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ABSTRACT: We test a set of multiconfigurational wavefunction
approaches for calculating the ground state electron population for a
two-site Anderson model representing a molecule on a metal surface. In
particular, we compare (i) a Hartree Fock like wavefunction where
frontier orbitals are allowed to be nonorthogonal versus (ii) a fully non-
orthogonal configuration interaction wavefunction based on constrained
Hartree−Fock states. We test both the strong and weak metal-molecule
hybridization (Γ) limits as well as the strong and weak electron−electron
repulsion (U) limits. We obtain accurate results as compared with exact
numerical renormalization group theory, recovering charge transfer states
where appropriate. The current framework should open a path to run
molecular non-adiabatic dynamics on metal surfaces.

1. INTRODUCTION
Solving embedding problem has attracted a great deal of
attention in recent years1−11 as chemists explore interesting
interfacial phenomena, for example, molecular resonance effects
onmetal surfaces,12 electron-coupled adsorption13 and electron-
coupled vibrations.14,15 Embedding theory provides an
attractive strategy to describe the electronic structure of
extended systems (including interfacial systems) which can be
impractical for traditional high accuracy quantum mechanics
methods, for example coupled-cluster singles, doubles and full
triples,16 second-order perturbation with complete active space
(CASPT2)17,18 and multireference configuration interaction19

or full configuration interaction.20,21

Historically, some of the earliest embedding calculations have
addressed the Anderson Impurity model22 (or the more general
Hubbard model). By now, this model has been analyzed by a
variety of exact impurity solvers including the numerical
renormalization group (NRG),23 exact diagonalization24 and
quantum monte carlo.25 These benchmark studies have then
been very useful as far as benchmarking other, not exact but
powerful, embedding methods, including dynamical mean-field
theory26 and density matrix embedding theory.5 To date,
however, many of these powerful methods still have not been
applied to study the problem of embedding realistic molecules
on a realistic metal surface where there are many two-electron
matrix elements. For such a mundane task, constrained DFT
(CDFT) still remains the most practical approach, and the
method has been applied successfully to some extent.27−30 That
being said, CDFT results can also be unreliable in some cases, for
example strong molecule-metal coupling (i.e. strong hybrid-

ization)12 and fractional charge transfer.31 Nonadiabatic
dynamics remains just out of reach for many realistic potentials.
With this background in mind, the goal of this paper is to

introduce an new electronic structure method designed
specifically to address a molecule on a metal surface.
Importantly, when the electron−electron repulsion energy on
the impurity becomes large compared with the impurity-metal
coupling (i.e. in the weak metal-molecule coupling limit), the
true wavefunction will exhibit strong multireference character.
In such a case, we must be able to capture the open-shell singlet
character for an electron on or off the impurity; a single
determinant wavefunction will not be a good reference in such a
case. At the same time, of course, the correct wavefunction will
exhibit simple single-reference character in the limit of strong
metal-molecule coupling, and a good solver must reduce to the
RHF solution in such a case. With these two limits in mind,
below we explore a very basic approach whereby the frontier
orbitals are modulated so that the total wavefunction will indeed
contain open-shell character in the weak coupling limit and
closed-shell character in the strong coupling limit. We call the
resulting ansatz a closed-or-open shell Hartree Fock (COOS-
HF) wavefunction.
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In what follows, our specific goal will be to derive the
necessary equations for solving for the COOS-HF equations just
described, to apply this method to the Anderson Impurity
model, and to compare our results to a constrained Hartree−
Fock/Nonorthogonal configuration interaction (CHF/NOCI)
formalism. We will show that surprisingly accurate results can be
found with only a few variables to be optimized. We note that
these results follow our previous work in embedding using
configuration interaction spaces,32,33 but we emphasize that the
present approach does not require diagonalizing a massive
matrix of any kind.
An outline of this manuscript is as follows. In Section 2, we

introduce the COOS-HF formalism and we review the basic
elements of a standard CHF/NOCI approach; we also include a
brief comparison between COOS-HF and CASSCF(2,2) in
Section 2.3.1. In Section 3, we show results for the ground state
population and energy, from which one can evaluate the
accuracy of our approach. In Section 4, we discuss spin-
contamination and show that the present approach is free of any
contamination. Furthermore, we contemplate different varia-
tions of the COOS-HF ansatz that one can imagine
implementing [e.g., (partially optimized) poCOOS-HF vs
(fully optimized) foCOOS-HF] and we place our results in
the context of a CASSCF(2,2) formalism. We conclude in
Section 5.

2. THEORY
2.1. Model: Two-Site Anderson Impurity Model. For

this paper, our model of choice will be the two-site Anderson
impurity model (AIM). Within a second quantized representa-
tion, the Hamiltonian can be written as

H H

H d d d d

t d d d d

c c V d c c d

U d d d d d d d d

( )

( )

( )

d d

d

k
k k k
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k k k
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1 2 2 1

1 1

1 1 1 1 2 2 2 2

1 2

= +

= +

+ +

+ + +

= +

† †

† †

† † †

† † † †
(1)

and the mean-field Fock operator (assuming the spin restricted
case) can be easily written as

F H U d d d d U d d d done 1 1 1 1 2 2 2 2= + +† † † † (2)

Here, d d,1 2{ }† †
refer to impurity atomic orbitals, the operators

ck{ }† refer to bath (metal surface) atomic orbitals, and σ refers to
an electron spin. ,d d1 2

and ϵk are one-electron ionization
energies for the impurities and bath. td is the hopping parameter
between site 1 and site 2, U represents the on-site coulomb
repulsion for the impurity. Vk represents the hybridization
between impurity site 1 and the metal bath, and as in the wide
band approximation, is characterized by

V( ) 2 ( )
k

k k
2= = | |

(3)

where Γ is assumed to be constant through the whole energy
spectrum ϵ.
The Hamiltonian in eq 1 characterizes many different physical

processes because, in certain parameter regimes, one can identify

states with effectively open shell singlet character within the set
of impurity orbitals; in other regimes, one can identify charge
transfer between impurity and metal; and of course these two
phenomena cannot be fully disentangled for all parameter
regimes, highlighting a more realistic version of electron−
electron correlation than is found for a single-site Anderson
Holstein Hamiltonian. Note that the two-site model in this
paper assumes that two impurity sites have the same energy, that
is ϵd1 = ϵd2 = ϵd, but we believe our results here are general. For a
schematic figure of the physical set up, see Figure 1.

We will now address the two wavefunction approaches that
we wish to compare as far as assessing the ground-state
electronic structure for the system plus bath: a constrained
Hartree Fock configuration interaction approach versus a
closed-or-open-shell frontier orbital wavefunction approach.
2.2. Method 1: Constrained Hartree−Fock Based

Nonorthogonal Configuration Interaction. 2.2.1. Con-
strained HF States. Following ref 34, a general constraint to the
density can often be written as

r r rw N( ) ( )dc c=
(4)

where wc(r) acts as a weight function that defines the
constrained property, σ represents the electron spin, ρ(r)
represents the charge density andNc represents the total number
of constrained charge (or electrons). By adding one Lagrange
multiplier, Vc, one can optimize a general functional of the
density E[ρ] with a prescribed constraint by looking for extrema
of the following function

r r rW V E V w N, ( ) ( )dc c c c[ ] = [ ] +
i
k
jjjjjj

y
{
zzzzzz (5)

Within constrained density functional theory,34 one looks to
minimize the energy functional with the constraint that orbitals
are normalized, and one then arrives as the standard constrained
DFT equations

r
r

r r
r r rv v V w1

2
( )

( )
d ( ) ( )n x i

i i

2
c c c+ +

| |
+ +

=

i
k
jjjj

y
{
zzzz
(6)

This language (based on continuous real space or plane wave
basis sets) can easily be extended to the realm of discretized site
basis sets as appropriate for a generalized Andersonmodel under
a restricted Hartree−Fock (RHF) framework. The relevant

Figure 1. Schematic figure for a two-site model with 800 non-
interaction bath states.
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density constraint (defining the number of electrons on the
impurity) becomes

w NTr( )c c= (7)

where the density matrix ρ̂ and the weight matrix wc are defined
as:

i
i i

occ

= | |
(8)

w w d dc
impurity

= | |
(9)

Here, the set i{| } are the eigenvectors of the Hartree−Fock
equation and we set all site weights as wμ = 1. Specifically
speaking, the weight matrix for two-site Anderson model will be

w d d d dc 1 1 2 2= | | + | | (10)

We will explore all possible integer values for the constrained
number of integer electrons on the two impurity sites:

N e e e e e0 , 1 , 2 , 3 , 4c { } (11)

The final constrained Hartree−Fock equation (like the
constrained DFT equations in eq 6) can be written as

F V w( ) i i ic c+ = (12)

where the fock matrix F̂ is defined in eq 2. Note that even though
Nc is not explicitly included in eq 12, a value of Nc is required to
find the optimized Lagrange multiplier, Vc, which satisfies dW

dVc
=

0.
To calculate Vc, we use the first and second derivatives34 of

W(Vc) (assuming restricted orbitals) in eq 5
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=
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>

(14)

Here ρ̂ is the density matrix operator defined in eq 8, d1 and d2
represent two impurity sites,wc is the weight matrix defined in eq
10, {ψi} or {ψa} and ϵi or ϵa are eigenvectors and eigenvalues of
eq 12, respectively. As discussed in ref 34, eq 14 is derived from
simple first-order perturbation theory of the Kohn−Sham
equations. An algorithm to determine the constrained
Hartree−Fock solution can be summarised as follows

1 Choose the desired value of Nc in eq 11
2 Guess a Lagrange multiplier, for example Vc = 0
3 Guess an impurity population d d d d N

1 1 2 2 4
c= =† †

4 Construct the Fock matrix using eq 2
5 Solve eq 12 self-consistently and obtain eigenvectors {ψ}
and eigenvalues {ϵ}

6 Calculate a new impurity population d d1 1
† and d d2 2

†

7 Use eqs 13 and 14, take a Newton step toward a stationary
solution for W and calculate a new Vc.

8 Repeat Steps 4−7 until Vc converges.

2.2.2. Non-orthogonal Configuration Interaction.The total
number of electrons on the two impurity sites is required to be
an integer between 0 and 4. Therefore, one naturally finds five
diabatic constrained Hartree−Fock (CHF) states for our model
problem: , , , ,e e e e e4 3 2 1 0| | | | | , respectively. Since
these configurations are not orthogonal to each other, a
configuration interaction Hamiltonian can be constructed as
(see Appendix A for a detailed derivation of the necessary matrix
elements)

H
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H H H H H

H H H H H

H H H H H

H H H H H

e e e e e e e e e e

e e e e e e e e e e
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É
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(15)

and the corresponding overlap S is expressed as

S
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To transform the interaction Hamiltonian into an orthogonal
configuration basis, a transformation matrix X will be
introduced, which satisfies

X SX I=† (17)

In this paper, X is chosen as: X = S−1/2. By diagonalizing the
matrix X†HCHF/NOCIX, one obtains five adiabatic constrained
Hartree−Fock nonorthogonal configuration interaction (CHF/
NOCI) states.
2.3. Method 2: COOS-HF. Having discussed a standard

CHF/NOCI approach to charge transfer, let us now introduce
an alternative multiconfigurational approach that is not based on
a configuration interaction Hamiltonian but rather on a set of
frontier (non-orthogonal) orbitals. Our approach is to consider
a wavefunction of the following form

N
1

( )pq qpCOOS HF| = | + |
(18)

where N is the normalization factor

N p q2(1 )2= + | (19)

p, q are two nonorthogonal orbitals and ,pq qp| | are the
following two slater determinants for a 2n-electron system

p q

p q

n n p n q n

(1) (1) (1) (1)

(2) (2) (2) (2)

(2 ) (2 ) (2 ) (2 )

pq

1 1

1 1

1 1

| =

µ

µ

µ (20)
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q p

q p

n n q n p n

(1) (1) (1) (1)

(2) (2) (2) (2)

(2 ) (2 ) (2 ) (2 )

qp

1 1

1 1

1 1

| =

µ

µ

µ (21)

For the moment, we make no stipulations about the character of
the orbitals p and q; they could be parallel or they could be
orthogonal. And so, we refer to the wavefunction in eq 18 as a
closed-or-open shell HF ansatz.
Two options are now possible as far optimizing such a COOS-

HF wavefunction. First, one could imagine optimizing all of the
orbitals, {ψ1, ψ2, ..., p, q}. We will call this approach a fully
optimized COOS-HF (foCOOS-HF) ansatz.
The second approach is simpler and is based on a closed shell

RHF reference state. In such a case, we can seek three
nonorthogonal orbitals o, p, q, so that a simplified partially
optimized COOS-HF (poCOOS-HF) wavefunction can be
written as

N
oo pq

oo qp

N

1
( ... (22)

... )
1

( ) (23)oo
pq

oo
qp

poCOOS HF 1 1 2 2

1 1 2 2

| = |

+ |

= | + |

(22)

In eq 22, the choice of orbitals o, p, and q is critical. For this
wavefunction, we insist that orbital omust be an occupied orbital
and this orbital ô is removed in the slater determinant in eq 22, as
indicated by a hat. However, wemake no such assumption about
orbitals p and q (our “active” orbitals); even though p and q have
been written for convenience in the superscript of the kets oo

pq|
and oo

qp| , these orbital p need not be orthogonal to orbital o or
orbital q. Thus, when we optimize eq 22 for orbitals o, p, and q,
we can indeed recover the starting RHF ansatz by picking o = p =
q.
In particular, we can parameterize the spatial components of o,

p, and q in the basis of RHF canonical occupied orbitals {oi} and
virtual orbitals {va}

o c o

p d o d v

q d o d v

i
i i

o
a

a a

o
b

b b

| = |

| = | + |

| = | + |
(24)

Note that, if we define the core orbitals to be all of those
occupied orbitals i orthogonal to orbital o, the following
identities also hold

i o 0| = (25)

i p 0| = (26)

i q 0| = (27)

The core orbitals i together with orbital o form the RHF
occupied space, that is

i i o o o o
i i

i i| | + | | = | |
(28)

2.3.1. COOS-HF as a Subset of a CASSCF(2,2) Calculation.
The astute reader will notice that the COOS-HF wavefunction
ansatz in eq 18 represents a singlet configuration without spin
contamination and that the ansatz is clearly a subset of a
CASSCF(2,2) ansatz as can be seen by writing nonorthogonal
orbitals p, q in the orthonormal basis a, b.

p a b

q a b

cos sin

cos sin

| = | + |

| = | + | (29)

Therefore, the wavefunction in eq 18 can be written as (for
simplicity, the core orbitals are ignored)

pq qp
N N

aa bb

ab ba

1
2 cos cos 2 sin sin

(cos sin cos sin )( )

| + |
= { | + |

+ + | + | }
(30)

This equation is clearly of the CASSCF(2,2) form (where the CI
coefficients would normally be written as)

aa bb ab ba( )| + | + | + | (31)

if one makes the substitution

N

N

N

N

2 cos cos

2 sin sin

(cos sin cos sin )

2 1 (cos cos sin sin )2

=

=

= +

= × [ + + ] (32)

Amore complete discussion of this correspondence will be given
in the Discussion section.
2.3.2. Solving for the poCOOS-HF Orbitals and Energy. Let

us now discuss how one can most easily solve for the poCOOS-
HF orbitals. For the ansatz in eq 22, the expectation value for the
total energy is

H

H H
p q1

oo
pq

oo
pq

oo
pq

oo
qp

poCOOS HF poCOOS HF

2

| |

=
| | + | |

+ | (33)
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H i p i q H i p i q

h h h ii pp jj qq
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2
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i
ii pp qq

i j
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i

k
jjjjjjj
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zzzzzzz

(34)

H i p i q H i q i p

h p q h p q

ii p q pq jj p q pq
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2 2
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i
ii pq

i j

2

| | = | |

= | + |

+ | + | +
i

k
jjjjjjj

y

{
zzzzzzz (35)

Here, (∑iii + pp|∑jjj + qq) and (∑iii⟨p|q⟩ + pq|∑jjj⟨p|q⟩ + pq)
are shorthand notation for coulomb integrals (without
exchange), e.g., (∑iii + pp|∑jjj + qq) can be expanded as:
(∑ij(ii|jj) + ∑i(ii|qq) + ∑j(pp|jj) + (pp|qq). Furthermore, this
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expression can be simplified using ERHF as a reference. Recall
that the RHF energy is

E h ii jj h ii oo

oo oo

2 ( ) 2 2 ( )

( )

i
ii

ij
oo

i
RHF = + | + + |

+ | (36)

If we then define Fock operators as

f h ii oo oo oo

f h ii pp oo pp

( ) ( )

( ) ( )

oo oo
i

pp pp
i

= + | + |

= + | + |

f h ii qq oo qq

f h ii pq oo pq

( ) ( )

( ) ( )

qq qq
i

pq pq
i

= + | + |

= + | + |
(37)

then the poCOOS-HF energy becomes:

H E f oo oo

p q
f f f p q pp qq

p q
oo pp oo qq oo pq p q

2 ( )
1

1
2 2( )

1
1

( ) ( ) 2( )
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pp qq pq

poCOOS HF poCOOS HF RHF

2

2

| | = + |

+
+ |

[ + + | + | ]

+ |
[ | + | + | | ]

(38)

Once the gradient is obtained (see Appendix B for a complete
derivation of the analytical energy gradient), one can use a
Lagrange multiplier and a quasi-Newton method to minimize
the objective function. To write the equations more succinctly,
let us use the symbol x to represent a generic variable in the
poCOOS-HF variable space in eq 24 formed by the set

c d d d d, , , ,i o a o b{{ } { } { }} (39)

The Lagrangian operator can then be written as

x E x C x C x

C x

min ( ) ( ) ( ) ( )

( )

poCOOS HF 1 1 2 2

3 3

=

(40)

where λ1, λ2, λ3 are Lagrange multipliers and the three
constraints are

C x c
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( ) 1
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i
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o
a

a

o
b

b

1
2

2
2 2

3
2 2

=

= +

= +
(41)

Just as one would solve for an unconstrained objective function,
we use a Newton iteration to solve for the present Lagrangian
(the so-called Newton-KKT equation)35
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Here, pk is the walking direction for xk, i.e. xk+1 = xk + αpk and the
step length α is obtained from a line search. To reduce the
computational cost, the hessian ∇xx

2 L is also approximated and
updated by a BFGS scheme. In practice, for the problems below
and with a reasonable starting guess, we require roughly ten
cycles (i.e. line searches).

3. RESULTS AND DISCUSSION
In this paper, our goal is to compare the ground state properties
(electron populations and energy) as predicted by the methods
(CHF/NOCI and poCOOS-HF) above and to assess their
power for propagating adiabatic dynamics; in a future
publication, we will address excited state properties (and e.g.,
we will benchmark against the ROKS method36,37) so that we
can assess running nonadiabatic dynamics. For the present case,
because we focus on ground state theory, it is fairly
straightforward to compare our results against NRG theory,
which recovers only electron populations (not the total energy
which would depend on the number of discrete orbitals in the
bath). We will also benchmark our results against RHF and
UHF.
Because molecules are very diverse and their properties can

cover a multitude of chemisorption and physisorption regimes,
we will test the algorithms above in three different onsite
repulsion regimes: weak metal-molecule coupling U = 10Γ,
intermediate couplingU = 5Γ and strong couplingU = Γ. Figure
2 plots the ground state spin-up electron population on impurity
site 1. We set the two impurity energies equal to each other, that
is d d d1 2

= . The onsite energy ϵd (which is varied along the
x-axis) can be considered a charge transfer coordinate. Each plot
is separated into two ϵd regimes, where the total number of
electrons on the impurities ranges from 4 electrons to 2 electrons
and 2 electrons to 0 electrons, respectively; note that
n n4tot 1= for this restricted system. In the following
context, these two regimes will be represented as n4 2tot
and n2 0tot . The black line is the exact NRG results for
benchmark. The light blue line is restricted Hartree−Fock
(RHF). The dark blue line is the unrestricted Hartree−Fock
(UHF) result. The red line is constrained Hartree−Fock with
non-orthogonal configuration interaction (CHF/NOCI). And
lastly, the green line is the partially optimized closed-or-open
shell Hartree−Fock (poCOOS-HF) result.
To begin with, consider the performance of the RHF and

UHF methods. As one can see in Figure 2c, for the strong
coupling regime, where static correlation is minimal, RHF itself
is already a reasonable approximation to the ground state.
However, for the weak or intermediate metal-molecule coupling
regime, RHF becomes qualitatively incorrect when static
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correlation begins to dominate. At this point, UHF does agree
pretty well with NRG�but with two obvious disadvantages.
First, there is a large discontinuity in the UHF results at the
Coulson−Fischer point (see Figure 2a,b). Second, there is a
spin-contamination problem (which will be discussed in detail in
Section 4.1).
Next, we turn to the CHF/NOCI method. As is well known,

one of the disadvantages of CHF(or CDFT) is that the method
can fail to describe strongly coupled molecule-metal systems if
the constrained subsystem (in this paper, the two impurity sites)
and the unconstrained subsystem (in this paper, the bath) are

difficult to distinguish. Thus, the most important test of such a
system for CHF/NOCI will be the strong hybridization case. As
can be seen in Figure 2, while CHF/NOCI (the red line)
matches up with NRG pretty well in the weak coupling (U =
10Γ) regime, the method fails in the intermediate coupling (U =
5Γ) regime and the strong coupling (U = Γ) regime.
Lastly, let us address the green curve in Figure 2, representing

the partially optimized COOS-HF (poCOOS-HF) results. As
can be seen in Figure 2, poCOOS-HF results match with NRG
results fairly well in the three different coupling regimes. As one
would hope, in the weak and intermediate coupling regimes,
poCOOS-HF behaves like UHF but with no spin-contami-
nation; whereas in the strong coupling regime, poCOOS-HF
follows the (smooth) RHF solution. As a side note, we mention
that, in Figure 2c, where the coupling is so strong that RHF and
UHF can be considered close to the exact solution, most of the
small offset between the RHF/UHF/poCOOS-HF results and
the NRG results can be attributed to the small systematic error
of the NRG method (related to the choice of chain length,
logarithmic discretization parameter, temperature parameter
and energy truncation23). (For instance, the NRG approach will
not be exactly on top of the RHF line even for Γ = 0, where RHF
is truly exact.) These results are encouraging for future dynamics
simulations.
Next, we consider energies. Figure 3 plots the ground state

energy (relative to RHF) as calculated by UHF, CHF/NOCI
and poCOOS-HF in three different coupling regimes: (a) U =
10Γ, (b) U = 5Γ and (c) U = Γ. The x axis is the same as in
Figure 2. One can see from Figure 3 that the poCOOS-HF
energy is very close to UHF and even lower than UHFwhenU =
5Γ. Both UHF and poCOOS-HF give a maximum energy
correction when n 3tot = and n 1tot = , in which case the
impurity has open-shell singlet character. Interestingly, in Figure
3a, even though the CHF/NOCI energy is about 1 × 10−3

higher than UHF or poCOOS-HF, the CHF/NOCI electron
population (in Figure 2a) is still pretty close to the UHF and
poCOOS-HF results.

4. DISCUSSION
4.1. Spin-Contamination. One of the strengths of the

poCOOS-HF method is that the method works with a singlet
wavefunction, and therefore the method does not have any spin-
contamination. By contrast, as is well known, UHF suffers from
substantial spin contamination. In Figure 4, we report spin-
contamination S( )2 for the three different onsite repulsions U.
One can see that forU = 5Γ andU = 10Γ, ⟨S2⟩ for UHF can be as
large as one; large changes in spin contamination arise near the
UHF Coulson−Fischer points.
As a practical matter, the poCOOS-HF ansatz was designed to

avoid the two problems just listed. Our goal was to seek the
simplest spin-pure wavefunction method that could break
symmetry (and introduce multi-reference character) in the
weak and intermediate coupling regimes, but at the same time
recover symmetry in the strong coupling limit, all the while being
as smooth as possible. For that goal, the two standard candidates
in the literature would be: broken symmetry UHF (BS-UHF)
and spin-flip (SF) methods. It will be interesting to benchmark
the results here versus those approaches in the future. However,
already we know that the BS-UHF method is not free of spin
contamination. As for spin-flip methods, often one must include
more configurations than a standard SF-CIS calculation38−40 if
one wishes to recover a solution free of spin-contamination, for

Figure 2. Ground state spin-up electron population on impurity site 1
as a function of the onsite energy d d d1 2

= = , with different onsite
repulsion energies. (a) U = 10Γ; (b) U = 5Γ; (c) U = Γ. Note that
poCOOS-HF results match NRG results well for all three different
onsite repulsion U regimes. Here, the parameters are: td = 0.2, 803
number of states (801 bath states plus 2 impurities) with band width 0.8
and Γ = 0.01.
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example one can implement the SA-SF-CIS method of Zhang
and Herbert41 or the SF-XCIS method of Casanova and Head-
Gordon.42 Another interesting option to explore in the future
would be Holomorphic Hartree−Fock43,44 theory where
smooth energy curves can be obtained, at least for systems not
too large.
4.2. poCOOS Versus foCOOS Versus CASSCF(2,2). At

this point, we have seen the poCOOS approach can perform
fairly well for the Anderson embedding problem. That being
said, one can argue that poCOOS-HF is only a partially
optimized theory. After all, the algorithm optimizes only 3-
orbitals (o, p, q in eq 24) while the remaining orbitals are kept in

the RHF reference state. In particular, poCOOS-HF optimizes
the orbital o within the RHF occupied space, and the remaining
core orbitals are not fully optimized in terms of energy as a
function orbital rotation parameters. (If we imagine the rotation
of orbitals to be e−κ, then κit and κia are zero, where i indexes core
orbitals, t indexes active orbitals and a indexes virtual orbitals.)
In the future, one can imagine fully optimizing all of the

orbitals in the wavefunction of eq 18, what we might call a fully
optimized foCOOS-HF, which optimizes a set of orthogonal
orbitals (parametrized by κrs, where r, s index any orbitals) and
CI coefficients (parametrized by α, β, γ in eq 32). In this spirit,
one can clearly ascertain that the foCOOS ansatz would
generate many (but not all) configurations suggested by a
CASSCF(2,2) wavefunction. Note that this equivalence is not
exact because the parameter space for CASSCF(2,2) CI
coefficients is a complete ellipsoid while the parameter space
for foCOOS-HF is only a subset of such a CASSCF(2,2) space.
To see this constraint clearly, consider eq 32, where the
normalization constraint can be written as

2 12 2 2+ + = (43)

This equation can be recast as

( ) 2 2 12 2+ + = (44)

Note that

N
2 2 2

cos sin sin cos
02

2 2 2 2

= +
(45)

so that our COOS-HF ansatz must satisfy

( ) 12+ (46)

See Figure 5. Thus, one can consider the parameter space for
foCOOS as an ellipsoid cut by two planes, α + β = −1 and α + β
= 1, which is only a subset of the CAS space. For instance, if one

considers the CAS parameter set , 01
2{ }= = = , clearly

there is no corresponding {θ, η} COOS-HF parameter set.
While one might argue that this limitation represents a failure

of the COOS-HF wavefunction (because a bigger variational
space is always better), we are hopeful that this will not be the
case. First, because we have fewer degrees of freedom, we are
hopeful that with a foCOOS-HF wavefunction (as constructed
exclusively from a set of meaningful orbitals), we will be able to
build a balanced reference for ground and excited state
calculations without state averaging. Second, we are also hopeful
that using our choice of frontier orbitals, future work with non-
orthogonal configuration interaction Hamiltonians (for excited
states) will require smaller diagonalizations and few multi-
reference problems. Third, we are also hopeful that with fewer
degrees of freedom, there will be fewer discontinuities to deal
with dynamically (and in particular, the code can be run without
manually choosing an active space).
As an example of a situation we might expect to encounter,

consider the case where we expect the wavefunction to have a
half occupation for highest occupied molecular orbital
(HOMO) and a half occupation for the lowest unoccupied
molecular orbital (LUMO), in other words a one-electron
density matrix D of the form

D i i h h l l1
2

1
2i core

= | | + | | + | |
(47)

Figure 3.Ground state energy (relative to RHF energy) as a function of
the onsite energy ϵd, with different onsite repulsion energies. (a) U =
10Γ; (b) U = 5Γ; (c) U = Γ. Note that the poCOOS-HF energy is
comparable to the UHF energy for all three different onsite repulsionU
regimes. All parameters are the same as in Figure 2.
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In order to represent such a density matrix within a CAS
parameter space, there are two possible wavefunctions:

0, 1
2{ }= = = ( )h l lh( )1

2
| + | a n d

, 01
2{ }= = = ( )hh l l( )1

2
| + | . In the future, it

will be interesting to check if CAS calculations converge to the
same minimum starting from these two different guesses. That

being said, since the parameter set , 01
2{ }= = = is out

of the COOS-HF parameter space, foCOOS will only have one

unique guess wavefunction, that is, h l lh( )1
2

| + | , and so is

less likely to suffer multiple solutions. In short, the essence of the
present approach is that we are willing to deal with less accuracy
(i.e. not including a full CAS space) if our goal is really to run
nonadiabatic dynamics over a smooth and qualitatively correct
surface.
This same reasoning explains why some dynamicists over

prefer CASCI to CASSCF for many applications.45

5. CONCLUSIONS
In summary, we have presented a straightforward closed or open
shell HF approach for electronic structure theory and we have
compared such an approach against a CHF/NOCI ansatz for the

Figure 4. Spin contamination S( )2 as a function of the onsite energy ϵd, with different onsite repulsion energies. (a)U = 10Γ; (b)U = 5Γ; (c)U = Γ.
Note that UHF has substantial spin-contamination for U = 5Γ and U = 10Γ. Also note that poCOOS-HF has no spin-contamination because the
algorithm works with a pure singlet wavefunction, see eq 22. All parameters are the same as in Figure 2.

Figure 5. CI coefficients parameter space for (a) COOS-HF; (b) CASSCF(2,2). Note that the CASSCF(2,2) parameter space forms a complete
ellipsoid (α2 + β2 + 2γ2 = 1) with semi-axes of (1,1, 1

2
) while COOS-HF covers just a part of this ellipsoid. The forbidden part of the COOS-HF

parameter space corresponds to the areas {α > 0, β > 0} and {α < 0, β < 0}.
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two-site Anderson model of a molecule sitting on a metal
surface. We have tested the algorithms in the weak (U = 10Γ),
intermediate (U = 5Γ) and strong (U = Γ) coupling regimes and
we have found that poCOOS-HF can obtain accurate results as
compared with exact NRG theory, recovering charge transfer
states where appropriate; in particular, in the weak and
intermediate coupling regimes, poCOOS-HF can recover the
strong open-shell singlet character (when n 3tot = and
n 1tot = ) exhibited by the impurity.
Looking forward, the COOS-HF approach has the attractive

feature that the algorithm can be completely characterized by a
set of orbitals, that is one does not need to list any CI
coefficients. As such, the ansatz may prove amenable to a merger
with DFT. Moreover, in the future, one would like to run
molecular non-adiabatic dynamics onmetal surfaces through the
current framework. Progress on this front will depend on two
important future developments. First, if one looks very carefully
at Figure 2a, in the strongU regime, poCOOS-HF would appear
to have four small discontinuities around ϵ =−0.30,−0.25, 0.15,
0.20, attributable to a Coulson−Fischer point (similar to UHF).
The changes in slope are clearly far smaller for poCOOS-HF
than for UHF, but they may be unavoidable. One would hope
that, if one implements the foCOOS-HF approach, such a
discontinuity will be removed entirely. Second, in the future, it
will be essential to generate excited states on top of a COOS-HF
reference. Again, it will be essential to generate smooth surfaces
as much as possible. Despite these concerns, all indications are
that the present approach has the potential to be applied to
reasonably sized electronic subsystems interacting with large
electronic baths for use in future dynamical approaches.

■ APPENDIX

A. Non-Orthogonal Configuration Matrix Elements
Under the framework of constrained Hartree−Fock, suppose we
find two ground states with the total number of electrons on the
impurities equal to 0 and 1, denoted as

d d d d 1g g1 1 2 2+ =† †

and

d d d d 0g g1 1 2 2+ =† †

The quantity that we want to calculate is the matrix element:
Hg g| | . In the following paragraph, the one electron operator

d†b will be used to derive such non-orthogonal matrix elements;
here, d† represents an impurity atomic orbital and b† represents a
bath atomic orbital or an impurity atomic orbital.
The matrix element we wish to calculate can be explicitly

written as: d b c c. .g b g1 +† . For restricted
orbitals, we can ignore the summation over spin σ and focus
on d b c c2 . .g b g1 +† . This equation arises by inserting
an identity: I = |Φg⟩⟨Φg| + ∑i

a|Φi
a⟩⟨ia|. Since the reference state

interacts only with single excitation states through a one-
electron operator, the inserted identity does not need to include
double or higher order excitation configurations.

d b d b

d b

g
b

g g
b

g g g

ia
g

b
i
a

i
a

g

1 1

1

= |

+ |

† †

†

(48)

First of all, using second quantization, it is clear that

d b d i i bg
b

g
b i

1

occ

1= | |†

(49)

d b d i a bg
b

i
a

b
1 1= | |†

(50)

Second, let us calculate the overlap

Sdet( )g g
o| = (51)

Here, So is the No by No occupied orbital overlap matrix (where
No is the number of occupied orbitals). To calculate the overlap

i
a

g| , we need to introduce a biorthogonal basis set. If we
perform a singular value decomposition on the (occupied−
occupied) So and (virtual−virtual) Sv overlap matrices

S U Vo o o o= † (52)

S U Vv v v v= † (53)

then the molecular orbitals can be expressed in this
biorthogonal basis set

i k U
k

ik

occ
o| = | *

(54)

a c U
c

ac

vir
v| = | *

(55)

i k V
k

ik

occ
o| = | *

(56)

a c V
c

ac

vir
v| = | *

(57)

We can then express the overlap in this basis of biorthogonal
orbitals

U U

U U S c k

U S a k

det( )

det( )

i
a

g k c ac ik k
c

g

k c ac ik k

k ik k

occ vir v o

occ vir v o o 1

occ o o 1

| = |

= |
= |

*

*

*
(58)

T h e s e c o n d e q u a l i t y u s e s t h e f a c t t h a t
Sdet( ) g g g g k k

o occ= | = | = with λk being the
diagonal element of Λo.
Next, the expression above can be simplified again using the

identity
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(59)

If we substitute eq 59 into 58, we find

S S a mdet( ) ( )i
a

g
m

mi
o

occ
o 1| = |

(60)

Finally, by combining eqs 49 and 51, we evaluate the first term

of eq 48.

d b S d i i bdet( )g
b

g g g
b i

1
o

bath

occ

1| = | |†

(61)

And by combining eqs 50 and 60, we can also evaluate the

second term of eq 48.

d b
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The third equality uses the property that

a a I j j
a j

vir occ

| | = | |
(63)

j m S S S( ) ( ) ( )
m

mi
m

jm mi ji

occ
o 1

occ
o o 1| = =

(64)

Altogether, by substituting eqs 61 and 62 into 48, we recover

d b S b m S i ddet( ) ( )g
b

g
b im

mi1
o
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o 1

1= | |†

(65)

Now we turn to the two-electron operator contribution

d dd d d d
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where i, j, a, b are dummy summation indices. Then, we define

n d d

n d d

g g g

g g g

= | |

= | |
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†
(67)

Then, it follows that
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Altogether, there is a lot of cancellation, and the two-electron
operator contribution is

d dd d S d m S i d

d j S k d

det( ) ( )

( )

g g
im

m i

kj
j k

o
occ

o 1

occ
o 1

| | = | |

| |

† †

(69)

B. Analytical Energy Gradient for poCOOS-HF
For the sake of completeness, here we list all of the electronic
derivatives (with respect to orbital variations) of the relevant
fock operators, overlap matrix elements, and two electron matrix
elements as present in eq 38. The indices i,j,k,l represent
occupied orbitals and a,b,c,d represent virtual orbitals.
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B.1. Derivatives of Fock Operators.
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B.2. Derivatives of Overlap Matrices.
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B.3. Derivatives of Two Electron Integrals.
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Figure 6. CHF + RHF/NOCI energy (relative to RHF energy) as a function of ϵd. (a) U = 10Γ; (b) U = 5Γ; (c) U = Γ. Note that including the RHF
ansatz within the CI does greatly improve the NOCI energetic result. All parameters are the same as in Figure 2.
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Figure 7. CHF + RHF/NOCI electronic population on site 1 as a function of ϵd. (a) U = 10Γ; (b) U = 5Γ; (c) U = Γ. Note that, unfortunately,
including the RHF configuration in our NOCIHamiltonian results in worse results for the electronic population because the final result now looks like
the RHF result, which is good for U = Γ but wrong for U = 10Γ. The problem at bottom is that the CHF energies are simply too large relative to the
RHF energy. All parameters are the same as in Figure 2.

Figure 8.Number of unpaired electrons as a function of ϵd. (a) U = 10Γ (here one expects two unpaired electrons); (b) U = 5Γ; (c) U = Γ (here one
expects zero unpaired electrons). While UHF performs best, poCOOS-HF does retrieve the correct trend whereas CHF/NOCI is quite inaccurate
(sometimes too small, sometimes too large). All parameters are the same as in Figure 2.
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C. Including the Restricted Hartree−Fock Configuration
within the Nonorthogonal Configuration Interaction
Hamiltonian (CHF + RHF/NOCI)
Above, in Section 3, we showed that a non-orthogonal CI with
CHF states did not perform well for the two-site AH model.
Here, we will now show how this result changes if we include the
RHF configuration within the CHF/NOCI basis. In Figure 6, we
plot the energy (relative to the RHF energy) of the resulting
algorithms for different electron−electron repulsions (U); in
Figure 7, we plot the electronic population on site 1. As one
might have guessed, including the RHF ansatz within the CI
does greatly improve the NOCI energy. However, this
improvement comes at the cost of worse electronic population
results (because the CHF + RHF/NOCI results now resemble
the RHF answer, which is good for U = Γ but wrong for U =
10Γ).
The problem (at bottom) is that the CHF/NOCI energies are

just too large and not balanced with a RHF ansatz. Note that we
are using restricted CHF configurations here (rather than
unrestricted configurations); the energetic balance would likely
be better if we used unrestricted CHF configurations (though at
the cost of larger discontinuities).
D. Analysis of the Number of Unpaired Electrons
Here, in order to build intuition around the COOS approach
presented above, we construct the one-particle reduced density
matrix (1RDM) and calculate the number of unpaired electrons.
Following ref 46, let the number of unpaired electrons nu be

n n M n1 1 1u
i

M

i
i

M

i= | | = | |
(84)

where ni is the i-th eigenvalue of the 1RDM and M is the total
number of basis functions. For nocc occupied orbitals, we build
the 1RDM’s as follows

1 For poCOOS-HF, the 1RDM follows from the 2 by 2
density matrix within the subspace of the two active
orbitals.

2 The 1RDM for UHF is: D i i i ii
nocc= | | + | |.

3 T h e 1 R D M f o r C H F / N O C I i s :
D c cI J I J I J0

4
0

4= | |= =
† . Here, the summation

over I, J represents the 0e, 1e, 2e, 3e, 4e configuration
states. In matrix representation, the 1RDM can be written
as

D c c C S C( )
I J

I J J IJ I
T

0

4

0

4

,occ
o 1

,occ=
= =

where cI, cJ are CI coefficients; CJ,occ is the matrix of the
occupied molecular orbital coefficients for the J-th
configuration and CI,occ

T is the matrix of the occupied
molecular orbital coefficients (transposed) for I-th
configuration. The occupied overlap matrix is defined
as: SIJo = CI,occ

T CJ,occ.
In all cases, the trace of the 1RDM is equal to the number of

electrons (2nocc).
In Figure 8, we plot the number of unpaired electrons

predicted by CHF/NOCI, poCOOS-HF and UHF. Note that,
in the limit thatU ≫ Γ, we expect to find two unpaired electrons
(when the system shows open-shell character around ϵd = −0.28
and ϵd = 0.18). In the limit that U ≪ Γ, we expect to find zero
unpaired electrons. According to Figure 8, UHF performs quite
well as one might expect, but poCOOS-HF does retrieve the

correct trend. CHF/NOCI is not accurate at all (sometimes too
small, sometimes too large). (Note again that we are using
restricted CHF configurations here.) These results would
suggest that the strong performance of poCOOS-HF above
was not simply fortuitous; the method would appear to get the
right results for the right reasons.
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