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A stochastic resolution of identity approach (sRI) is applied to the second-order coupled cluster 

singles and doubles (CC2) model to calculate the ground-state energy. Utilizing a set of stochastic 

orbitals to optimize the expensive tensor contraction steps in CC2, we greatly reduce the overall 

computational cost. Compared with the RI-CC2 model, the sRI-CC2 achieves scaling reduction from 

O(N 5) to O(N 3), where N is a measure for the system size. When applying the sRI-CC2 to a series 

of hydrogen dimer chains, we demonstrate that the sRI-CC2 accurately reproduces RI-CC2 results 

for the correlation energies and exhibits a scaling of O(𝑁𝑁H2.71), with NH being the number of hydrogen 

atoms. Our calculations with different systems and basis sets show small changes in standard 

deviations, which indicates a broad applicability of our approach to various systems. 

I. INTRODUCTION 

Developing accurate and affordable electronic structure theory for complex systems is still one of the most 

challenging problems in theoretical chemistry. Among the available methodologies, the coupled cluster singles and 

doubles model (CCSD) has been proved to be a valuable one, which scales as O(N 

6) (with N being a measure of the 

system size). The CCSD model was first implemented by Purvis and Bartlett1 in 1982 and became popular in realistic 

electronic structure calculations due to further development by Koch et al.2,3 Later in 1995, Christiansen and Koch et 

al.4 reported the formulation and implementation of the CC2 model, which scales as O(N5), as an approximation to 

CCSD. Significantly, the CC2 model provides the ground state energy as well as the excitation energy from the single 

excitation dominant transition, which is correct to the second order in the fluctuation operator. Between 2000 and 

2001, Hald et al.5-7 took advantage of integral-direct approach to handle the 4-index electron repulsion integrals (ERIs), 

which reduced the computational cost of the CC2 model and extended its applicability to larger molecular systems. In 
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addition to the integral-direct approach, the introduction of the resolution-of-the-identity (RI) approximation8,9 by 

Hättig and Weigend10 in 2000 greatly ameliorated the bottlenecks of CPU time and storage and has enabled a 

widespread use of the CC2 model.11 

There have been many successful cases12-17 of the ground state energy calculations by the RI approach. However, 

the RI approximation still scales as O(N 5), consuming huge memory and high disk space. In addition, the CC2 

calculation of the ground state properties needs to be achieved through an iterative process, which makes it obviously 

inferior to other methods such as MP2 in time consumption. These factors weaken the advantages of CC2 and make 

people pay more attention to its performance in the calculation of the electronic excited state energy.18 

For these reasons, a stochastic orbital approach is introduced to the RI approximation, abbreviated as sRI 

approach, to further reduce the scaling of the CC2 ground state energy calculations. The sRI approximation has been 

formulated and implemented for a variety of electronic structure theory, including MP219-21, DFT22,23, GW24 et al. In 

the sRI approach, a set of random orbitals are introduced to simplify the achievement of 4-index ERIs and lower the 

rank of computational costs from O(N 

5) to O(N 

3), when basically maintains the original accuracy. In the subsequent 

research25-27, this sRI approach has been further applied to the second-order Matsubara Green’s function (sRI-GF2) 

theory and turned out to be a practical approach for large weakly-correlated systems. Inspired by its high performance, 

we introduce the sRI method to the calculation of the CC2 ground state energy. 

In the paper, we develop the sRI-CC2 model to further reduce the scaling. We apply the sRI approximation to 

the CC2 theory for the ground state properties and show that the sRI approximation reduces the scaling of CC2 from 

O(N 

5) to O(N 

3). We test the performance of sRI-CC2 for hydrogen dimer chains as well as a list of molecular systems. 

We show that sRI-CC2 reproduce the results from RI-CC2 in Q-Chem package28 for intensive properties, with a 

stochastic error that does not depend on system size. We further analyze the error to demonstrate the applicability of 

the sRI-CC2 to a variety of molecular systems.  

This paper is organized as follows: In the section Ⅱ, we briefly review RI and sRI methods. We also demonstrate 

the detailed implementation of sRI-CC2 in this section. In the section Ⅲ, a comparison of RI-CC2 and sRI-CC2 

approaches for a series of molecules and basis sets is presented, with emphasis on the scaling of CPU time and the 

assessment of the correlation energies and standard deviations. Finally, we conclude in the section Ⅳ. 



3 
 

II. THEORY 

A. Notation 

We use the notations in Table I to represent the items used in the main text. In particular, the total number of AO 

basis functions, auxiliary basis functions, occupied, and unoccupied sets of MOs are denoted as NAO, Naux, Nocc, and 

Nvirt respectively. 

TABLE I. Summary of notations in the following equations. 

 

 

 

 

 

 

 

 

B. Resolution of identity (RI) and stochastic resolution of identity (sRI) 

Before introducing the stochastic resolution of identity, we briefly review the resolution of identity approach. In 

the RI approximation, the 4-index ERIs are approximated by 3-index and 2-index ERIs using the auxiliary basis {P}: 

(𝛼𝛼𝛼𝛼|𝛾𝛾𝛾𝛾) ≈ � (𝛼𝛼𝛼𝛼|𝑃𝑃)[𝑉𝑉−1]𝑃𝑃𝑅𝑅

𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎

𝑃𝑃𝑅𝑅

(𝑅𝑅|𝛾𝛾𝛾𝛾)                                                                                                                  

= � [� [(𝛼𝛼𝛼𝛼|𝑃𝑃)�𝑉𝑉−1/2�
𝑃𝑃𝑄𝑄

][
𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎

𝑃𝑃

� �𝑉𝑉−1/2�
𝑄𝑄𝑅𝑅

𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎

𝑅𝑅

𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎

𝑄𝑄

(𝑅𝑅|𝛾𝛾𝛾𝛾)]                                                            (1) 

Where we have defined 4-, 3- and 2-index ERIs as 

(𝛼𝛼𝛼𝛼|𝛾𝛾𝛾𝛾)  =  �𝑑𝑑𝑟𝑟1 𝑑𝑑𝑟𝑟2
𝜒𝜒𝛼𝛼(𝑟𝑟1)𝜒𝜒𝛽𝛽(𝑟𝑟1)𝜒𝜒𝛾𝛾(𝑟𝑟2)𝜒𝜒𝛿𝛿(𝑟𝑟2)

𝑟𝑟12
                                                                                      (2) 

(𝛼𝛼𝛼𝛼|𝑃𝑃)  =  �𝑑𝑑𝑟𝑟1 𝑑𝑑𝑟𝑟2
𝜒𝜒𝛼𝛼(𝑟𝑟1) 𝜒𝜒𝛽𝛽(𝑟𝑟1) 𝜒𝜒𝑃𝑃(𝑟𝑟2)

𝑟𝑟12
                                                                                                (3) 

item function or indices 

AO Gaussian basis functions  χα (r1), χβ (r1), χγ (r1), χδ (r1), … 

auxiliary basis functions P, Q, R, S, … 

general sets of AOs α , β , γ , δ , … 

general sets of MOs p, q, r, s, … 

occupied (active) MOs i, j, k, l, … 

unoccupied (virtual) MOs a, b, c, d, … 
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𝑉𝑉𝑃𝑃𝑄𝑄 =  (𝑃𝑃|𝑄𝑄)  =  �𝑑𝑑𝑟𝑟1 𝑑𝑑𝑟𝑟2
𝜒𝜒𝑃𝑃(𝑟𝑟1) 𝜒𝜒𝑄𝑄(𝑟𝑟2)

𝑟𝑟12
                                                                                          (4) 

Defining 

𝐾𝐾𝛼𝛼𝛽𝛽
𝑄𝑄  ≡ � (𝛼𝛼𝛼𝛼|𝑃𝑃) 𝑉𝑉𝑃𝑃𝑄𝑄

−1/2
𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎

𝑃𝑃

                                                                                                                           (5) 

we can rewrite the RI approximation as  

(𝛼𝛼𝛼𝛼|𝛾𝛾𝛾𝛾) ≈ � 𝐾𝐾𝛼𝛼𝛽𝛽
𝑄𝑄 𝐾𝐾𝛾𝛾𝛿𝛿

𝑄𝑄
𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎

𝑄𝑄

                                                                                                                                     (6) 

Note that the formation of the RI matrix 𝐾𝐾𝛼𝛼𝛽𝛽
𝑄𝑄  in Eq. (5) scales as O(𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎2 𝑁𝑁𝐴𝐴𝐴𝐴2 ). Furthermore, the transformation of 

this 3-index matrix from AO basis to MO basis can be done in two steps,  

 𝐾𝐾𝑝𝑝𝛽𝛽
𝑄𝑄  = �𝐶𝐶𝛼𝛼

𝑝𝑝
𝑁𝑁𝐴𝐴𝐴𝐴

𝛼𝛼

𝐾𝐾𝛼𝛼𝛽𝛽
𝑄𝑄                                                                                                                                        (7) 

𝐾𝐾𝑝𝑝𝑝𝑝
𝑄𝑄  = �𝐶𝐶𝛽𝛽

𝑝𝑝𝐾𝐾𝑝𝑝𝛽𝛽
𝑄𝑄

𝑁𝑁𝐴𝐴𝐴𝐴

𝛽𝛽

                                                                                                                                       (8) 

which scale as O(𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎𝑁𝑁𝐴𝐴𝐴𝐴3 ). Here 𝐶𝐶𝛼𝛼
𝑝𝑝 and 𝐶𝐶𝛽𝛽

𝑝𝑝 are the usual SCF MO coefficients. Since both 𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎 and 𝑁𝑁𝐴𝐴𝐴𝐴 scale 

linearly with the system size N, the formal scaling of the above transformation is O(𝑁𝑁5). 

The stochastic realization of the RI approximation utilizes another set of stochastic orbitals {θ ξ}, ξ = 1, 2, …, 

Ns (with Ns being the number of stochastic orbitals). All these stochastic orbitals are column arrays of length Naux with 

random elements ±1, (i.e. θ 𝐴𝐴
 ξ = ±1). Thus, due to the central limit theorem, we have the following identity: 

⟨θ  ⊗ θ ⟩ξ =
1
𝑁𝑁𝑠𝑠
� θ ξ ⊗ (θ ξ)𝑇𝑇
𝑁𝑁𝑠𝑠

ξ=1

=

⎝

⎜⎜
⎛

⟨θ1θ1⟩ξ ⟨θ2θ1⟩ξ
⟨θ2θ1⟩ξ ⟨θ2θ2⟩ξ

⋯
�θ1θ𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎�ξ
�θ2θ𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎�ξ

⋮ ⋱ ⋮
�θ𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎θ1�ξ �θ𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎θ2�ξ ⋯ �θ𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎θ𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎�ξ⎠

⎟⎟
⎞
≈ 𝐼𝐼                                           (9) 

In Eq. (9), since θ 𝐴𝐴
 ξ  (and θ𝐵𝐵) is a random choice of ±1, the diagonal matrix element denoted by 〈θ𝐴𝐴θ𝐴𝐴〉ξ always 

equals 1; the off-diagonal element denoted by 〈θ𝐴𝐴θ𝐵𝐵〉ξ , however, converges to 0 when averaging over Ns stochastic 

orbitals.  

With the introduction of the stochastic resolution of identity, we can approximate 4-index ERIs using the 

stochastic orbitals in the following form: 
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(𝛼𝛼𝛼𝛼|𝛾𝛾𝛾𝛾) = � � (𝛼𝛼𝛼𝛼|𝑃𝑃) 𝑉𝑉𝑃𝑃𝑄𝑄
−1/2 𝐼𝐼𝑄𝑄𝑄𝑄

𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎

𝑃𝑃𝑅𝑅

 𝑉𝑉𝑄𝑄𝑅𝑅
−1/2

𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎

𝑄𝑄𝑄𝑄

(𝑅𝑅|𝛾𝛾𝛾𝛾)                                                                                        

≈ � � (𝛼𝛼𝛼𝛼|𝑃𝑃) 𝑉𝑉𝑃𝑃𝑄𝑄
−1/2 �〈θ  ⊗ θ 𝑇𝑇 〉ξ�𝑄𝑄𝑄𝑄

𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎

𝑃𝑃𝑅𝑅

(𝑅𝑅|𝛾𝛾𝛾𝛾) 𝑉𝑉𝑄𝑄𝑅𝑅
−1/2

𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎

𝑄𝑄𝑄𝑄

                                                                  

= ��� (𝛼𝛼𝛼𝛼|𝑃𝑃)
𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎

𝑃𝑃

� � 𝑉𝑉𝑃𝑃𝑄𝑄
−1/2θ 𝑄𝑄�

𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎

𝑄𝑄

� �� (𝑅𝑅|𝛾𝛾𝛾𝛾)
𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎

𝑅𝑅

� � 𝑉𝑉𝑄𝑄𝑅𝑅
−1/2θ 𝑄𝑄

 𝑇𝑇�
𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎

𝑄𝑄

��

ξ

                                     (10) 

Similar to the RI case, we can define 𝑅𝑅𝛼𝛼𝛽𝛽
ξ  as  

𝑅𝑅𝛼𝛼𝛽𝛽
ξ = � (𝛼𝛼𝛼𝛼|𝑃𝑃)

𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎

𝑃𝑃

�� � 𝑉𝑉𝑃𝑃𝑄𝑄
−1/2θ 𝑄𝑄�

𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎

𝑄𝑄

�                                                                (11) 

such that we can rewrite the 4-index ERIs as 

(𝛼𝛼𝛼𝛼|𝛾𝛾𝛾𝛾) ≈
1
𝑁𝑁𝑠𝑠
�𝑅𝑅𝛼𝛼𝛽𝛽

ξ 𝑅𝑅𝛾𝛾𝛿𝛿
ξ

𝑁𝑁𝑠𝑠

ξ=1

≡ �𝑅𝑅𝛼𝛼𝛽𝛽
ξ 𝑅𝑅𝛾𝛾𝛿𝛿

ξ �
ξ

                                                                                                    (12) 

Note that the calculation of the 𝑅𝑅𝛼𝛼𝛽𝛽
ξ  matrix in Eq. (11) scales as O(𝑁𝑁𝑠𝑠𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎𝑁𝑁𝐴𝐴𝐴𝐴2 ). Furthermore, the transformation of 

the sRI matrix from AO basis to MO basis scales as O(𝑁𝑁𝑠𝑠𝑁𝑁𝐴𝐴𝐴𝐴3 ), 

   𝑅𝑅𝑝𝑝𝛽𝛽
ξ  = �𝐶𝐶𝛼𝛼

𝑝𝑝
𝑁𝑁𝐴𝐴𝐴𝐴

𝛼𝛼

𝑅𝑅𝛼𝛼𝛽𝛽
ξ                                                                                                                                    (13) 

𝑅𝑅𝑝𝑝𝑝𝑝
ξ  = �𝐶𝐶𝛽𝛽

𝑝𝑝𝑅𝑅𝑝𝑝𝛽𝛽
ξ

𝑁𝑁𝐴𝐴𝐴𝐴

𝛽𝛽

                                                                                                                                   (14) 

Thus the overall calculation of sRI matrix 𝑅𝑅𝑝𝑝𝑝𝑝
ξ  formally scales as O(𝑁𝑁𝑠𝑠𝑁𝑁3). As shown previously (Ref. 19-27) , when 

applying the sRI approach to intensive quantities, the number of stochastic orbitals 𝑁𝑁𝑠𝑠 being used is independent from 

the system size, such that the formation of the sRI matrix scales as O(𝑁𝑁3). In particular, as shown below, we will apply 

the sRI approach to CC2 theory, where we can achieve an overall O(𝑁𝑁3) scaling for ground state calculation. We will 

now introduce our sRI-CC2 theory in the following subsection. 

C. CC2 theory 

In the CC2 model, the Hamiltonian H undergoes a T1-transformation  

𝐻𝐻� = 𝑒𝑒𝑒𝑒𝑒𝑒(− 𝑇𝑇1) 𝐻𝐻 𝑒𝑒𝑒𝑒𝑒𝑒(𝑇𝑇1)                                                                                                              (15) 
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Here T1 is the single excitation cluster operator. The singles and doubles equations which determine the amplitudes of 

a coupled cluster wavefunction can be written as 

Ω𝜇𝜇1 = �𝜇𝜇1|𝐻𝐻� + [𝐻𝐻�,𝑇𝑇2]|𝐻𝐻𝐻𝐻� = 0                                                                                                       (16) 

Ω𝜇𝜇2 = �𝜇𝜇2|𝐻𝐻� + [𝐻𝐻,𝑇𝑇2]|𝐻𝐻𝐻𝐻� = 0                                                                                                       (17) 

where  Ω𝜇𝜇1  and  Ω𝜇𝜇2  are the single and double excitation vectors,  𝜇𝜇1  and  𝜇𝜇2  are the single and double excitation 

manifolds, and |HF〉 the Hartree-Fock reference state. In the CC2 theory, the vectors Ω𝜇𝜇1 and Ω𝜇𝜇2 can be expressed as  

Ω𝜇𝜇1 = Ω𝑎𝑎𝑎𝑎 = Ω𝑎𝑎𝑎𝑎𝐺𝐺 + Ω𝑎𝑎𝑎𝑎𝐻𝐻 + Ω𝑎𝑎𝑎𝑎𝐼𝐼 + Ω𝑎𝑎𝑎𝑎
𝐽𝐽                                                                                              (18) 

Ω𝜇𝜇2 = Ω𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =
1

1 + 𝛾𝛾𝑎𝑎𝑎𝑎𝛾𝛾𝑎𝑎𝑎𝑎
�Ω𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐸𝐸 + Ω𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐹𝐹 �                                                                                  (19) 

The terms in the above equations denote the different contributions to the CC equations, which can be written explicitly:  

Ω𝑎𝑎𝑎𝑎𝐺𝐺 = +��̂�𝑡𝑎𝑎𝑖𝑖𝑐𝑐𝑐𝑐(𝑙𝑙𝑑𝑑|̂𝑎𝑎𝑎𝑎)
𝑐𝑐𝑖𝑖𝑐𝑐

                            Ω𝑎𝑎𝑎𝑎𝐻𝐻 = −��̂�𝑡𝑘𝑘𝑖𝑖𝑎𝑎𝑐𝑐(𝑙𝑙𝑑𝑑|̂𝑘𝑘𝑘𝑘)
𝑐𝑐𝑖𝑖𝑘𝑘

                                                      

Ω𝑎𝑎𝑎𝑎𝐼𝐼 = ��̂�𝑡𝑎𝑎𝑖𝑖𝑎𝑎𝑐𝑐𝐻𝐻�𝑖𝑖𝑐𝑐
𝑐𝑐𝑖𝑖

                                        Ω𝑎𝑎𝑎𝑎
𝐽𝐽 = 𝐻𝐻�𝑎𝑎𝑎𝑎                                                         (20)~(23) 

Ω𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐸𝐸 = �𝜀𝜀𝑎𝑎 − 𝜀𝜀𝑎𝑎 + 𝜀𝜀𝑎𝑎 − 𝜀𝜀𝑎𝑎� 𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎             Ω𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐹𝐹 = (𝑎𝑎𝑘𝑘|̂𝑏𝑏𝑏𝑏)                                                 (24)~(25) 

In the above equations, 𝐻𝐻�  is the Fock matrix obtained from the T1-transformed Hamiltonian. (𝑎𝑎𝑘𝑘|̂𝑏𝑏𝑏𝑏)  is the 

transformed two-electron MO integrals given by: 

(𝑒𝑒𝑝𝑝|̂𝑟𝑟𝑟𝑟) = � Λ𝛼𝛼𝑝𝑝
𝑝𝑝 Λ𝛽𝛽𝑝𝑝ℎ Λ𝛾𝛾𝛾𝛾

𝑝𝑝 Λ𝛿𝛿𝑠𝑠ℎ (𝛼𝛼𝛼𝛼|𝛾𝛾𝛾𝛾) 
𝛼𝛼𝛽𝛽𝛾𝛾𝛿𝛿

                                                                                              (26) 

Λ𝑝𝑝 = 𝐶𝐶(𝐼𝐼 − 𝑡𝑡1𝑇𝑇)                                                                                                                                  (27) 

Λℎ = 𝐶𝐶(𝐼𝐼 + 𝑡𝑡1)                                                                                                                                   (28) 

Here t1 in the transformation matrices Λ𝑝𝑝  and Λℎ  for particle and hole operators is given by the auxiliary matrix 

comprised of singles cluster amplitudes {𝑡𝑡𝑎𝑎𝑎𝑎}: 

𝑡𝑡1 = � 𝟎𝟎  𝟎𝟎
{𝑡𝑡𝑎𝑎𝑎𝑎} 𝟎𝟎�                                                                                                                                 (29) 

Finally, �̂�𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 in the CC2 vector equations is given by  

𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =
(𝑎𝑎𝑘𝑘|̂𝑏𝑏𝑏𝑏)

𝜀𝜀𝑎𝑎 − 𝜀𝜀𝑎𝑎 + 𝜀𝜀𝑎𝑎 − 𝜀𝜀𝑎𝑎
                                                                                                                 (30) 
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�̂�𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =  �1 + 𝛾𝛾𝑎𝑎𝑎𝑎𝛾𝛾𝑎𝑎𝑎𝑎��2 𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 −  𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�                                                                                              (31) 

To solve the CC2 vector equations, we start from a set of trial {𝑡𝑡𝑎𝑎𝑎𝑎}. The double excitation amplitudes 𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 as well 

as their transformed ones can be calculated as intermediates, such that we can determine Ω𝑎𝑎𝑎𝑎 . The DIIS algorithm 

helps us to update {𝑡𝑡𝑎𝑎𝑎𝑎}, such that we can minimize Ω𝑎𝑎𝑎𝑎 .  With the converged amplitudes, we can calculate the total 

correlation energy: 

𝐸𝐸𝑐𝑐𝑐𝑐𝛾𝛾𝛾𝛾 = �𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 [2(𝑎𝑎𝑘𝑘|𝑏𝑏𝑏𝑏) − (𝑏𝑏𝑘𝑘|𝑎𝑎𝑏𝑏)]
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

                                                                                           (32) 

Note that the CC2 theory scales as O(N 5) with the system size. The RI approach decreases the prefactor of the 

CC2 calculations, yet the overall scaling of RI-CC2 is still O(N 5), prohibiting the usage of CC2 theory to large systems. 

Below, we introduce the algorithm of sRI-CC2 theory, which can formally bring down the scaling to O(N 3). 

D. Algorithm for sRI-CC2 

The main steps in the scheme of the algorithm for sRI-CC2 are summarized as follows (Here we employ Einstein 

Summation rule): 

1. Construct stochastic orbitals 𝑅𝑅𝑎𝑎𝑎𝑎
ξ  from Eq. (14) and initialize all the single excitation amplitudes 𝑡𝑡𝑎𝑎𝑎𝑎 = 0. 

2. Calculate Λ𝛼𝛼𝑝𝑝
𝑝𝑝  and Λ𝛼𝛼𝑝𝑝ℎ  as well as 𝑅𝑅�𝑝𝑝𝑝𝑝

ξ  

𝑅𝑅�𝑝𝑝𝛽𝛽
ξ  = ∑ Λ𝛼𝛼𝑝𝑝

𝑝𝑝𝑁𝑁𝐴𝐴𝐴𝐴
𝛼𝛼 𝑅𝑅𝛼𝛼𝛽𝛽

ξ                          𝑅𝑅�𝑝𝑝𝑝𝑝
ξ  = ∑ Λ𝛽𝛽𝑝𝑝ℎ

𝑁𝑁𝐴𝐴𝐴𝐴
𝛽𝛽𝑝𝑝 𝑅𝑅�𝑝𝑝𝛽𝛽

ξ                                                                                     (33)~(34)  

3. Calculate Ω1 = (𝜀𝜀𝑎𝑎 − 𝜀𝜀𝑎𝑎) 𝑡𝑡𝑎𝑎𝑎𝑎                                                                                                                                                    (35) 

4. Construct 𝐻𝐻�𝑎𝑎𝑎𝑎 =  �2𝑅𝑅𝑎𝑎𝑎𝑎
ξ �𝑅𝑅𝑘𝑘𝑐𝑐

ξ 𝑡𝑡𝑐𝑐𝑘𝑘� − 𝑅𝑅𝑎𝑎𝑎𝑎
ξ �𝑅𝑅𝑎𝑎𝑎𝑎

ξ 𝑡𝑡𝑎𝑎
𝑎𝑎��

ξ
                                                                                                                (36) 

5. Calculate Ω2 = Ω𝑎𝑎𝑎𝑎𝐼𝐼 = �̂�𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐻𝐻�𝑎𝑎𝑎𝑎.  With the help of sRI and Laplace transformation, we can rewrite Ω2 as follows:  

Ω2 = Ω𝑎𝑎𝑎𝑎𝐼𝐼 = �̂�𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐻𝐻�𝑎𝑎𝑎𝑎 =

⎝

⎛
2�𝑅𝑅�𝑎𝑎𝑎𝑎

ξ 𝑅𝑅�𝑎𝑎𝑎𝑎
ξ �

ξ

𝜀𝜀𝑎𝑎 − 𝜀𝜀𝑎𝑎 + 𝜀𝜀𝑎𝑎 − 𝜀𝜀𝑎𝑎
−

�𝑅𝑅�𝑎𝑎𝑎𝑎
ξ 𝑅𝑅�𝑎𝑎𝑎𝑎

ξ �
ξ

𝜀𝜀𝑎𝑎 − 𝜀𝜀𝑎𝑎 + 𝜀𝜀𝑎𝑎 − 𝜀𝜀𝑎𝑎
+
�𝑅𝑅�𝑎𝑎𝑎𝑎

ξ 𝑅𝑅�𝑎𝑎𝑎𝑎
ξ �

ξ

2(𝜀𝜀𝑎𝑎 − 𝜀𝜀𝑎𝑎)
⎠

⎞𝐻𝐻�𝑎𝑎𝑎𝑎 

      = −2� ��𝑅𝑅�𝑎𝑎𝑎𝑎
ξ e�𝜀𝜀𝑗𝑗−𝜀𝜀𝑏𝑏�𝑡𝑡𝐻𝐻�𝑎𝑎𝑎𝑎� 𝑅𝑅�𝑎𝑎𝑎𝑎

ξ e(𝜀𝜀𝑖𝑖−𝜀𝜀𝑎𝑎)𝑡𝑡�
ξ
𝑑𝑑𝑡𝑡

∞

0
+ � ��𝑅𝑅�𝑎𝑎𝑎𝑎

ξ e(−𝜀𝜀𝑏𝑏)𝑡𝑡𝐻𝐻�𝑎𝑎𝑎𝑎�𝑅𝑅�𝑎𝑎𝑎𝑎
ξ e�𝜀𝜀𝑖𝑖−𝜀𝜀𝑎𝑎+𝜀𝜀𝑗𝑗�𝑡𝑡�

ξ
𝑑𝑑𝑡𝑡

∞

0
 

+
�𝑅𝑅�𝑎𝑎𝑎𝑎

ξ 𝑅𝑅�𝑎𝑎𝑎𝑎
ξ �

ξ

2(𝜀𝜀𝑎𝑎 − 𝜀𝜀𝑎𝑎)𝐻𝐻
�𝑎𝑎𝑎𝑎                                                                                                                                                                   (37) 

Note that the evaluation of the first two terms in the above equation requires integration over time. This is done with 

Gaussian quadrature, such that computational scaling of these two terms are O(Ns Nt N 2) and O(Ns Nt N 3) respectively, 
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where Nt  is the number of quadrature points. Obviously, the last term is the above equation scales as O(Ns  N 2) . Since 

Nt  is independent from the system size, the overall scaling of Ω2 is O(N 3). 

6. Calculate Ω3 and Ω4. Since these two terms are very similar, we only demonstrate how to determine Ω3 in details. 

In the RI approach, Ω3 can be expressed as  

Ω3 = Λ𝛼𝛼𝑎𝑎
𝑝𝑝 (𝛼𝛼𝛼𝛼|𝑃𝑃) 𝑉𝑉𝑃𝑃𝑄𝑄

−1/2Λ𝛽𝛽𝑎𝑎ℎ �̂�𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐾𝐾𝑎𝑎𝑎𝑎
𝑄𝑄 = �̂�𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐾𝐾�𝑎𝑎𝑎𝑎

𝑄𝑄 𝐾𝐾𝑎𝑎𝑎𝑎
𝑄𝑄                                                                                                                   (38) 

In the sRI approach, we use two sets of independent stochastic orbitals denoted by ξ  and ξ ′ to approximate the ERIs, 

such that 

Ω3 =

⎝

⎛
2�𝑅𝑅�𝑎𝑎𝑎𝑎

ξ 𝑅𝑅�𝑎𝑎𝑎𝑎
ξ �

ξ

𝜀𝜀𝑎𝑎 − 𝜀𝜀𝑎𝑎 + 𝜀𝜀𝑎𝑎 − 𝜀𝜀𝑎𝑎
−

�𝑅𝑅�𝑎𝑎𝑎𝑎
ξ 𝑅𝑅�𝑎𝑎𝑎𝑎

ξ �
ξ

𝜀𝜀𝑎𝑎 − 𝜀𝜀𝑎𝑎 + 𝜀𝜀𝑎𝑎 − 𝜀𝜀𝑎𝑎
+
�𝑅𝑅�𝑎𝑎𝑎𝑎

ξ 𝑅𝑅�𝑎𝑎𝑎𝑎
ξ �

ξ

2(𝜀𝜀𝑎𝑎 − 𝜀𝜀𝑎𝑎)
⎠

⎞�𝑅𝑅�𝑎𝑎𝑎𝑎
ξ ′ 𝑅𝑅𝑎𝑎𝑎𝑎

ξ ′�
ξ ′

 

      = −2� ��𝑅𝑅�𝑎𝑎𝑎𝑎
ξ e�𝜀𝜀𝑗𝑗−𝜀𝜀𝑏𝑏�𝑡𝑡𝑅𝑅𝑎𝑎𝑎𝑎

ξ ′� 𝑅𝑅�𝑎𝑎𝑎𝑎
ξ e(𝜀𝜀𝑖𝑖−𝜀𝜀𝑎𝑎)𝑡𝑡𝑅𝑅�𝑎𝑎𝑎𝑎

ξ ′ �
ξξ ′

𝑑𝑑𝑡𝑡
∞

0
+ � ��𝑅𝑅�𝑎𝑎𝑎𝑎

ξ e(−𝜀𝜀𝑏𝑏)𝑡𝑡𝑅𝑅𝑎𝑎𝑎𝑎
ξ ′�𝑅𝑅�𝑎𝑎𝑎𝑎

ξ e�𝜀𝜀𝑖𝑖−𝜀𝜀𝑎𝑎+𝜀𝜀𝑗𝑗�𝑡𝑡𝑅𝑅�𝑎𝑎𝑎𝑎
ξ ′ �

ξξ ′
𝑑𝑑𝑡𝑡

∞

0
 

          + �
𝑅𝑅�𝑎𝑎𝑎𝑎
ξ 𝑅𝑅�𝑎𝑎𝑎𝑎

ξ

2(𝜀𝜀𝑎𝑎 − 𝜀𝜀𝑎𝑎)𝑅𝑅𝑎𝑎𝑎𝑎
ξ ′𝑅𝑅�𝑎𝑎𝑎𝑎

ξ ′ � ξξ ′                                                                                                                                                   (39) 

Here, again we have used Laplace transformation in the last line of the above equation. The overall scaling of Ω3 is 

O(N 3). Evaluation of Ω4 can be done in the similar manner (See Appendix A).  

7. Calculate Ω5 and Ω6. The last two parts of Ω𝑎𝑎𝑎𝑎 are easy to obtain: 

Ω5 = 2 ��𝑡𝑡𝑐𝑐𝑘𝑘𝑅𝑅𝑘𝑘𝑐𝑐
ξ �𝑅𝑅�𝑎𝑎𝑎𝑎

ξ �
ξ
                                                                                                                                                                  (40) 

Ω6 = −��𝑡𝑡𝑘𝑘𝑐𝑐𝑅𝑅𝑘𝑘𝑎𝑎
ξ �𝑅𝑅�𝑎𝑎𝑐𝑐

ξ �
ξ
                                                                                                                                                                   (41) 

8. Combine Ω𝑎𝑎𝑎𝑎 =  Ω1 + Ω2 + Ω3 + Ω4 + Ω5 + Ω6. Update the {𝑡𝑡𝑎𝑎𝑎𝑎} as follows: 

𝑡𝑡𝑎𝑎𝑎𝑎(𝑢𝑢𝑒𝑒𝑑𝑑𝑎𝑎𝑡𝑡𝑒𝑒𝑑𝑑) = 𝑡𝑡𝑎𝑎𝑎𝑎(𝑜𝑜𝑙𝑙𝑑𝑑) −
Ω𝑎𝑎𝑎𝑎

𝜀𝜀𝑎𝑎 − 𝜀𝜀𝑎𝑎
                                                                                                                                          (42) 

9. The steps 2-8 are iterated until self-consistency is reached. 

In the original RI-CC2 algorithm, the limiting computational step is determining Ω3 and Ω4, which requires 

computing 𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 as intermediate, such that the overall scaling of RI-CC2 is O(N 5). With sRI approach, no 𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is 

computed directly, and we bring down the scaling to O(N 3). Finally, the CC2 ground-state energy in Eq. (32) is 

calculated in a similar manner using sRI and Laplace transformation: 
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𝐸𝐸𝑐𝑐𝑐𝑐𝛾𝛾𝛾𝛾 = �𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 [2(𝑎𝑎𝑘𝑘|𝑏𝑏𝑏𝑏) − (𝑏𝑏𝑘𝑘|𝑎𝑎𝑏𝑏)]
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

= �
2(𝑎𝑎𝑘𝑘|𝑏𝑏𝑏𝑏) −  (𝑏𝑏𝑘𝑘|𝑎𝑎𝑏𝑏)
𝜀𝜀𝑎𝑎 − 𝜀𝜀𝑎𝑎 + 𝜀𝜀𝑎𝑎 − 𝜀𝜀𝑎𝑎

(𝑎𝑎𝑘𝑘|̂𝑏𝑏𝑏𝑏)
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

 

           = �
2�𝑅𝑅𝑎𝑎𝑎𝑎

ξ 𝑅𝑅𝑎𝑎𝑎𝑎
ξ �

ξ
− �𝑅𝑅𝑎𝑎𝑎𝑎

ξ 𝑅𝑅𝑎𝑎𝑎𝑎
ξ �

ξ

𝜀𝜀𝑎𝑎 − 𝜀𝜀𝑎𝑎 + 𝜀𝜀𝑎𝑎 − 𝜀𝜀𝑎𝑎
�𝑅𝑅�𝑎𝑎𝑎𝑎

ξ ′𝑅𝑅�𝑎𝑎𝑎𝑎
ξ ′�

ξ ′𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

= ��
2𝑅𝑅𝑎𝑎𝑎𝑎

ξ 𝑅𝑅𝑎𝑎𝑎𝑎
ξ − 𝑅𝑅𝑎𝑎𝑎𝑎

ξ 𝑅𝑅𝑎𝑎𝑎𝑎
ξ

𝜀𝜀𝑎𝑎 − 𝜀𝜀𝑎𝑎 + 𝜀𝜀𝑎𝑎 − 𝜀𝜀𝑎𝑎
𝑅𝑅�𝑎𝑎𝑎𝑎
ξ ′𝑅𝑅�𝑎𝑎𝑎𝑎

ξ ′

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

�

ξξ ′

 

           = −� ���2�𝑅𝑅𝑎𝑎𝑎𝑎
ξ 𝑅𝑅�𝑎𝑎𝑎𝑎

ξ ′��𝑅𝑅𝑎𝑎𝑎𝑎
ξ 𝑅𝑅�𝑎𝑎𝑎𝑎

ξ ′� − �𝑅𝑅𝑎𝑎𝑎𝑎
ξ 𝑅𝑅�𝑎𝑎𝑎𝑎

ξ ′��𝑅𝑅𝑎𝑎𝑎𝑎
ξ 𝑅𝑅�𝑎𝑎𝑎𝑎

ξ ′��e�𝜀𝜀𝑖𝑖−𝜀𝜀𝑎𝑎+𝜀𝜀𝑗𝑗−𝜀𝜀𝑏𝑏�𝑡𝑡

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

�

ξξ ′

𝑑𝑑𝑡𝑡
∞

0
 

           = −� ⟨2𝐴𝐴(𝑡𝑡)2 − 𝑇𝑇𝑟𝑟(𝐸𝐸(𝑡𝑡)2)⟩ξξ ′𝑑𝑑𝑡𝑡
∞

0
                                                                                                                             (43) 

where 

   𝐴𝐴(𝑡𝑡) = � e(𝜀𝜀𝑖𝑖−𝜀𝜀𝑎𝑎)𝑡𝑡𝑅𝑅𝑎𝑎𝑎𝑎
ξ 𝑅𝑅�𝑎𝑎𝑎𝑎

ξ ′

𝑎𝑎𝑎𝑎

                                                                                                                                                      (44) 

𝐸𝐸(𝑡𝑡)𝑎𝑎𝑎𝑎 = � e(𝜀𝜀𝑖𝑖−𝜀𝜀𝑎𝑎)𝑡𝑡𝑅𝑅𝑎𝑎𝑎𝑎
ξ 𝑅𝑅�𝑎𝑎𝑎𝑎

ξ ′

𝑎𝑎

                                                                                                                                                     (45) 

Still, the calculation of the ground state energy scales as O(Ns Nt N 3), seen as O(N 3). Thus the overall scaling of sRI-

CC2 is O(N 3). Below, we apply our sRI-CC2 approach to a series of molecules. In particular, we demonstrate the 

scaling of sRI-CC2 and analyze the stochastic errors of the ground state energy.  

III. RESULTS AND DISCUSSION 

We now apply the sRI-CC2 algorithm to a series of molecular systems, including a hydrogen dimer chain Hn, 

where n is the number of hydrogen atoms, ranging from 10 to 400. In each dimer, the distance between two hydrogen 

atoms is 0.74 Å, and the distance between two hydrogen atoms of each adjacent dimer is 1.26 Å. We test the 

performance of sRI-CC2 against RI-CC2 in Q-Chem package; in particular we focus on the scaling, the stochastic 

error, and the influence of prefactor Ns on the ground state energy especially on large-size systems. In addition, a list 

of small molecules as well as n-alkanes CnH2n+2 are also selected to test the performance of the sRI-CC2 approach. 

A. Correlation energy 

In Table Ⅱ, we show the correlation energy per electron for a list of different hydrogen dimer chains (H10, H80, 

H200, H400) using a sto-3g basis. Ns = 200, 400 and 800 stochastic orbitals are used for ground state energy calculations 

and the final results are obtained by averaging over 10 independent runs. Notice that with increasing number of 

stochastic orbitals, the standard deviation of the correlation energy decreases. We further compare the results from 

sRI-CC2 calculations with 400 stochastic orbitals against RI-CC2 results in Figure 1, where we see perfect agreement. 
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Note that we can easily go to H400 (and beyond) in sRI-CC2 calculations, whereas such a large system is very difficult 

for RI-CC2 calculation. Note also that for a weakly correlated system such as the hydrogen dimer chains, the 

correlation energy shows a linear dependence with the number of dimer chains. 

TABLE Ⅱ. Correlation energy per electron (in mEh). Here NH is the number of hydrogen in the corresponding dimer 
chain, the same value as the number of correlated electrons Ne. The standard deviation 𝜎𝜎 is calculated from 10 
independent samples. 

NH 

Ecorr per electron (mEh) std deviation per electron(mEh) 

Ns = 200 Ns = 400 Ns = 800 Ns = 200 Ns = 400 Ns = 800 

H10 -5.954  -6.630  -6.777  0.466  0.581  0.522  

H80 -6.889  -6.999  -7.109  1.071  0.866  0.608  

H200 -7.401  -7.051  -7.033  1.088  0.970  0.513  

H400 -7.690  -6.989  -7.252  0.861  1.107  0.735  

FIG. 1. Correlation energy for sRI-CC2 as a function of the number of hydrogen atoms with Ns = 400. The difference compared 
with the RI-CC2 can be approximately neglected, which shows the high performance in accuracy. 
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In Figure 2, we plot the correlation energy per electron for hydrogen dimer chains from sRI-CC2 and RI-CC2. 

Again, we use 400 stochastic orbitals in our sRI-CC2 calculations, and the results are averaged from 10 independent 

runs. Furthermore, the error bars indicate the standard deviations of these 10 independent runs. We see that the sRI-

CC2 results agree with RI-CC2 results within the error bars, which shows the validity of sRI-CC2 approximation. 

Furthermore, we observe that the statistical error bar for energy per electron does not increase with the system size 

and almost keeps unchanged. This observation indicates that we do not need to increase the number of stochastic 

orbitals when calculating intensive quantities for larger systems to achieve the same accuracy as smaller ones. Thus 

the prefactor Ns is fixed for different system size, such that the overall scaling of sRI-CC2 calculation is O(N 3). Similar 

conclusion has been reported in sRI-MP221 and sRI-GF226 approaches.   

FIG. 2. Correlation energy per electron as a function of the number of hydrogen atoms with Ns = 400. The error bar is from the 
standard deviation calculated from 10 different seeds. 

B. Error assessment 

In Figure 3, we further analyze the statistical error of the correlation energy per electron as a function of number 

of stochastic orbitals (Ns = 200, 400, and 800) for a set of hydrogen dimer chains. Again, we see the deceases of the 

error bars when increasing the number of stochastic orbitals. Due to the central limit theorem, the error bars decrease 

with the number of stochastic orbitals as 1/�𝑁𝑁𝑠𝑠, which is consistent with our results. In addition, we do not see obvious 

linear dependency of the averaged correlation energy on the number of stochastic orbitals, which indicates that we do 

not have a bias in our calculations. Such a bias is reported previously in sGF225. No such a bias is reported in sRI-GF2 

results26.  
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FIG. 3. Correlation energy per electron as a function of the reciprocal of the number of stochastic orbitals with Ns = 200, 400 and 
800. 10 independent calculations of sRI-CC2 are used to estimate the error bar as well. 

C. Scaling 

We now turn our attention to the computational cost of the sRI-CC2 (as well as RI-CC2 in the Q-Chem program 

package) calculations. All the calculations are performed in an AMD EPYC 7502 (2.5GHz) node with 64 

computational cores. Again, we use the hydrogen dimer chains as our test set.  

In Figure 4, we show the computational time of sRI-CC2 and RI-CC2 for the hydrogen dimer chains. We use Ns 

= 400 orbitals in our sRI-CC2 calculations. We observe experimental scaling of O(𝑁𝑁H3.74) for RI-CC2 approach in Q-

Chem. The experimental scaling of the sRI-CC2 approach is O(𝑁𝑁H2.71) from fitting, slightly better than the theoretical 

scaling O(N 3). Our ongoing attempt to transplant our sRI-CC2 to Q-Chem would further lower this scaling. Moreover,  

FIG. 4. CPU time as a function of the number of hydrogen atoms with Ns = 400. The experimental scaling of the RI-CC2 method 
is O(𝑁𝑁H3.74), and the experimental scaling of the sRI-CC2 is O(𝑁𝑁H2.71). 
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the sRI-CC2 approach can be easily parallelized over stochastic orbitals using MPI or OpenMP. We expect that the 

sRI-CC2 approach can be easily used to calculate systems with 1000 electrons or more.  

D. Supplementary calculation 

To test our sRI-CC2 algorithm besides Hn, we apply it to a set of other molecules. The experimental geometries 

are taken from the reference29 and are included in the Supporting Information. In Figures 5 and 6, we selectively show 

the results of correlation energies per electron of both algorithms and standard deviations with Ns = 400 and cc-

pVDZ/aug-cc-pVDZ basis. These two figures are very similar and all the data points of RI-CC2 are located on the 

error bars. Although these selected systems are quite different, the errors between RI and sRI are acceptable (see Table 

Ⅲ in Appendix B). 

FIG. 5. Correlation energy per electron for 9 different molecular systems with cc-pVDZ basis set and Ns = 400. The error bar is 
from the standard deviation calculated from 10 different seeds (inset: Take the RI-CC2 energy as the benchmark). 
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FIG. 6. Correlation energy per electron for 9 different molecular systems with aug-cc-pVDZ basis set and Ns = 400. The error bar 
is from the standard deviation calculated from 10 different seeds (inset: Take the RI-CC2 energy as the benchmark). 

For further exploration, we perform calculations on a series of n-alkanes CnH2n+2 with n = 1~5 using 400 

stochastic orbitals. The experimental geometries are taken from the references29-31. This time we employ cc-pvXZ and 

aug-cc-pvXZ (X = D, T) basis sets and all the data are listed in Table Ⅳ of Appendix B. Although we adopt larger 

basis sets this time, the standard deviations remain small and hardly changed with the system size. Similarly, the results 

of cc-pVDZ and cc-pVTZ basis sets are presented in Figures 7 and 8. 

In summary, the assessment in this subsection again highlights the wide application scope of our sRI-CC2 method 

for various molecular systems and basis sets. 

FIG. 7. Correlation energy per electron for n-alkanes CnH2n+2, n ranging from 1~5, with cc-pVDZ basis set and Ns = 400. The error 
bar is from the standard deviation calculated from 10 different seeds (inset: Take the RI-CC2 energy as the benchmark). 
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FIG. 8. Correlation energy per electron for n-alkanes CnH2n+2, n ranging from 1~5, with cc-pVTZ basis set and Ns = 400. The error 
bar is from the standard deviation calculated from 10 different seeds (inset: Take the RI-CC2 energy as the benchmark). 

IV. CONCLUSIONS 

We present a stochastic approach of the RI approximation to the CC2 model to calculate the ground state energy. 

Using this stochastic orbitals method, the 4-index ERIs in the algorithm for RI-CC2 are decoupled and the overall 

scaling of the sRI-CC2 is reduced from O(N 5) to O(N 3). Within the range of hydrogen dimer chains we test, the results 

of sRI in terms of energy accuracy show high performance compared with RI-CC2 and the observed scaling is 

O(𝑁𝑁H2.71) from curve fitting. This sRI-CC2 approach provides a cheap and practical alternative for the ground-state 

energy calculations for different molecules and basis sets, especially for large systems. Future work on how to apply 

sRI to the calculation of excited-state energy of CC2 model is in progress, which we may pay more attention to. 
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APPENDIX A: THE EXPLICIT EXPRESSION FOR A PARTITION OF EXCITATION VECTOR 

Ω4 is evaluated in the similar manner with Ω3: 

Ω4 = −𝑌𝑌𝑎𝑎𝑘𝑘𝑃𝑃 𝐾𝐾𝑘𝑘𝑎𝑎𝑃𝑃 = −�̂�𝑡𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎𝐾𝐾𝑎𝑎𝑎𝑎𝑃𝑃𝐾𝐾𝑘𝑘𝑎𝑎𝑃𝑃 = −
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ξ ′ � ξξ ′                                                                                                                                                  (46) 

APPENDIX B: SUPPLEMENTARY DATA 

Results for 9 molecules with Ns = 400 and cc-pVDZ/aug-cc-pVDZ basis sets are displayed in TABLE Ⅲ. And 

data for n-alkanes CnH2n+2, n ranging from 1~5, using 400 stochastic orbitals and cc-pvXZ/aug-cc-pvXZ (X = D, T) 

basis sets, are shown in TABLE Ⅳ. The values of all errors between RI and sRI are acceptable and within the standard 

deviations. 
TABLE Ⅲ. RI-CC2 and sRI-CC2 results for 9 different systems. Here Ne is the number of correlated electrons. The 
correlation energies per electron, errors and the standard deviations per electron of 10 sRI runs are in mEh. 

Ne molecule 

cc-pVDZ aug-cc-pVDZ 

RI sRI error std deviation RI sRI error std deviation 

2 H2 -13.213  -13.258  0.044  1.295  -13.576  -13.662  0.086  1.344  

2 He -12.915  -13.029  0.115  0.986  -13.289  -13.605  0.316  1.073  

4 Be -6.621  -6.640  0.019  0.515  -6.668  -6.692  0.024  0.482  

10 Ne -18.779  -19.783  1.005  2.358  -21.145  -22.060  0.915  2.595  

4 LiH -5.721  -5.505  0.216 0.318  -6.817 -6.609  0.209 0.285  

12 LiF -17.805  -17.667  0.139  1.796  -20.215  -20.043  0.172  1.911  

10 HF -20.452  -20.806  0.354  1.968  -22.737  -23.126  0.389  2.140  

10 CH4 -16.461  -16.765  0.303  1.273  -17.167  -17.449  0.282  1.325  

10 H2O -20.481  -19.922  0.559  1.524  -22.412  -21.874  0.539  1.587  

TABLE Ⅳ. RI-CC2 and sRI-CC2 results for of n-alkanes CnH2n+2 with n = 1~5. Here Ne is the number of correlated 
electrons. The correlation energies per electron of RI and sRI, errors and the standard deviations per electron of 10 
sRI runs are in mEh. 
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Ne molecule 

cc-pVDZ aug-cc-pVDZ 

RI sRI error std deviation RI sRI error std deviation 

10 CH4 -16.461  -16.765  0.303  1.443  -17.167  -17.449  0.282  1.475  

18 C2H6 -17.173  -17.191  0.017  1.739  -17.861  -17.906  0.045  1.823  

26 C3H8 -17.511  -17.347  0.164  1.823  -18.218  -18.058  0.159  1.919  

34 C4H10 -17.737  -17.546  0.190  1.691  -18.465  -18.365  0.100  1.744  

42 C5H12 -17.852  -17.988  0.136  1.643  -18.595  -18.767  0.173  1.761  

Ne molecules 

cc-pVTZ aug-cc-pVTZ 

RI sRI error std deviation RI sRI error std deviation 

10 CH4 -21.521  -21.428  0.093  1.695  -21.990  -21.858  0.132  1.745  

18 C2H6 -22.440  -22.696  0.256  2.439  -23.003  -23.294  0.292  2.516  

26 C3H8 -22.892  -22.590  0.302  2.151  -23.502  -23.241  0.261  2.152  

34 C4H10 -23.149  -23.409  0.260  2.155  -23.800  -24.176  0.376  2.210  

42 C5H12 -23.304  -23.659  0.355  2.429  -23.975  -24.366  0.391  2.515  

APPENDIX C: DISTRIBUTION OF SRI-CC2 ENERGIES 
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To test whether the sRI-CC2 energy results conform to a certain distribution, we apply the calculation scheme to 

the hydrogen dimer chain H20 with Ns = 800. In other words, 800 randomly selected sampling seeds are used to obtain 

the ground-state energies respectively. With the average and standard derivation of these 800 runs, we plot a normal 

distribution curve in orange in Figure 5. And the real distribution of samples is plotted in the same figure in blue, well 

coinciding with the orange curve. Therefore, the results of sRI-CC2 energy with different sampling seeds basically 

meet the normal distribution. 

FIG. 9. Distribution of the sRI-CC2 ground state energy of the H20 hydrogen dimer chain with Ns = 800. The curve fits well with 
the normal distribution. 
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