ̂LF (ρ̂ss
F (R)) = 0 and ρ̂ss

F (R) is normalized on
the electronic part at all R such that Tre,F (ρ̂ss

F (R)) = N , where
N is the Fourier space dimension. For further simplicity, we
write a compact form of the Floquet QCLE, Eq. (16), as

d

dt
ρ̂F (t ) = − ˆ̂LF (ρ̂F (t )) + {

Ĥe
F , ρ̂F (t )

}
a
, (19)

where ˆ̂LF (ρ̂F (t )) ≡ i/h̄[Ĥe
F , ρ̂F (t )] and {Â, B̂}a ≡ −1/2

(Â
←→
� B̂ − B̂

←→
� Â). We then substitute Eq. (18) in Eq. (19),

and formally trace over the electronic bath and Fourier space
as

∂

∂t
Tre,F (A(t )ρ̂ss

F + B̂) = Tre,F
{
ĤF ,A(t )ρ̂ss

F

}
a

+ Tre,F {ĤF , B̂}a. (20)

The detailed version of the above equation is given by

∂

∂t
A(t ) = −

∑
α

(
Pα

Mα

)
∂A(t )

∂Rα

+ 1

2

∑
α

Tre,F

×
(

∂Ĥe
F

∂Rα

∂
(
A(t )ρ̂ss

F

)
∂Pα

+ ∂
(
A(t )ρ̂ss

F

)
∂Pα

∂Ĥe
F

∂Rα

)

+ 1

2

∑
α

Tre,F

(
∂Ĥe

F

∂Rα

∂B̂
∂Pα

+ ∂B̂
∂Pα

∂Ĥe
F

∂Rα

)
. (21)

Note that, Tre,F
ˆ̂LF (A(t )ρ̂ss

F + B̂) = Tre,F
ˆ̂LF (B̂) = 0 and also

Tre,F (∂B/∂Rα ) = 0. The ρ̂ss
F does not depends on Pα , and we

can further simplify the above relation as

∂

∂t
A(t ) = −

∑
α

(
Pα

Mα

)
∂A(t )

∂Rα

+
∑

α

Tre,F

(
∂Ĥe

F

∂Rα

ρ̂ss
F

)

× ∂A(t )

∂Pα
+

∑
α

Tre,F

(
∂Ĥe

F

∂Rα

∂B̂
∂Pα

)
. (22)

To obtain the above relationship, we have used the fact that
Tr[AB] = Tr[BA]. At this point, one needs to express B̂ in
terms of Â. To proceed, we can first have a relation for ∂B̂/∂t
as

∂

∂t
B̂ = −ρ̂ss

F

∂

∂t
A(t ) + {

ĤF ,A(t )ρ̂ss
F

}
a + {ĤF , B̂}a

− ˆ̂LF (B̂) = {ĤF , B̂}a − ρ̂ss
F Tre,F {ĤF , B̂}a

− ρ̂ss
F Tre,F

{
ĤF ,A(t )ρ̂ss

F

}
a

+ {
ĤF ,A(t )ρ̂ss

F

}
a − ˆ̂LF (B̂). (23)
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Next, we assume that nuclei move much slower than electrons.
With that assumption, only the last three terms of the above
relation will survive, such that we can have the following
approximation for B̂:

ˆ̂LF (B̂) = −ρ̂ss
F Tre,F

{
ĤF ,A(t )ρ̂ss

F

}
a + {

ĤF ,A(t )ρ̂ss
F

}
a

= −ρ̂ss
F

(
−

∑
β

(
Pβ

Mβ

)
∂A(t )

∂Rβ

+
∑

β

Tre,F

(
∂Ĥe

F

∂Rβ

ρ̂ss
F

)
∂A(t )

∂Pβ

)

−
∑

β

(
Pβ

Mβ

)(
∂A(t )

∂Rβ

ρ̂ss
F + ∂ρ̂ss

F

∂Rβ

A(t )

)

+ 1

2

∑
β

(
∂Ĥe

F

∂Rβ

ρ̂ss
F + ρ̂ss

F

∂Ĥe
F

∂Rβ

)
∂A(t )

∂Pβ

. (24)

The above relation will be used to evaluate ∂B̂/∂Pα as

∂B̂
∂Pα

= −
∑

β

ˆ̂L−1
F

∂ρ̂ss
F

∂Rβ

∂

∂Pα

((
Pβ

Mβ

)
A(t )

)

+ 1

2

∑
β

ˆ̂L−1
F

(
−ρ̂ss

F 2Tre,F

(
∂Ĥe

F

∂Rβ

ρ̂ss
F

)

+
(

∂Ĥe
F

∂Rβ

ρ̂ss
F + ρ̂ss

F

∂Ĥe
F

∂Rβ

) )
∂

∂Pα

∂A(t )

∂Pβ

. (25)

Then, the above expression will be substituted into Eq. (22),
such that, to the first order in the correction to the BO approx-
imation, we arrive at a Fokker-Planck equation for the pure
nuclear density A:

∂

∂t
A = −

∑
α

Pα

mα

∂A
∂Rα

−
∑

α

Fα

∂A
∂Pα

+
∑
αβ

γαβ

∂

∂Pα

(
Pβ

mβ

A
)

+
∑
αβ

D̄S
αβ

∂2A
∂Pα∂Pβ

, (26)

in which, the mean force, Fα and friction tensor, γαβ , are

Fα = Tre,F

(
∂Ĥe

F

∂Rα

ρ̂ss
F

)
, (27)

γαβ = −Tre,F

(∂Ĥe
F

∂Rα

ˆ̂L−1
F

∂ρ̂ss
F

∂Rβ

)
. (28)

The correlation function of the random force, D̄S
αβ , is also

given by

D̄S
αβ = 1

2
Tre,F

(
∂Ĥe

F

∂Rα

ˆ̂L−1
F

(
−ρ̂ss

F 2Tre,F

(
∂Ĥe

F

∂Rβ

ρ̂ss
F

)

+ ∂Ĥe
F

∂Rβ

ρ̂ss
F + ρ̂ss

F

∂Ĥe
F

∂Rβ

) )
. (29)

The Fokker-Planck equation is equivalent to the Langevin
equation

mαR̈α = Fα −
∑

β

γαβ Ṙβ + δFα. (30)

Here δFα is the random force, which satisfies
1
2 〈δFα (0)δFβ (t ) + δFβ (0)δFα (t )〉 = D̄S

αβδ(t ). γαβ can be
given as

γαβ = −
∫ ∞

0
dtTre,F

(
∂Ĥe

F

∂Rα

e
−iĤ e

F t
h̄

∂ρ̂ss
F

∂Rβ

e
iĤe

F t
h̄

)
, (31)

where we employed the identity ˆ̂L−1
F (Ô) = limη→0+∫ ∞

0 dte−( ˆ̂LF +η)t Ô, in which e− ˆ̂LF t Ô = e−iĤ e
F t/h̄ÔeiĤe

F t/h̄

(η being a positive infinitesimal). Up to now, we have
successfully transformed the coupled electron-nuclear motion
subjected to periodic driving into a Langevin equation for the
pure nuclear motion with all electronic motion and Floquet
driving being incorporated into frictional force and random
force. From now on, we focus ourselves on the friction tensor
and demonstrate that the friction can be expressed in terms
of Green’s functions. For a quadratic electronic Hamiltonian,
He = ∑

ab hab(R, t )d̂†
a d̂b + U (R), Eq. (31) can be expressed

in terms of one-body electronic state as

γαβ = −
∫ ∞

0
dtTro,F

(
∂hF

∂Rα

e
−ihF t

h̄
∂σ̂ ss

F

∂Rβ

e
ihF t

h̄

)
. (32)

Here, Tro,F denotes trace over both one-body electronic
states, hF represents the Floquet representation of the one-
body Hamiltonian hab(R, t ). Also, the matrix elements of the
steady state one-body density operator defines as: [σ ss

F ]ab =
Tre(b̂†

bb̂aρ̂
ss
F ). Note that the potential for the nuclei, U (R), does

not contribute to the friction.

V. FRICTION IN TERMS OF ONE-BODY
GREEN’S FUNCTION

One can recast the Floquet friction tensor into the energy
domain as

γαβ = −
∫ ∞

0
dt

∫ ∞

0
dt ′Tro,F

(
∂hF

∂Rα

e
−i(hF −iη)t

h̄
∂σ ss

F

∂Rβ

e
i(hF +iη)t ′

h̄

)
δ(t − t ′)

= −
∫ ∞

−∞

dε

2π h̄

∫ ∞

0
dt

∫ ∞

0
dt ′Tro,F

(
∂hF

∂Rα

e
−i(hF −iη)t

h̄
∂σ ss

F

∂Rβ

e
i(hF +iη)t ′

h̄

)
eiε(t−t ′ )/h̄

= −h̄
∫ ∞

−∞

dε

2π
Tro,F

(
∂hF

∂Rα

1

ε + iη − hF

∂σ ss
F

∂Rβ

1

ε − iη − hF

)
. (33)
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Hence, we have redefined the γαβ , partially, in terms of the
Floquet retarded and advanced Green’s functions, GR/A

F =
(ε ± iη − hF )−1, as

γαβ = −h̄
∫ ∞

−∞

dε

2π
Tro,F

(
∂hF

∂Rα

GR
F

∂σ ss
F

∂Rβ

GA
F

)
. (34)

The Floquet one-body density matrix can be further expressed
in terms of Floquet lesser Greens function, such that the final
expression for the Floquet electronic friction is given by

γαβ = h̄
∫ ∞

−∞

dε

2π
Tro,F

(
∂hF

∂Rα

∂GR
F

∂ε

∂hF

∂Rβ

G<
F

)
+ H.c., (35)

where G<
F is the lesser Floquet Green’s function. See

Appendix A for the details of derivation. Note that the Flo-
quet electronic friction is the same as non-Floquet electronic
friction, except Green’s functions are now the Floquet version
of the corresponding Green’s function.

VI. DOT-LEAD SEPARATION

We now introduce a specific Hamiltonian model and
Greens functions such that we can calculate the Floquet elec-
tronic friction explicitly. In the upcoming results section, we
will demonstrate that the Floquet-driven electronic friction
exhibits antisymmetric terms for a real Hamiltonian even
when the dot is not biased (without any current). To be more
specific, we consider a Hamiltonian with dot-lead separation:

Ĥe = Ĥs + Ĥb + Ĥv, (36)

Ĥs =
∑

i j

[hs]i j (R, t )d̂†
i d̂ j + U (R), (37)

Ĥb =
∑
ζk

εζk ĉ†
ζk ĉζk, (38)

Ĥv =
∑
ζk,i

Vζk,i(ĉ
†
ζkd̂i + d̂†

i ĉζk ). (39)

Here, Ĥs is the dot Hamiltonian. The bath Hamiltonian con-
sists of the left and right (ζ = L, R) leads. Ĥv describes the
system-bath couplings. U (R) is the potential for the nuclei.

For such a model, we can calculate Floquet Green’s func-
tion exactly. In particular, the retarded Green’s function for
the system is given by

GR
sF (ε) = (

ε − �R
F (ε) − hs

F

)−1
, (40)

�R
F (ε) = ∑

ζ=L,R �R
ζF is the total self-energy in the Flo-

quet representation. The elements of the self-energy is given
by [�R

ζF ]i j (ε) = ∑
k Vζk,igR

F,ζk (ε)Vζk, j , where the gR
F,ζk (ε) =

(ε + i0+ − εζk − N̂ h̄ω)−1 is the kth element of the retarded
Green’s function of the isolated lead ζ . hs

F is the Floquet
representation of the dot energy level. The lesser Green’s
function for the system is then given by

G<
sF (ε) = GR

sF (ε)�<
F (ε)GA

sF (ε), (41)

Here, �<
F (ε) = ∑

ζ=L,R �<
ζF (ε) is the lesser Green’s function,

which can be evaluated as [�<
ζF ]i j (ε) ≡ ∑

k Vζk,ig<
F,ζk (ε)Vζk, j .

Here, g<
F,ζk (ε) is the lesser green’s function for the ζ lead.

g<
F,ζk (ε) = i2π f (ε − N̂ h̄ω − μζ )δ(ε − εζk − N̂ h̄ω), where f

is the Fermi function. In what following, we will invoke the

FIG. 1. Floquet friction tensors in absence of external driving
B = 0: γxx (top left), γ S

xy (top right), γ A
xy (bottom left), and γyy (bot-

tom right). Parameters: �=1, μR,L = 0, β = 2, A = 1, � = 3, and
ω = 0.5. We have used N = 5 Floquet levels to converge the results.

wide band approximation, such that [�R
ζF ]i j (ε) = − i

2�i j , and
[�<

ζF ]i j (ε) = i�i j f (ε − N̂ h̄ω − μζ ). We can then proceed
to calculate Floquet electronic friction using these Green’s
functions.

VII. RESULTS AND DISCUSSIONS

We will now consider a model consist of two-level orbital
(±�) coupled to two nuclear DoFs (x, y) and an off-diagonal
periodic deriving:

[hs](x, y, t ) =
( x + � Ay + B cos(ωt )

Ay + B cos(ωt ) −x − �

)
. (42)

The nuclear potential U (R) is taken to be harmonic oscil-
lators in both x and y dimensions. The diagonal terms of
Hamiltonian represent two shifted parabolas in x direction
with a driving force of 2�. The off-diagonal couplings de-
pend on displacement in y direction as well as the term
B cos(ωt ) which represents the interaction between an exter-
nal monochromatic light source with the two shifted parabolas
(the dipole approximation). B represents the strength of the
external driving (e.g., the intensity of light) and ω is the fre-
quency of the time-periodic driving. Below, we consider the
case where the first level couples to the left lead and the sec-
ond level couples to the right lead, and we set �11 = �22 = �.

In the equilibrium case (where μL = μR) and without any
driving, the electronic friction is shown to be symmetric
along nuclear DoFs provided the Hamiltonian is real [34]. In
Fig. 1, we plot the friction tensors as a function of the nu-
clear coordinates (x, y). In particular, we define the symmetric
and antisymmetric components [γ S

xy = (γxy + γyx )/2, γ A
xy =

(γxy − γyx )/2] of the friction tensor. In the absence of exter-
nal driving (B = 0), the antisymmetric component is indeed
vanished (as predicted). The frictions tensors γxx and γyy

consists of two Gaussian curves which are merged along the
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FIG. 2. Floquet friction tensors in presence of external driving:
γxx (top left), γ S

xy (top right), γ A
xy (bottom left), and γyy (bottom right).

Parameters: � = 1, μR,L = 0, β = 2, A = 1, � = 3, ω = 0.5, B = 1,
and N = 5.

orientations of the nuclear coordinate. This results agree with
previous findings for real Hamiltonians without any driving
[30,34].

We now turn on time-periodic off-diagonal coupling by
setting B = 1. As shown in Fig. 2, the antisymmetric term
γ A

xy is no longer zero when Floquet driving is turning on.
Moreover, the distributions of γxx, γyy, and γ S

xy in the real
space is enlarged as compared to the non-Floquet case. The
magnitude of γxx and γ S

xy are also increased by almost factor of
2. In general, electronic friction is large when two molecular
energy surfaces meet each other (avoid-crossing points). In
presence of the periodic driving, the single avoid-crossing
between the two surface splits into multiple avoid-crossing
between multiple quasi-energy surfaces. This can change the
pattern of the friction tensors in a complicated way. For the
Hamiltonian model of Eq. (42), the two closest quasi-surfaces
have multiple avoid-crossing along the y direction. Conse-
quently, the pattern of γxx broadened along the y-axis, whereas
the γyy remains almost intact. For a comprehensive analy-
sis of Floquet replicas see the quasi-energy surfaces in the
Appendix B. Finally, in Fig. 3, we plot the frictional terms for
the increased driving frequency (ω = 1). In such a case, the
magnitude of the antisymmetric terms (the Lorentz force) is
notably increased, whereas the magnitudes of the other terms
do not change significantly. Interestingly, the shape of γxx is
composed of two large ellipses and two small ones. The cen-
tral distance between the larger ellipse and the smaller one in
x axis is about ω. This is consistent with the picture of Floquet
replica of the potential surfaces separated by ω. Note that
all friction terms have mirror symmetry around the avoided
crossing point (x = −� and y = 0) and magnitudes of γ A

xy

and γ S
xy are always maximized far from the avoided crossing.

Finally, the pattern of γ A
xy is different from that of spin-orbit

couplings which was found to be Gaussian shape [34]. The

FIG. 3. Floquet Friction tensors in presence of external driving
with a larger frequency: γxx (top left), γ S

xy (top right), γ A
xy (bottom

left), and γyy (bottom right). Parameters: � = 1, μR,L = 0, β = 2,
A = 1, � = 3, ω = 1, B = 1, and N = 5.

magnitude of our γ A
xy depends on the driven frequency and also

is relatively smaller than that found for spin-orbit couplings.

VIII. CONCLUSION

We have formulated quantum-classical Liouville equa-
tion in Floquet representation to describe nonadiabatic
dynamics with light-matter interactions. We have further
mapped the Floquet QCLE into a Langevin dynamics where
all electronic DoFs and light-matter interactions are incor-
porated into a friction tensor. We then recast the friction
tensor into the form of Floquet Green’s functions such that we
can evaluate the friction tensor explicitly. We show that the
light-matter interactions can introduce antisymmetric friction
tensor even at equilibrium without any spin-orbit couplings.
Future work must explore how the Lorentz-like force affects
the dynamics in a realistic situation.
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APPENDIX A: FURTHER SIMPLIFICATION OF THE
FRICTION IN TERMS OF FLOQUET GREEN’S FUNCTION

For a practical calculation of electronic friction tensors,
one needs to express the derivative ∂σ ss

F /∂Rβ in terms of
the Floquet lesser Green’s function denoted by G<

F . The σ ss
F

relates to the G<
F by

σ ss
F =

∫
dε′

2π i
G<

F (ε′) =
∫

dε′

2π i
GR

F (ε′)�<
F (ε′)GA

F (ε′), (A1)
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FIG. 4. (a) The single avoid crossing (no light). (b) closest quasi
surfaces for ω = 0.5.

where �<
F is the total lead’s Floquet lesser self-energy [41].

Here, we have adopted a dot-lead (system-bath) separation.
Furthermore, we have assumed that �<

F neither depends on
the energy ε′ (so-called wide-band approximation) nor on
the position R (so-called Condon approximation). Note that
the wide-band approximation allows us to express the lesser
green’s function in the Floquet representation as G<

F (ε′) =
GR

F (ε′)�<
F GA

F (ε′). In addition with Condon approximation,
one can easily derive the following identity:

∂G<
F

∂Rβ

= GR
F

∂hF

∂Rβ

G<
F + G<

F

∂hF

∂Rβ

GA
F . (A2)

Note that it is not practical to directly evaluate ∂σ ss
F /∂Rβ from

Eq. (A1) and substitute it into Eq. (34) due to extra integration
over ε′. To proceed further, we can replace the Tro,F (. . . ) with∑

n〈n| . . . |n〉 in the last line of Eq. (34) and use the eigenbasis
of the Floquet electronic Hamiltonian, hF |n〉 = εn|n〉, as

γαβ = −h̄
∑

n

∫ ∞

−∞

dε

2π
〈n|∂hF

∂Rα

1

ε + iη − hF

∂σ ss
F

∂Rβ

|n〉

× 1

ε − iη − εn
. (A3)

Next, we will use the Floquet identity operator
∑

m |m〉〈m| as

γαβ = −h̄
∑
n,m

∫ ∞

−∞

dε

2π
〈n|∂hF

∂Rα

|m〉 1

ε + iη − εm

× 〈m|∂σ ss
F

∂Rβ

|n〉 1

ε − iη − εn
. (A4)

Next, we will use the Floquet identity operator
∑

m |m〉〈m| as

γαβ = −h̄
∑
n,m

∫ ∞

−∞

dε

2π
〈n|∂hF

∂Rα

|m〉 1

ε + iη − εm

× 〈m|∂σ ss
F

∂Rβ

|n〉 1

ε − iη − εn
. (A5)

Taking the singularity point at ε = iη + εn and using the
residue theorem for contour integration leads to

γαβ = −ih̄
∑
n,m

〈n|∂hF

∂Rα

|m〉 1

εn − εm + i2η

× 〈m|∂σ ss
F

∂Rβ

|n〉. (A6)

FIG. 5. (a) The cross-section of Floquet replicas for ω = 0.5
along the x axis (associated with Fig. 2). (b) Same as (a) along the y
axis.

At this point, we will evaluate the last term of above expres-
sion as: 〈m| ∂σ ss

F
∂Rβ

|n〉. According to Eqs. (A1) and (A2), this term
has two parts as

〈m|∂σ ss
F

∂Rβ

|n〉 =
∫

dε′

2π i
〈m|GR

F (ε′)
∂hF

∂Rβ

GR
F (ε′)�<

F GA
F (ε′)|n〉

+ 〈m|GR
F (ε′)�<

F GA
F (ε′)

∂hF

∂Rβ

GA
F (ε′)|n〉. (A7)
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FIG. 6. (a) Contour plots of Floquet replicas for ω = 0.5. (b) same as (a) for ω = 1.

The integration over ε′ can be accomplished by using the
eigenbasis of the Floquet electronic Hamiltonian and employ-
ing the identity operator

∑
m′ |m′〉〈m′|. The first part is given

by ∑
m′

∫
dε′

2π i

1

ε′ + iη − εm
〈m| ∂hF

∂Rβ

|m′〉 1

ε′ + iη − εm′

× 〈m′|�<
F |n〉 1

ε′ − iη − εn

=
∑

m′

1

εn − εm + i2η

× 〈m| ∂hF

∂Rβ

|m′〉 1

εn − εm′ + i2η
〈m′|�<

F |n〉. (A8)

Similarly (by taking the singularity point at ε′ = −iη + εmF ),
the second part reduces to∑

m′
〈m|�<

F |m′〉 1

εm − εm′ − i2η
〈m′| ∂hF

∂Rβ

|n〉

× 1

εm − εn − i2η
. (A9)

A relation for γαβ can be derived by substitution of these two
parts in the Eq. (A5) as

γαβ = −ih̄
∑

n,m,m′
〈n|∂hF

∂Rα

|m〉 1

εn − εm + i2η

×
(

1

εn − εm + i2η
〈m| ∂hF

∂Rβ

|m′〉 1

εn − εm′ + i2η

× 〈m′|�<
F |n〉 + 〈m|�<

F |m′〉 1

εm − εm′ − i2η
〈m′| ∂hF

∂Rβ

|n〉

× 1

εm − εn − i2η

)
. (A10)

Taking similar procedures [replacing Tro,F (. . . ) by∑
n〈n| . . . |n〉, using the eigenbasis of the Floquet electronic

Hamiltonian and employing the identity operators], one can
conclude that the following general single integration formula

γαβ = h̄
∫ ∞

−∞

dε

2π
Tro,F

(
∂hF

∂Rα

∂GR
F

∂ε

∂hF

∂Rβ

G<
F

− ∂hF

∂Rα

G<
F

∂hF

∂Rβ

∂GA
F

∂ε

)
, (A11)

delivers a similar outputs as Eq. (A10). Note that, we have
used the identity ∂GR,A

F /∂ε = −GR,A
F GR,A

F [40]. This relation
is a practical formula for evaluation of γαβ . The second term
in Eq. (A10) is also the hermitian conjugate of the first part.
Since the trace in any basis set is the same, Eq. (A11) repre-
sents a general form for Floquet electronic friction.

APPENDIX B: FLOQUET REPLICAS

In order to better justify the pattern of electronic frictions
plotted in Figs. 2 and 3, we first plot the single avoided
crossing point in the absence of light [based on Eq. (42)] in
Fig. 4(a) and then we plot the two closest quasienergy surfaces
for ω = 0.5 [based on hs

F (x, y)] in Fig. 4(b). In particular,
single avoided crossing point splits into complex multiple
avoid-crossing points. For the two-level system with N = 5,
there are 10 replicas which we will identify each with S.
Indeed, the two closest surfaces are S = 5 and 6. We also
plot two cross sections of all Floquet replicas corresponding
to Fig. 2 in Figs. 5(a) and 5(b). In addition, we plotted contour
plots of few quasi-surfaces that are corresponds to Figs. 2 and
3 in Figs. 6(a) and 6(b), respectively. One can see the pattern
of contour plots for S = 5 and 6 are more complicated when
ω = 1 and special distribution of γxx roughly follows the two
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iso-surfaces of S = 5 and 6. Another important point is that,
quasi avoided crossing points are introduced symmetrically

around the axis y = 0 and that is the reason the γyy does not
altered as much as γxx.
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