
Journal of Physics: Condensed
Matter

     

PAPER

The cell-centered Finite-Volume self-consistent
approach for heterostructures: 1D electron gas at
the Si–SiO2 interface

To cite this article: Vahid Mosallanejad et al 2023 J. Phys.: Condens. Matter 35 475301

 

View the article online for updates and enhancements.

You may also like
Flexible feature-space-construction
architecture and its VLSI implementation
for multi-scale object detection
Aiwen Luo, Fengwei An, Xiangyu Zhang et
al.

-

Quantifying grain boundary damage
tolerance with atomistic simulations
Daniel Foley and Garritt J Tucker

-

Image artefact propagation in motion
estimation and reconstruction in
interventional cardiac C-arm CT
K Müller, A K Maier, C Schwemmer et al.

-

This content was downloaded from IP address 211.80.140.68 on 29/08/2024 at 05:57

https://doi.org/10.1088/1361-648X/acef8a
https://iopscience.iop.org/article/10.7567/JJAP.57.04FF04
https://iopscience.iop.org/article/10.7567/JJAP.57.04FF04
https://iopscience.iop.org/article/10.7567/JJAP.57.04FF04
https://iopscience.iop.org/article/10.1088/0965-0393/24/7/075011
https://iopscience.iop.org/article/10.1088/0965-0393/24/7/075011
https://iopscience.iop.org/article/10.1088/0031-9155/59/12/3121
https://iopscience.iop.org/article/10.1088/0031-9155/59/12/3121
https://iopscience.iop.org/article/10.1088/0031-9155/59/12/3121


Journal of Physics: Condensed Matter

J. Phys.: Condens. Matter 35 (2023) 475301 (17pp) https://doi.org/10.1088/1361-648X/acef8a

The cell-centered Finite-Volume
self-consistent approach for
heterostructures: 1D electron gas
at the Si–SiO2 interface

Vahid Mosallanejad1,2,∗, Haiou Li3, Gong Cao3, Kuei-Lin Chiu4,∗, Wenjie Dou1,2

and Guo-ping Guo3,∗

1 School of Science, Westlake University, Hangzhou, Zhejiang 310024, People’s Republic of China
2 Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024,
People’s Republic of China
3 CAS Key Laboratory of Quantum Information, and Synergetic Innovation Center of Quantum
Information and Quantum Physics, University of Science and Technology of China, Chinese Academy of
Sciences, Hefei 230026, People’s Republic of China
4 Department of Physics, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan

E-mail: vahid@ustc.edu.cn, eins0728@gmail.com and gpguo@ustc.edu.cn

Received 14 June 2023, revised 8 August 2023
Accepted for publication 11 August 2023
Published 29 August 2023

Abstract
Achieving self-consistent convergence with the conventional effective-mass approach at
ultra-low temperatures (below 4.2 K) is a challenging task, which mostly lies in the
discontinuities in material properties (e.g. effective-mass, electron affinity, dielectric constant).
In this article, we develop a novel self-consistent approach based on cell-centered finite-volume
discretization of the Sturm–Liouville form of the effective-mass Schrödinger equation and
generalized Poisson’s equation (FV-SP). We apply this approach to simulate the
one-dimensional electron gas formed at the Si–SiO2 interface via a top gate. We find excellent
self-consistent convergence from high to extremely low (as low as 50 mK) temperatures. We
further examine the solidity of FV-SP method by changing external variables such as the
electrochemical potential and the accumulative top gate voltage. Our approach allows for
counting electron–electron interactions. Our results demonstrate that FV-SP approach is a
powerful tool to solve effective-mass Hamiltonians.

Keywords: effective-mass, self-consistent approach, finite-volume,
one-dimensional electron gas, electron–electron interactions

(Some figures may appear in colour only in the online journal)

1. Introduction

A comprehensive understanding of the electronic and optical
properties of semiconductor heterostructures requires an
accurate and efficient solution of the time-independent

∗
Authors to whom any correspondence should be addressed.

effective-mass Schrödinger equation coupled with the
Poisson’s equation [1–4]. However, solving such coupled
equations is a difficult task: the time-independent
effective-mass Schrödinger equation is an eigenvalue prob-
lem, whereas Poisson’s equation is an elliptic partial dif-
ferential equation (PDE), such that analytical or simultan-
eous numerical solution is not available. The numerical
self-consistent approach can be used to solve the coupled
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equations, which accurately predicts the electrostatic poten-
tial profile (band bending) arising from various sources
(such as ionized dopants, surface charges, and external
gates) [5–7]. Such self-consistent solutions offer informa-
tion on spatial-dependent observables, such as wavefunctions
and electron density [8], which can be used to estimate the
size of a quantum well [9, 10].

The underlying mathematics of the self-consistent
Schrödinger–Poisson (SP) field approach in semiconductor
heterostructures is almost identical to the atomistic Hartree
self-consistent (HSC) field theory, except for two major dif-
ferences. Firstly, we have subbands in semiconductor hetero-
structures instead of orbitals in atomic HSC theory. Secondly,
the number of electrons is not fixed in semiconductor hetero-
structures; instead, the electrochemical potential (equivalent to
Fermi-level) determines the occupation of subbands [11]. Due
to the complexity of the calculations, the self-consistent SP
approaches are largely carried out only in one dimension.Most
studies focused on the two-dimensional electron gas, where
the effective dimension is the orientation perpendicular to
the semiconductor heterojunctions [12–14]. Finite-difference
method (FDM) with uniform mesh (i.e. real-space basis set)
has been taken as the primary numerical discretization method
to solve the self-consistent coupled SP equations. FDM base
self-consistent SP approaches (with uniform mesh) may suf-
fer from convergence problems, especially for 2D problems
due to the increasing number of basis sets [15]. A nonuni-
form mesh can reduce the cost of 2D problems by reducing
the number of the basis set [16, 17]. In the late 80s and early
90s, finite-element method (FEM) was introduced to semi-
conductor modeling [18, 19]. Neither standard FEM nor FDM
guarantee global and local conservations [20].

An alternative discretization approach is the finite-volume
(FV) method [20]. Besides ensuring conservation properties,
the FV method has a few unique advantages. These include
(1) high stability, (2) systematic incorporation of material
properties, and (3) self-validation. In the context of device
modeling FV software is employed in two works to solve
the Poisson equation [21, 22]. In addition, the VSP soft-
ware is, probably, the only implementation platform where
the Voronoi-based FV method is used for solving both SP
equations [23]. However, the implementation procedure is not
discussed in detail. To the best of our knowledge, the cell-
centered FVmethod has not been applied to the self-consistent
SP approach yet. The main focus of this study is to intro-
duce the cell-centered FV method for solving SP systems
in semiconductor heterojunctions with particular attention to
conservation laws and the implementation of a nonuniform
mesh. We apply our method to 1DEG formed in the Si–SiO2

heterostructure. Such a system is promising for the realiz-
ation of scalable and high-fidelity spin qubits in low/ultra-
low temperatures. We find good numerical results at temper-
atures as low as 50 mK insensitive to external variables such
as top gate voltages. We can also include electron–electron
interactions. Our approach suggests a complete treatment
to extract a realistic confinement potential from the mater-
ial and geometrical properties of the system with minimum
assumptions.

The paper is organized as follows. In section 2.1, the 1DEG
formed at the Si–SiO2 interface is introduced. The sections 2.2
and 2.3 explain how the cell-centered FV method can be
implemented to solve SPs equations, respectively. The scal-
ing of SPs equations are discussed in section 2.4. The pos-
sibility of including many-body interactions into the problem
is discussed in section 2.5, while, the low-cost FV Thomas–
Fermi (FV-TF) approach is explained in section 2.6. The cell-
centered FV predictor–corrector method, which accelerates
the self-consistent field convergence, and its implementation
are described in sections 2.7 and 2.8. Device and mesh geo-
metries, solution convergence properties, and characteristics
of 1DEG calculated by FV-TF and FV-SP will be presented in
detail in section 2. Benefits of the newly proposed approach
and possible applications of this method will be summarized
in section 3.

2. Methods

In this section, we introduce FV-SP approach. Note that our
approach is general, but we restrict ourselves to the 1DEG (a
2D problem) described below.

2.1. Theory of one-dimensional electron gas (1DEG)

We study the 1DEG formed in the three layers stack of Si–
SiO2–Al2O3 from bottom to top (shown in figure 1). We
use such a model to mimic the experimental setup in refer-
ences [24, 25]. Here, we do not consider extra transition layers.
Assuming the 3D structure is uniformly periodic in the x-axis,
and the 2D confinement exists on the yz-plane, the total wave-
function is given by

Ψ(x,y,z) =
∑
i

eikxx√
Lx
ψi(y,z), (1)

where kx and Lx are the subband wave vector and device length
in the direction perpendicular to the 2D confinement, respect-
ively [4].

In equation (1), ψi(y,z) is the subband wave function
(equivalently known as envelope function), and Ei is the
subband energy, which together is determined by two-
dimensional Sturm–Liouville form of one-band effective-
mass Schrödinger equation[

∂

∂y

(
−γy(y,z)

∂

∂y

)
+
∂

∂z

(
−γz(y,z)

∂

∂z

)
+U(y,z)

]
×ψi(y,z) = Ei ψi(y,z).

(2)

In the above equation, γy,z(y,z) is given by γy,z(y,z) =
h̄2/(2m∗

y,z(y,z)) [26, 27]. Here, m∗
y,z refers to directional

effective-mass, which is space-dependent. The Sturm–
Liouville form of Schrödinger equation is a Hermitian eigen-
problem. Such a form allows for the effective-mass to vary
over the space, which is the case for semiconductor het-
erojunctions. This form of the effective-mass Schrödinger
equation also preserves the continuity of probability current
across junctions [28]. U(y,z) is the Hartree potential energy.
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Figure 1. (a) A schematic of three-dimensional MOS quantum
wire. One-dimensional electron gas is shown with orange color.
(b) Using symmetry, the 3D geometry reduces to a 2D (2D)
problem. A fixed Dirichlet boundary condition (BC) has been
applied for the metal–insulator interface, red color cubic dots, and
Neumann BC imposes for the rest, blue color circular dots.

In the simplest form, U is the combination of electrostatic
potential energy −qϕ, and band alignment discontinuity χ
(electron affinity profile):

U(y,z) =−qϕ(y,z)+χ(y,z), (3)

where ϕ and q are the electrostatic potential and unit of charge,
respectively. Note that, the above simple Hartree potential
energy is related to the conduction band edge, Ec, byU= qEc.
By definition, electron affinity χ is the amount of energy
needed to push an electron from the bottom of the conduction
band to the vacuum. In practice, χ is a known step-function
(multi-steps across multi-layers and uniform along the other
direction) available from experimental measurements or first-
principle calculations [29, 30]. In a more complex format, the
exchange-correlation energy Uxc accounting for many-body
interactions can be added to the Hartree potential energy,

U(y,z) =−qϕ(y,z)+χ(y,z)+Uxc(y,z). (4)

Uxc(y,z)will be discussed later. Here, we do not add the image
charge potential to the Hartree potential U explicitly [31].
Such an effect has been also taken into account in the space-
dependent dielectric constant within the generalized Poisson’s
equation. The generalized form of Poisson’s equation is the
correct equation which properly accounts for the static cou-
lomb interactions in complex physical systems[

∂

∂y

(
−ϵry(y,z)

∂

∂y

)
+
∂

∂z

(
−ϵrz(y,z)

∂

∂z

)]
ϕ(y,z)

=
−q
ϵ0
n(y,z). (5)

The derivative with respect to x vanishes due to the uniform-
ity of electrostatic potential in the x-axis. We have taken into
account the anisotropy and space dependency for the dir-
ectional relative static dielectric constants ϵry, rz. This form
of Poisson’s equation preserves the continuity of the elec-
tric displacement across Si–SiO2 and SiO2–Al2O3 interfaces.

In order to reduce the complexity, we did not include any
doping (or partial ionization), surface charge, and dipole as
sources of charge in Poisson’s equation [32–34]. The elec-
tron density is evaluated using the wavefunctions from the
Schrödinger equation. The quantum electron density defines
as n(y,z) = L−1

x

∑
i,kx

|ψi(y,z)|2 f0(Ei+ h̄2k2x/2mx−µ), where
f 0 is the Fermi–Dirac function. In the presence of 2D confine-
ment, the quantum electron density per valley and per spin can
be expressed as:

n(y,z) =

√
mx(y,z)√
2πh̄

∑
i

|ψi(y,z)|2
ˆ ∞

Ei

(ϵ−Ei)−
1
2 dϵ

1+ exp( ϵ−µ
kBT

)

=

√
mx(y,z)kBT√

2πh̄

∑
i

|ψi(y,z)|2F− 1
2

(
µ−Ei
kBT

)
, (6)

where mx(y,z) is the electron’s effective mass on the x-axis,
and µ refers to the electrochemical potential which is a fixed
value here [35, 36]. In fact, we have assumed the 2D het-
erostructure is connected to an external source of particles.
Note that, there are theoretical works studying isolated (mod-
ulated doped) heterostructures where µ is taken as a variable
which is determined by the number of charges [37]. The factor
F−1/2 stands for the complete Fermi–Dirac integral of the
order−1/2. Indeed,

√
mx/πh̄

√
2(ϵ−Ei) is the standard dens-

ity of state for a quantum wire. The exact form of the complete
Fermi–Dirac integral of order j is given by

Fj(η) =
1

Γf( j+ 1)

ˆ ∞

0

εjdε
1+ exp(ε− η)

, (7)

where Γf is the gamma function [38]. Note that, sum-
ming over all wave vectors kx give rise to the first
expression in equation (6) while changing the integration
variable results in the second. We do not include any
phenomenological terms in our electronic density. The elec-
tron density given in equation (6) has three contributions
as (I) an effective one-dimensional density, NC1D(y,z)≡√
mx(y,z)(2π)−1/2h̄−1(kBT)

1/2 (with the physical unit of
length−1), (II) the probability density |ψi(y,z)|2 (with the
physical unit of length−2), and (III) the factor F−1/2(

µ−Ei
kBT

),
which can be referenced as the subband’s occupancy factor.
In fact, values of F−1/2(Ei) tell us which subbands are filled
and which are empty.

Fj(η) has the derivative property ∂Fj(η)/∂η = jFj−1(η)
[39]. In addition, the factor F1/2(x) can be approximated by
a function [40, 41]. F1/2(x) approaches to exp(x) at x→−∞,
and 4x3/2/3

√
π at x→+∞ such that F−1/2(x)∝ exp(x) at

x→−∞, and F−1/2(x)∝ x1/2 at x→+∞. Consequently,
at the limit of zero temperature, we can expect vanishing
contributions to the electron density from Ei > µ while the
contributions of Ei < µ became temperature independent. In
such a regime, it is essential to obtain an accurate numer-
ical evaluation of the Fermi–Dirac integrals rather than ana-
lytical approximations. Roughly speaking, the ith compon-
ent of electron density is nonzero if the subband energy Ei is
below the µ. Moreover, the number of states below µ and their

3



J. Phys.: Condens. Matter 35 (2023) 475301 V Mosallanejad et al

Figure 2. (a) Arrangement of structured cell-centered
Finite-Volume grids. The central cell (P) has four neighbor cells.
Central coordinates are labeled as P, N, S, E, and W and are shown
with hollow circles. Nodal coordinates are shown with the filled
circles. (b) A schematic of boundary cells and boundary points on
the northwest corner of a rectangular domain. Patterned cells are
boundary cells, while non-patterned cells are regular cells.
Blue-color/filled circular markers are Neumann boundary points,
whereas the red-color/filled cubic marker is a Dirichlet boundary
point.

energy distances to µ cannot be predetermined. Hence, an ana-
lytical estimation of the electron density cannot be provided
when T→ 0. A combination of equations (2), (5), and (6) is
the coupled SP equations we intended to solve. Below, we
introduce the discretization scheme to solve these equations
numerically.

2.2. Cell-centered discretization scheme in 2D

Cell-centered FV scheme has been chosen among a few
arrangements of FV methods [42]. The first step in FV dis-
cretization is to integrate over a control volume (CV). The
concept control volume commonly refers to a FV cell, the
central cell in figure 2(a). In the structured cell-centered FV,
each CV has four neighbor CVs on the Northern, Southern,
Eastern, and Western sides. The cell’s center is labeled as P in
the figure 2(a), and neighbors are labeled as N, S, E, and W.

Both the Schrödinger equation in equation (2) and
Poisson’s equation in equation (5) have a Laplacian operator
as follows:

∂

∂y

(
Γy(y,z)

∂

∂y

)
+
∂

∂z

(
Γz(y,z)

∂

∂z

)
. (8)

The Γ is commonly called the diffusion coefficient [43]. In
Poisson’s equation, Γ represents the dielectric constant (rel-
ative permittivity). Taking Poisson’s equation, we start with
approximating the integration of the Laplacian operator that
acts on the electrostatic potential, ϕ as
ˆ zn

zs

ˆ ye

yw

[
∂

∂y

(
Γy

∂ϕ

∂y

)
+

∂

∂z

(
Γz

∂ϕ

∂z

)]
dydz

=

ˆ zn

zs

[
Γy

∂ϕ

∂y

∣∣∣
ye
−Γy

∂ϕ

∂y

∣∣∣
yw

]
dz+

ˆ ye

yw

[
Γz

∂ϕ

∂z

∣∣∣
zn
−Γz

∂ϕ

∂z

∣∣∣
zs

]
dy

≈
[
Γy

∂ϕ

∂y

∣∣∣
ye
−Γy

∂ϕ

∂y

∣∣∣
yw

]
∆z+

[
Γz

∂ϕ

∂z

∣∣∣
zn
−Γz

∂ϕ

∂z

∣∣∣
zs

]
∆y

≈
[
Γye

ϕE−ϕP
δye

−Γyw
ϕP−ϕW

δyw

]
∆z

+

[
Γzn

ϕN−ϕP
δzn

−Γzs
ϕP−ϕS

δzs

]
∆y. (9)

In the above approximation, analytical integration has been
used to derive the line-integral terms. In the next step, we have
assumed that new integrands (flux) do not change along integ-
ration paths. Equivalently, the average flux is assumed to be
identical to the value of the flux computed at the center of
the face [20]. It is important to note that, the partial use of
analytical integration will improve the achievable accuracy of
the FV method. The physical interpretation of equation (9) is
given by the divergence theorem as: the surface integral of the
divergence of the electric displacement field over a CV has
been replaced with the line integral of normal components of
the electric displacement along close boundaries of that CV.
In the last line of the above equation, we have used the cent-
ral difference approximation to the derivatives on interfaces.
For the right-hand side of Poisson’s equation, we approximate
the integration of the electron density n(y,z) [the source term]
over a CV with a piecewise constant:

ˆ zn

zs

ˆ ye

yw

n(y,z)dydz≈ nP∆y∆z. (10)

This rather crude approximation allows us to keep the con-
servative nature of cell-centered FV. The above approximation
is interpreted with the following assumption: the average value
of electron density over a cell is approximated by the local
value of electron density at the cell’s center. Therefore, differ-
ent from FDM or FEM, the FVmethod has the closest connec-
tion to experimental measurements: the parameter of interest
[e.g. the local density of states] is measured locally as an aver-
age value in a specific coordinate. The FV method is thus con-
sidered to be a physical method for solving PDEs rather than a
purely mathematical method. Substituting the approximations
given in equations (9) and (10) into equation (5) and dividing
both sides by∆y∆z, we arrive at a discrete Poisson’s equation:

− aWϕW+ [−aSϕS+ aPϕP− aNϕN]− aEϕE

=− q
ϵ0
nP, aP = aW+ aS+ aN+ aE, (11)

where we have defined coefficients, aW = Γyw/δyw∆y, aE =
Γye/δye∆y, aS = Γzs/δzs∆z, and aN = Γzn/δzn∆z. We refer
to these coefficients as a-coefficients. The correct method to
incorporate the parameter Γs (e.g. Γyw) at the interfaces into
a-coefficients is extremely vital to maintain the conservation
laws on the local level. To achieve the conversation for cer-
tain quantities, flux continuities at four interfaces are enforced
by taking a harmonic mean approximation for the value of Γs
at the interfaces. To be more specific, we approximate Γye as
(ΓEΓP)/(βΓE+(1−β)ΓP) to keep the continuity of the flux
at the CV’s Eastern interface. Here β = δye−/δye, (1−β) =
δye+/δye and δye− (δye+) is the distance between the P (E) to
the eastern interface. A similar approximation is used for the
other Γs. Derivation of the harmonic mean approximation is
explained in appendix A. The kinetic energy operator in the
Schrödinger equation has a similar derivative operator as in
Poisson’s equation.With similar procedures, we can derive the
following discrete equation for the effective-mass Schrödinger
equation:
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− a ′
WψiW− a ′

SψiS+ a ′
PψiP− a ′

NψiN− a ′
EψiE

= EiψiP, a ′
P = a ′

W+ a ′
S+ a ′

N+ a ′
E+UP, (12)

where a ′
W = γyw/δyw∆y, a ′

E = γye/δye∆y, a ′
S = γzs/δzs∆z,

and a ′
N = γzn/δzn∆z. The integrals of the source, and potential

energy terms, (
´ zn
zs

´ ye
yw
Eiψ(y,z)dydz,

´ zn
zs

´ ye
yw
U(y,z)ψ(y,z)dydz),

are approximated with EiψiP∆y∆z and UPψiP∆y∆z, respect-
ively. We point out that terms a ′

W,S,E,N serve as hopping
energies in standard tight-binding Hamiltonian models, and
the a ′

P serves as the on-site potential energies. Different
from the tight-binding Hamiltonian, these coefficients are not
fixed values due to the nonuniform mesh. Discrete equations,
equations (11) and (12), must run over all cells in the domain.
For the discrete Poisson’s equation, if the nP is known, the sys-
tem of linear algebraic equations can be arranged in the follow-
ing matrix form: [A]ϕ⃗ = n⃗+ R⃗B. The pattern of a-coefficients
matrix, [A], depends on the so-called global ordering, which
is referred to the order of all cells in the computation domain.
The vector R⃗B is referred to as a vector consisting of fixed val-
ues on (Dirichlet) boundary faces which is transferred to the
right side of the equality. In the following subsection, we give a
clear explanation of how boundary conditions are implemen-
ted within the framework of cell-centered FV. Nevertheless,
knowing the n⃗ (on-site electron density), one can calculate
the profile of electrostatic potential with direct diagonaliz-
ation ϕ⃗= [A]−1(⃗n+ R⃗B). Indeed, n⃗ is an unknown function
of ϕ⃗ which should be calculated self-consistently. Later (in
sections 2.6 and 2.7), we will elaborate on how one can estim-
ate nP in terms of ϕP in the framework of the FV method. In
the case of the discrete Schrödinger equation, the system of
linear algebraic equations can be compacted in a matrix form
as [H] ψ⃗i = Eiψ⃗i.

2.3. Implementation of boundary conditions

We start with the implementation of boundary conditions for
Poisson’s equation. There are two types of boundary condi-
tions for equation (11). Dirichlet boundary condition must be
implemented on cells that are connected to the top metal gate,
where the quantity of electrostatic potential is a known value
(see the red color/filled cubic marker in figure 1). Whereas, the
Neumann zero flux boundary condition must be implemen-
ted elsewhere (depicted by blue-color/filled circular markers
in figure 1). In what follows, we refer to them as boundary
points. A few boundary CVs are highlighted with a light pat-
tern on a schematic illustration in figure 2(b), where we show
a fewmeshes on the northwest corner of a hypothetical rectan-
gular domain. Regardless of the type of PDE, FV cells can be
divided into two categories: (I) regular CVs, cells that have all
their four faces connected to other cells. (II) boundary CVs,
cell that one or two of their faces are connected to the environ-
ment (vacuum or metal in our problem). For boundary CVs,
the approximation of derivatives associated with line integ-
rals along boundary interfaces must be modified based on the

type of boundary condition, i.e. a-coefficient must be appro-
priately corrected for those CVs which belong to the category
of boundary CVs.

The implementation of the Dirichlet boundary condition for
the north-most cell whose northern face is attached to themetal
is as follows. The first-order derivative operator (electric dis-
placement) associated with the line integral along the north
face is approximated differently via

Γz
∂ϕ

∂z

∣∣∣
z=znB

= ΓznB
ϕnB−ϕP
δzP−nB

, (13)

where ϕnB = Vg (top gate voltage) is a known value. The
δzP−nB refers to the distance between the center of the
northernmost cell and the closest northern boundary point
and ϕnB ≡ ϕ(yP,znB) and ϕP ≡ ϕ(yP,zP). We note that ΓznB
refers to the material property (relative dielectric permittiv-
ity in Poisson’s equation, effective-mass in the Schrödinger’s
equation) on the closest northern boundary points and we
do not need to calculate ΓznB with the harmonic mean
(appendix A).

The consequences of the new approximation (i.e.
equation (13)) on equation (11) are threefold. Firstly, a par-
tially non-zero vector, R⃗nB = ΓznB ϕ⃗nB/δzP−nB must be trans-
ferred to the right-hand side when solving the linear algebraic
equation. In practice, each boundary CV of the domain should
be investigated whether the Dirichlet boundary condition is
applied to each of the four faces. In cases when non-vanishing
boundary potentials are connected to the other respective faces
of the domain, vectors of R⃗sB, R⃗wB and R⃗eB must be construc-
ted and the total vector R⃗B = R⃗sB+ R⃗nB+ R⃗wB+ R⃗eB which
contains all Dirichlet boundary information, must be trans-
ferred to the right-hand side of the system of linear algebraic
equations. In our geometry, i.e. figure 1(b), the R⃗B reduces to
only RnB because the boundary condition for all other inter-
faces is Neumann. Secondly, the appeared aN on equation (11)
must vanish. Thirdly, the quantity aN on the diagonal ele-
ments, aP = (aW+ aS+ aNB+ aE), must be replaced with
aNB = ΓznB/(δzP−nB∆z). The implementation of the Neumann
boundary condition is effortless. The zero-flux condition for
the northern face of a north-most cell implies

Γz
∂ϕ

∂z

∣∣∣
z=znB

= 0. (14)

Looking at equation (9), one can perceive that the consequence
of the zero flux boundary condition on equation (11) leads to
a vanishing aN both appeared in equation (11) and in the aP =
(aW+ aS+��aN+ aE). Similar vanishing action implements the
Neumann boundary condition at other Western, Eastern, and
Southern interfaces.

For the Schrödinger equation, there is only one boundary
condition, i.e. zero Dirichlet boundary condition on all out-
ermost surfaces, since all subband wavefunctions converge to
zero in the vacuum. As a result, two modifications must take
place during the construction of the Hamiltonian matrix (using
a′-coefficients) such that if the cell has one or two boundary
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faces, the corresponding a
′
-coefficient in equation (12) and the

corresponding a
′
-coefficient in the a ′

P must vanish. Therefore,
there is nothing to be transferred to the right side in the process
of correcting the Hamiltonian matrix, and hence the imple-
mentation of boundary condition for Schrödinger equation
only modifies the diagonal elements of the Hamiltonian mat-
rix. For this reason, the matrix form of Schrödinger equation
can be given by [H] ψ⃗i = Eiψ⃗i.

2.4. Scaling

So far, we have explained how a-coefficients are calculated
and being corrected (for different boundary conditions) for our
original SPs equations. However, It is more practical to calcu-
late and correct a

′
-coefficient and a-coefficients for the scaled

SPs equations. To do so, we first define a unified length scale
Lsc and scale the coordinates as y→ Lscy and z→ Lscz. In our
calculation, we choose Lsc = 10−9 such that we can rewrite the
Schrödinger equation as follows:[

∂

∂y

(
− 1
r∗y (y,z)

∂

∂y

)
+
∂

∂z

(
− 1
r∗z (y,z)

∂

∂z

)
+Esc

]
×ψi(y,z) = Si ψi(y,z).

(15)

In the above scaled equation, r∗y,z = m∗
y,z/m0 and Esc and Si

denote the scaled conduction band edge and the scaled eigen-
values as:

Esc(y,z) =
(−ϕ(y,z)+χe(y,z))

Vsc
, Si =

ei
Vsc

. (16)

Here, Vsc = h̄2/(2m0qL2
sc), which has a physical unit of

eV.m2, and we define χe = χ/q and ei = Ei/q. For the
scaled Schrödinger equation, scaled a

′
-coefficients are: a ′

W =

(r∗ywδyw∆y)
−1, a ′

E = (r∗yeδye∆y)
−1, a ′

S = (r∗zsδzs∆z)
−1, and

a ′
N = (r∗znδzs∆z)

−1. We denote the matrix form of the scaled
Schrödinger equation as: [Hsc] ψ⃗i = Siψ⃗i. The benefit of the
scaled Schrödinger equation is two-fold. Firstly, geometry
definition and meshing will be carried out in the larger unit
(meter). Secondly, Hamiltonian matrix elements (scaled a

′
-

coefficient) are neither excessively small nor excessively large
(e.g. a ′

W = 400 m−2 by taking r∗yw = 0.25, δyw =∆y= 0.1 m).
Therefore, the calculation of eigenvalues and eigenfunctions
will be less negatively influenced by numerical errors that arise
due to excessively small a-coefficients in the Hamiltonianmat-
rix. The scaled Poisson’s equation reads as[

∂

∂y

(
ϵry(y,z)

∂

∂y

)
+

∂

∂z

(
ϵrz(y,z)

∂

∂z

)]
ϕ(y,z) =

L2
scq
ϵ0

n(y,z).

(17)

By taking the same scale length, Lsc = 10−9, the scale factor
for Poisson’s equation is L2

scq/ϵ0 ≈ 10−26 V.m3. Note that, the
order of two-dimensional electron density is roughly around
1024 m−3 [7]. Such that the order of the magnitude for the
right-hand side of the above equation is 10−2, which is well
in agreement with having a range of several tens of meV for
the depth of quantum well [note that, Ec(y,z) is proportional
to −ϕ(y,z)].

2.5. Electron–electron interaction

To include electron–electron interaction, one should add
the exchange-correlation energy in eV unit, Vxc = Uxc/q, to
the numerator of equation (16) as Esc(y,z) = (−ϕ(y,z)+
χe(y,z)+Vxc(y,z) )/Vsc. The local exchange–correlation
potential can be expressed as

Vxc(y,z) =− q3

32π3h̄2

(
9π
4

)1/3 m⋆(y,z)

ϵ⋆(y,z)2

× [I⋆(y,z)+ 0.0545 log(1+ 11.4I⋆(y,z) )] ,

I⋆(y,z)≡ 1
r⋆(y,z)

=

(
4π
3

)1/3

a⋆(y,z)n(y,z)1/3,

a⋆(y,z) =
4π h̄2

q2
ϵ⋆(y,z)
m⋆(y,z)

,
1

m⋆(y,z)
=

1
3

(
1
ml

+
2
mt

)
,

(18)

where r⋆ is the average distance between charges and a⋆ is
the effective Bohr radius and mt (ml) refers to the transverse
(longitudinal) effective-mass [44]. Note that, Vxc commonly
is expressed in the SI system in literature, whereas here it
refers to the exchange-correlation potential in the eV unit.
The above Vxc intentionally has been expressed in terms of
I⋆, i.e. the inverse of the average distance between charges.
The seminal expression for Vxc is given in terms of the inverse
of electron density, such as the expression given in reference
[45]. Therefore, the value of any parameters in terms of the
inverse of electron density may exceed the realizable floating-
point number of the computation machine. Slightly differ-
ent exchange–correlation functional suggested by Hedin and
Lundqvist can also be rearranged in the same fashion as

Vxc(y,z) =− q3

16π3h̄2

(
9π
4

)1/3 m⋆(y,z)

ϵ⋆(y,z)2

× [I⋆(y,z)+ 0.0368 log(1+ 21I⋆(y,z))] ,

(19)

with the same definitions for I⋆ and effective Bohr radius
a⋆ [41, 46]. Even though the order of parameters is the same in
equations (18) and (19), it is evident that these two equations
differ in the three constant values (e.g. the 11.4 in equation (18)
vs the 21 in equation (19)). In the next subsection, we will
explain how the semi-classical TF approximation can provide
fairly reasonable initial guesses for both electrostatic poten-
tial and electron density required for the first cycle of the self-
consistent solution.

2.6. TF approximation

The semi-classical TF approximation refers to assuming a
plane-wave form for the wavefunction. With this approxima-
tion, the electron density obtains by summing the 3D normal-
ized plane waves that occupy the contentious energy spectrum
starting from the bottom of the conduction band [4]. Excluding
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electron–electron interaction, the general TF approximation
for electron density per valley per spin is expressed as:

n(⃗r) =

√
m⋆
xm⋆

ym⋆
z

π3/2 h̄3
(kBT)

3
2F 1

2

(
µe+(ϕ−χe)

VT

)
, (20)

where (⃗r) = (x,y,z), and ϕ(⃗r) is the unknown electrostatic
potential. Hereafter, we define µe = µ/q which is a fixed elec-
trochemical potential in eV unit [36]. Note that, the bottom
of the conduction band edge is: Ec=−ϕ+χe. The para-
meter VT = kBT/q is called the thermal energy. The function
F1/2 stands for the complete Fermi–Dirac integral of the order

1/2. The term NC(⃗r) =
√
m⋆
xm⋆

ym⋆
z π

−3/2 h̄−3(kBT)
3/2, is the

effective density of state for free electrons in the bulk of a
semiconductor with anisotropic effective-masses. Note that,
variables ϕ, χe (and hence Ec) and m⋆

x,y,z are space depend-
ent only on the (y, z) in our 2D problem. One can substitute
the above approximation into equation (17), to form a non-
linear scaled Poisson’s equation. Solving this nonlinear PDE
provides rough estimations for profiles of electrostatic poten-
tial and electron density which self-consistent SP cycle. As the
first step of the FV method, one must approximate the integ-
ration of the right- and left-hand sides of the PDE over a CV.
The integral approximation of the nonlinear source term on the
right side is given by

ˆ zn

zs

ˆ ye

yw

NC(y,z)F 1
2

(
µe+ϕ(y,z)−χ(y,z)

VT

)
dydz

≈ NCP F 1
2

(
µe+ϕP−χP

VT

)
∆y∆z.

(21)

In the above relation, an average of the integrand (over a CV)
is given by substituting the average values of the variables (the
average density of state, NCP , the average electrostatic poten-
tial, ϕP, and the average electron affinity, χP) in the integ-
randmultiplying by the cell volume. This assumption becomes
better as the size of the CV decreases. We approximate the
integration of the Laplacian operator, in the left-hand side of
equation (17), by the a-coefficient times to the cell volume.
The discretized form is obtained by equating approximations
of the right- and the left-hand sides as the following

− aWϕW+ [−aSϕS+ aPϕP− aNϕN]− aEϕE

=−νvνsqL
2
sc

ϵ0
NCpF 1

2

(
µe+ϕP−χP

VT

)
,

(22)

where we have also added the valley, νv, and spin, νs, degen-
eracies. After running equation (22) for all CVs and the proper
implementation of boundary conditions, the residual form of
the system of nonlinear algebraic equations reads as:

d⃗ (ϕ⃗) = [A] ϕ⃗ +
νvνsqL2

sc

ϵ0
N⃗CF⃗ 1

2
(ϕ⃗, χ⃗,µe,VT)− R⃗B = 0.

(23)

The matrix [A] and the vector R⃗B are the same as those
explained in the section 2.2. The implementation of boundary
conditions is the same as what is explained in the section 2.3

(a-coefficients correction). Inwhat follows, wewill explain the
iterative solution procedure. An iterative Newton-like method
should be used because of the nonlinearity that exists in
equation (22). We chose the basic Newton’s method, which
is known for its quadratic convergence, as

ϕ⃗(k+1) = ϕ⃗(k) − [J(ϕ⃗(k))]−1 d⃗ (ϕ⃗(k)), (24)

where the superscript (k) denotes the number of iteration and
[J(ϕ⃗)] is the Jacobian matrix. Jacobian matrix is given by

∂d⃗(ϕ⃗)

∂ϕ⃗
= [A] +

νvνsqL2
sc

2ϵ0VT
diag

(
N⃗CF⃗− 1

2
(ϕ⃗)
)
. (25)

where the diag refers to a diagonal matrix. The iterative pro-
cess to solve equation (23) is depicted in figure B1(a) in
appendix B. The initial guess to start Newton’s method can
be taken as a zero vector, ϕ⃗ (k=0) = 0⃗. We call the final elec-
trostatic potential output ϕ⃗ TF.

2.7. Enforce self-consistent convergence

In subsections 2.2 and 2.3, we have elaborated on solving
the SPs equations as independent equations. Subsequently,
the self-consistency between the two main space-dependent
parameters [ϕ(y,z) and n(y,z)] must be established. Since
early works at the late 60s, several iteration procedures have
been employed to satisfy the self-consistency such as under-
relaxation and adaptive relaxation methods [47], the perturba-
tion method [11, 16] and the predictor–corrector method [48].
The under-relaxation method is simple but this method is
extremely time-consuming, and it is also prone to divergence
when it comes to 2D and 3D geometries. We, therefore, have
employed the predictor–corrector to enforce convergence on
the self-consistent loop. The implementation of this method
divides into two steps, predictor and corrector steps.

In the predictor step, the solution for a nonlinear Poisson-
like (predictor-Poisson’s) equation provides a better predic-
tion of the correct electrostatic potential. The predictor step
requires at least three input parameters (guesses): (I) electro-
static potential Vin(y,z), (II) the corresponding eigenvalues
ei, and (III) the corresponding eigenvectors ψi(y,z). In addi-
tion, one needs the profile of electron density, calculated from
parameters (II) and (III), if the exchange-correlation potential
is included in the problem. The scaled version of predictor-
Poisson’s equation is as follows:[

∂

∂ys

(
−ϵry(y,z)

∂

∂ys

)
+

∂

∂zs

(
−ϵrz(y,z)

∂

∂zs

)]
×ϕpr(y,z) =

−νvνsqL2
sc

ϵ0

nQ∑
i

npri ,

(26)

where the superscript pr is added for extra clarification and
the integer nQ indicates the total number of included quantum
states. Each source term, npri (y,z), has a similar expression as
the electron density in equation (6) as:
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npri =

√
mx(y,z)√
2π h̄

(kBT)
1
2 |ψi(y,z)|2

×F− 1
2

(
µe− ei+(ϕpr(y,z)−Vin(y,z))

VT

)
,

(27)

except that, the term (ϕpr(y,z)−Vin(y,z)) is added to the
numerator of the Fermi–Dirac integral of the order −1/2.
Parameters VT, µe, and ei are in the eV unit. We denote the
numerical solution of equation (26) as ϕ⃗ out

PR and the residue
between the input and the output electrostatic potentials
as dsc(y,z) = ϕout

PR(y,z)−Vin(y,z). The predictor-Poisson’s
equation is derived based on the first-order perturbation theory
and it predicts a better estimation for the electrostatic poten-
tial as a function of the three aforementioned guesses on the
previous cycle [48]. Therefore, it is expected that dsc reduces
gradually.

In the corrector step, a new set of eigenvalue and eigen-
function (with nQ member) is calculated by solving the
scaled Schrödinger equation equation (15), in which ϕ(y,z) =
ϕout
PR(y,z). Thus, eigenvalues and eigenfunctions are correc-

ted in this step. Note that, the profile of exchange-correlation
potential, Vxc(n(y,z)), is also needed if electron-electron inter-
action is included. The cycle of correction and prediction
are interchangeable, and two steps repeat until the condition
max|dsc(y,z)|< V tol

SC is met. The V tol
SC refer to a satisfactory low

value, for instance 10−6 V. So far, we explained the predictor-
corrector method starting from the predictor step. However,
It seems more convenient to start from the correction step
because one needs only a guess for the profile of electrostatic
potential [ϕ(y,z) = Vin(y,z)], rather than guesses for sets of
paired eigenvalues and eigenfunctions as well as the electro-
static potential needed in the predictor step.

Importantly, it has been confirmed by several reports that
further reduction in the number of self-consistent iterations
is possible by employing a method called Anderson mix-
ing [49–51]. To summarize, we have employed a combina-
tion of the predictor–corrector method and Anderson mixing,
and we have started from the correction step. With that, cor-
rector and predictor steps can be called outer and inner steps
(loops) in the self-consistent level, see loops in figure B1(b) in
appendix B.

2.8. Numerical implementation of FV

In order to attain the self-consistent solution, the FV dis-
cretized form of the predictor-Poisson’s equation should be
derived. To do so, an estimation for the integration of the
highly nonlinear source terms (on the right-hand side of
equation (27)) over a CV is given as

ˆ zn

zs

ˆ ye

yw

∑
i

npri =
∑
i

ˆ zn

zs

ˆ ye

yw

NC1D |ψi|2

×F− 1
2

(
µe− ei+(ϕpr−Vin)

VT

)
≈ NC1DP

×
∑
i

|ψiP|2F− 1
2

(
µe− ei+(ϕprP−Vin

P)

VT

)
∆y∆z.

(28)

In the above notation, npri , NC1D , ψi, ϕ
pr and Vin (in the integ-

rand) are space dependent. In the last line of equation (28),
these parameters are reduced to their average values associ-
ated with the cell’s center, the P. The FV form of predictor-
Poisson’s equation is similar to the form of Poisson’s equation
with the nonlinear TF electron density as explained earlier,
except here more parameters are involved in the nonlinear
source term. Consequently, the residual form of the discret-
ized predictor-Poisson’s equation can be written in a matrix
form as

d⃗ pr (k) (ϕ⃗ pr (k)) = [A] ϕ⃗ pr (k) +
νvνsqL2

sc

ϵ0
N⃗C1D

×
nQ∑
i

|ψ⃗ (O)
i |2F⃗− 1

2

(
ei
(O), ϕ⃗ pr (k), V⃗in (O)

)
− R⃗B = 0. (29)

The superscript (k) denotes the number of iterations on the
inner (prediction) loop, while the extra superscript (O) rep-
resents the iteration number on the outer (correction) loop. To
make the notation simple, we just kept, ϕ⃗ pr (k) (the depend-
ent vector), V⃗ in (O) (a fixed vector) and ei(O) (a fixed value) in
the function F−1/2. However, the Fermi–Dirac integral (j =
−1/2) also depends on thermal energy VT and electrochem-
ical potential µe, see equation (28). The matrix [A] and the
vector R⃗B are what we have seen in the last paragraph of the
section 2.3 and in the process of implementation of boundary
conditions on the section 2.4. Equation (29) should be solved
with a Newton-like iterative method similar to the case that is
explained earlier for TF approximation. Thus, one needs the
Jacobian matrix as:

[J(ϕ⃗ pr (k))] k = [A]− νvνsqL2
sc

2ϵ0VT

× diag

(
N⃗C1D

∑
i

|ψ⃗ (O)
i |2F⃗− 3

2

(
ei
(O), ϕ⃗ pr (k), V⃗ in (O)

))
.

(30)

The details of the workflow are shown in figure B1(b).

2.9. Self-validation

In general, it is possible to validate the correctness of the
dependent variable when a FV method is used to solve a PDE
by applying Gauss’s law. In the following, we will briefly
explain the validation of ϕ(y,z). Gauss’s law for Poisson’s
equation is given by

¨
Ω

∇⃗ ·D dA=

˛
∂Ω

D ·nds= q
ϵ0

¨
Ω

n dA, (31)

where Ω, ∂Ω, and n represent the domain’s total area, the cir-
cumference of the domain, and the unit vector normal to the
surface, respectively. The above relation can be written in the
discretized form as
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∑
{sB}

DS∆y+
∑
{wB}

DW∆z+
∑
{nB}

DN∆y

+
∑
{eB}

DE∆z=
q
ϵ0

∑
P

nP∆y∆z=
q
ϵ0
n1D,

(32)

where {sB} ({wB}, {nB}, {eB}) refers to a set of CVs which
have Southern (Western, Northern, Eastern) boundary inter-
faces. In fact, the parameter n1D =

∑
P nP∆y∆z is the one-

dimensional electron density along the x-axis (with the unit of
length−1). If the two sides of equation (32) are equal it means
the solution process is correct. We simply call the difference
between the left and right sides of equation (32) as: imbalance.
The lower the imbalance is the more valid the numerical pro-
cess would be.

3. Results and discussions

We have described the geometrical and material aspects of our
MOS nanowire example at the beginning of this section. We
also explained our strategy for achieving self-consistent con-
vergence. Then, adopting the FV-SP as our primary simula-
tion tool and FV-TF as the prerequisite for FV-SP, we explored
the characteristics of the gate-defined Si nanowire at different
temperatures. We also tracked the formation of subbands by
sweeping the top gate voltage. The validity of FV-SP and FV-
TF are explored at this stage via the feature of self-validation.
The effect of electron–electron iteration on different charac-
teristics of 1DEG is also investigated.

3.1. Device and solution convergence

The width of the top metal gate is considered to be 40 nm, and
it is biased with Vg = 1.00 V initially. The top gate is located
symmetrically between two uncontacted 50 nm spaces along
the y-axis on the top surface (see figure 1(b)). Table 1 lists the
material properties and thicknesses of the layers.

The electrochemical potential reference was considered as
µ= 0.0 meV (grounded). 80 K, 4.2 K, and 50 mK have been
used as references for high, low, and ultra-low temperatures.

We developed our own FV-TF approximation and FV-SP
codes. Figure 3 shows the primary nonuniform mesh used
in our calculations. In the real geometry, mesh sizes vary
smoothly between a maximum of 4 nm and a minimum of
0.75 nm in both directions, such that mesh size becomes finer
beneath the top gate, as shown in lower panels of figure 3. Note
that in the scaled geometry, mesh sizes vary between 4 m and
0.75 m.

Moreover, we set νs = 2 (spin) and νv = 2 which means
only the lowest two-fold degenerate band∆2 is considered (the
crystal orientation [001] is along the z-axis) [52]. Our FV-TF
model exhibits excellent convergence behavior, from higher
to ultra-low temperatures, as shown in figure 5(a). Depending
on the temperature, the FV-TF model converged very quickly
in 6 to 8 cycles (within a few seconds). We set the breaking
condition as V tol

TF = 10−5 V.
Outputs, ϕTF, and nTF (without electron–electron interac-

tion) are employed as inputs in the FV-SP model. The FV-SP

Table 1. Set of the material parameters.

Layer r⋆x r⋆y r⋆z ϵx = ϵy = ϵz χe (eV)

Al2O3(5 nm) 0.40 0.40 0.40 9.3 3.4
SiO2(5 nm) 0.58 0.58 0.58 3.9 3.7
Si(40 nm) 0.19 0.19 0.90 11.6 0.0

Figure 3. Upper panel shows the mesh used in our calculation.
Small dots around the circumference are boundary points. Lower
panels show how cell sizes change along the two axes.

method was found sensitive to the total number of quantum
states (nQ), such that the FV-SP did not converge for nQ < 40 at
T = 80 K. The FV-SP method requires two loop-breaking con-
ditions to be adjusted at the outer and inner loops. Initially, the
V tol
SC = V tol

PR = 10−5 V is chosen as the breaking conditions. At
different temperatures, we have carefully examined the con-
vergence behavior of the inner and outer loops of FV-SP for
multiple top gate voltages and electrochemical potentials. It
has been understood that it is not a good idea to break the inner
loop with a constant condition, particularly at ultra-low tem-
peratures. Hence, one important question is: what is the best
breaking condition for inner loops and how should we set the
V tol
PR?
Two reasons for not using a fixed breaking condition in

the inner loop are as follows: (I) At the sub-Kelvin range,
the numerical cost of predictor-Poisson’s equation (inner loop)
is high. One reason for the high cost of these calculations is
the difficulty in numerically estimating the Fermi–Dirac integ-
rals, of order −1/2 and −3/2, with high accuracy [53, 54]. In
practice, the inner loop should modify the input potential, Vin,
only to a sufficient level, and then it is crucial to correct the
eigenvalues and eigenfunctions. (II) We cannot precisely pre-
dict the correctness of eigenvalues and eigenfunctions in each
self-consistent loop. Thus, a fixed breaking condition in the
inner loop imposes unnecessary costs on the calculations. In
order to improve this, we have employed a dynamical method
to break the inner loop. In our new method, each inner loop is
repeated at least six times and the residual vectors, d⃗ pr (i), are
stored. The inner loop breaks when the condition V tol

PR = L×
max|{⃗d pr (3), . . ., d⃗ pr (6)}| is met. TheL is a fixed value, which
we refer to as lowering. Themax|{⃗d pr (1) , d⃗ pr (2)}| is ignored,
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Figure 4. Convergence slopes for the electrostatic potential (a) calculated by FV-TF method, (b)–(d) calculated by inner loops of FV-SP
method at three different temperatures. First slopes in (b)–(d) initiated with the corresponding outputs of the panel (a). In (b), the first few
convergence slopes are labeled with the number of outer iteration O. The dot–dashed line in (d) is the convergence slope of the first inner
loop when the V in is substituted by the output of the FV-TF method at a much higher temperature T = 4.2 K. (e) Outer convergence slopes
of the FV-SP method at three different temperatures. (f)–(h) Evolution of eigenvalues on the first seven outer cycles, associated with
correction steps of (b)–(d).

since the slope of convergence for the first two inner itera-
tions is not monotonic. We discovered that a monotonic con-
vergence slope is correlated with more accurate predictions for
the electrostatic potential. Multiple inner convergence slopes
are plotted in figures 4(b)–(d) at different temperatures. The
first few convergence slopes in figure 4(b) are labeled with
the number of the outer loop, O. We found that a number in
the range between 10−2 (figure 4(b)) and 10−0.5 (figures 4(c)
and (d)) provides an optimum value for the L. At the few
Kelvins range, employing a L less than 10−0.5 increases the
number of outer iterations, reflecting insufficient modification
on outputs of the inner loop.

Careful examinations reveal that the good trend on the con-
vergence of inner loops is dominant only when the same tem-
perature is taken into account in the calculation of the ini-
tial guess (Vin = ϕTF) by FV-TF model. In particular, if ϕTF
of a higher temperature utilizes as Vin in the inner loop, then
the inner loop’s convergence slope is not quadratic, as shown
by a dot-dashed line in figure 4(d). In this case, the slope
of convergence is so small, such that the first inner conver-
gence slope (O= 1) looks flat and it is less likely to be con-
verged with an acceptable number of iterations. This problem
arises from the fact that the convergence of Newton’s method
depends heavily on the initial guess for the highly nonlinear
PDEs [55]. This shows the importance of providing a better
initial guess by solving the FV-TF at much lower temperat-
ures. Self-consistent convergence slopes for different temper-
atures are plotted in figure 4(e). For considered temperatures,
the evolution of the few lowest eigenvalues along the correc-
tion step is plotted in figures 4(f)–(h). It can be understood that
substantial corrections on eigenvalues happen only after the

first or second cycle of the self-consistent loop. In addition, the
breaking condition V tol

SC = 10−5 V provides sufficient accuracy
to get a stable set of subband energy. The subband energies
noticeablymove downward as the temperature is reduced from
T = 80 K to T = 4.2 K. However, the subband energies do not
move any further as the temperature is lowered from T = 4.2 K
to T = 50 mK.

3.2. Characteristics of 1DEG and solution verification

We first focus on comparing the conduction band edges,
Ec(y,z), calculated by FV-TF and FV-SP methods at 50 mK.
Color contour plots of Ec(y,z) are shown in figures 5(a)
and (b). The lowest value of the conduction band edge is
denoted by min(Ec) (the bottom of the well) within each
panel. The Ec(y,z) calculated by FV-SP shows much softer
spatial variations around the quantum well area. The area
(shape) of the quantum well can be determined roughly by
those (x,y)s where Ec(x,y)< µe. The shape of the quantum
well corresponds to the physical distribution of 1DEG. The
longitudinal distribution of the quantum well is much lar-
ger (about 20 nm from each side) than the top gate width
(40 nm). These results are strongly against using the hard-
wall approximation on the y-axis. Readjusting the electro-
chemical potential to µe = 50 meV, the Ec(y,z) is calcu-
lated again and the results are plotted in figures 5(c) and (d).
Convergence behavior showed very little sensitivity to the
value of the electrochemical potential. Comparison between
figures 5(b) and (d) (figures 5(a) and (c)) indicates that the
conduction band on the Si layer (z< 40 nm) moves upward
almost identical to the µe. The Ec(x,y) calculated by both
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Figure 5. Contour plot of the conduction band edge calculate (a) by FV-TF and (b) by FV-SP employing Vg = 1 V and µe = 0.0 meV at
T = 50 mK. (c) and (d) Similar plots as (a) and (b) using a different electrochemical potential µe = 50 meV.

Figure 6. (a) and (b) Show the electron densities calculated by
FV-TF and FV-SP methods employing Vg = 1 V and µe = 0.0 meV
at T = 50 mK.

FV-SP and FV-TF methods show a similar linear response
to the µe.

After characterizing the Ec(x,y), we next explore the elec-
tron density. The n(x,y) calculated by FV-TF and FV-SP
methods are plotted in figures 6(a) and (b). Note that, n(x,y)
is expressed with the unit m−3 since we factored out the
nanometer scale in the scaling process (see section 2.4).
Unpleasantly, n(x,y) calculated by the FV-TF method is loc-
alized within a very narrow spatial interval along the z-axis
with sharp convex edges along the y-axis. Whereas, the n(x,y)
calculated by the FV-CS method is localized along the z-axis
nicely with smooth concave edges along the y-axis. The max-
imum of n(x,y) calculated by the FV-TF method is almost two
times larger than the same quantity that is calculated by the
FV-SP method.

Following the characterization of Ec(x,y) and n(x,y) at
a fixed top voltage, we fix the temperature at 50 mK and

Figure 7. (a) Formation of bound states (i.e. ei < µ) due to increase
of the top gate voltage at T = 50 mK when Vxc is excluded. (b) A
magnified area of the (a) around Vg = 0 V where dense unbounded
states are prominent. (c) A magnified area of the (a) where the
excited states (i.e. ei > µ) responded nonlinearly to the top gate
voltage.

sweep the top gate voltage over the range of −10 mV< Vg <
2000 mV, to examine the dependability of the FV-SP tech-
nique. This also allows us to study how changing the top
gate voltage modifies the energy ladder. Figures 7(a) and (b)
show how bound states (i.e. states below the electrochemical
potential, ei < µ) are formed from the dense eigenvalues of a
particle in a large box (i.e. a particle in the 40 nm ×140 nm
Si subdomain). As the top gate voltage rises, the lowest bound
energy drops linearly. Upper-bound energies do not respond
linearly to the top gate voltage. The unfilled states (i.e. excited
states, the states above the Fermi-level µ= 0 eV) show anti-
crossing features as shown in figure 7(c).

In addition, the number of necessary outer iterations,
denoted by Og, in the absence and presence of Anderson
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Figure 8. (a) Number of outer iterations satisfying V tol
SC < 10−5 V,

vs the top gate voltage with and without the Anderson mixing (AM
ON, AM Off) corresponding to the calculation made in figure 7.
(b) Imbalances for FV-TF and FV-SP methods vs the top gate
voltage. The (q/ϵ0)n1D represents the total flux out of the surface.

mixing are plotted in figure 8(a). For these calculations, the
L= 10−2.0 is selected to ensure the convergence of the inner
loop for the entire spectrum of Vg. In the absence (pres-
ence) of Anderson mixing, the Qg−Vg curve is achieved
within about 40 h (3 h) on a four cores, Intel core i7 CPU
with 16GB RAM. We stress two observations here: (a) in the
absence of Anderson mixing, the number of outer loop itera-
tions shows a significant increase as the Vg increases, as shown
by the dot–dash line in figure 8(a). (b) The Anderson mix-
ing provide excellent assistance on reduction of the number
of outer iterations, as shown by the solid line in figure 8(a).
As a post-processing step, the imbalance, which represent the
self-validation, is plotted in figure 8(b). In this stage, we also
plotted (q/ϵ0)n1D in figure 8(b) to provide a quantitative refer-
ence for the total flux out of surfaces (see equation (32)). One
can see that the imbalance, is approximately three orders of
magnitude smaller than the total flux out of the surface. The
FV-TF approach, with only one nonlinear equation, provides
a better balance (lower imbalance) whereas FV-SP, with two
PDEs, has a larger imbalance. The higher imbalance for the
FV-SP method is rational because an extra imbalance origin-
ates from the numerical solution of the Schrödinger equation.
In practice, two factors can reduce the imbalance: one is a finer
mesh and the other one is a lower value for V tol

SC.
Channel’s switching property can be understood by plot-

ting the one-dimensional electron density, n1D, as a func-
tion of external gate voltage, Vg, as shown in figure 9(a).
The ideal 1DEG quickly turns ON due to very thin layers of
oxides (in total 10 nm). Note that, we exclude extra sources
of charge (such as doping on the silicon layer or dipoles on
interfaces). An important point can be understood from the
inset in figure 9(a), which is TF approximation overestimates
the n1D in comparison with the self-consistent approach. This
is expected since the FV-TF method delivers a larger elec-
tron density as compared to the FV-SP method (see the max-
imum values in figures 6(a) and (b)). Our calculated n1D is
consistent with the reported 1D electron density which was
obtained in the simulation of cylindrical silicon nanowire tran-
sistors [9]. In addition, our calculated switching property for

Figure 9. (a) One-dimensional electron density, n1D, vs the top
gate voltage, Vg, for both FV-TF and FV-SP. Inset shows the
Thomas–Fermi approximation overestimates the n1D. (b) Evolution
of the factor (kBT)1/2F−1/2(ei) under the influence of Vg. In (b), the
first four lowest states are labeled by integer numbers.

the electron density is consistent with the transfer characterist-
ics of n-MOS measured at deep-cryogenic temperatures [56].
Furthermore, the evolution of the factor (kBT)1/2F−1/2(ei)
due to the increase of the top gate voltage are plotted in
figure 9(b).

3.3. Effect of electron–electron interaction

In the last part of the results, we incorporate two types of
exchange-correlation functionals, mentioned in equations (18)
and (19), into the FV-SP method and sweep the top
gate voltage at 50 mK. Equation (18) is known as the
Hedin–Lundqvist functional. The Anderson mixing maintains
its good performance in the presence of both exchange–
correlation functionals. It is worth reporting that the Hedin–
Lundqvist functional produces an instability spike only on the
convergence slope of the first inner loop at ultra-low temperat-
ures (a spike onO= 1 in the figure 4(b), not shown here). This
spike on the convergence slope is suppressed toward the end
of the first inner loop. We did not observe any serious diver-
gence behavior such as fluctuation in the convergence rate
of the inner loops at various top gate voltages. Formation of
bound and excited states (i.e. states above the electrochemical
potential ei > µ) considering equation (18) and equation (19)
are plotted in figures 10(a) and (b), respectively.

The Hedin–Lundqvist functional (equation (19)) affects the
ei−Vg relationmore than the functional of equation (18). Both
exchange–correlation functionals reduced the lowest bound
energies by a few meV (compare figures 10(a) and (b) with
figure 5(a)). Adding an exchange-correlation function also
induces energy separation between excited states. In addition,
the exchange-correlation of equation (19) produces more pro-
nounced anti-crossing features for ei > µ.

To further quantify the difference between exchange–
correlation functionals Vxc, we plotted the two exchange-
correlation functionals in figures 11(a) and (b), (for Vg = 1 V
at T = 50 mK). The lowest values of Vxc are almost identical,
min(Vxc) =−30 meV. The difference between these two
functionals is plotted in figure 11(c). There is an insignificant
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Figure 10. (a) Formation of bound and excited states in the presence of exchange-correlation functional of equation (18) at 50 mK.
(b) Same as (a) but considering the exchange-correlation functional of equation (19).

Figure 11. (a) Spatial variation of exchange–correlation functional evaluated by equation (18) at Vg = 1 V and T = 50 mK. Same as
(a) evaluated by equation (19). (c) Difference between two relations of exchange–correlation functional.
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difference between these two types of exchange–correlation
potentials.

4. Conclusion

In summary, we have proposed a combination of cell centered
FV-TF and FV-SP methods as an approach for modeling
low-dimensional semiconductor devices. For a MOS hetero-
structure, the theory and implementation are explained. This
approach has several advantages. The most significant benefit
of the FV-SP method is that it offers robust numerical stability
enabling us to do the calculation at sub-Kelvin temperatures.
Our approach employs a structured nonuniform mesh, which
makes the technique suitable for mesoscopic systems. The
convergence properties of the FV-SP method and the influ-
ence of initial conditions on its convergence are fully explored.
Importantly, the implementation of flux continuities at local
levels enables us to validate the process of calculation. With
the MOS example, we have characterized different parameters
of the 1DEG formed by biasing a top gate. The FV-SPmethod,
featured by Anderson mixing, exhibits consistent convergence
characteristics with respect to external gate voltage and elec-
trochemical potential. Additionally, it has been shown that
the electron distribution has relatively long tails beneath the
oxide layers, which is against using the hard wall approxima-
tion in the direction perpendicular to the heterojunction form-
ation. The FV-SP method allows us to incorporate exchange-
correlation functionals. It has been shown that two frequently
used exchange-correlation functionals have negligible differ-
ences from each other. Based on our analysis, the exchange-
correlation function affects the excited states more than the
bound states. Under extremely low temperatures, the presence
of an exchange-correlation function has a minor effect on the
one-dimensional electron density, n1D. An interesting piece of
evidence is that the n1D calculated by the FV-TFmethod is sur-
prisingly close to that calculated by the FV-SP method. The
current work lacks a direct comparison between FV-SP with
Finite-Difference SP (FD-SP) and Finite-Element SP (FE-SP).
In the future, we aim to compare the convergence performance
of FV-SP with FD-SP and FE-SP for realistic structures.
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Appendix A. Enforce the continuity of fluxes

It is very important to realize that we enforce the universal
conservation law by integrating as the first step of FV discret-
ization. Local conservation laws need to be enforced by proper
incorporation of material properties into a-coefficients as it is
described in the following. There are two sets of data in the
cell-centered FV method: (I) cell-center data which refers to
the average values associated with the cell centers, depicted by
hollow circles in figure A1. (II) Nodal data refers to the data
on the interfaces (or intersections). In the process of discret-
ization, a precise connection between these two sets of data
must be established based on the conservation laws.

We take the electrostatic potential, ϕ, as the dependent vari-
able and the horizontal axis as the x-axis. We then focus on
the eastern interface, the border between the central cell (the
P) and the eastern cell (the E), see figure A1. The continuity
of fluxes at the eastern interface of the cell P requires

Γe
∂ϕ

∂x

∣∣∣∣
xe

= ΓP
∂ϕ

∂x

∣∣∣∣
xe−

= ΓE
∂ϕ

∂x

∣∣∣∣
xe+
. (A.1)

We remind that quantities that are defined by uppercase sub-
scripts refer to the cell-center data whereas quantities that are
defined by lowercase subscripts refer to the nodal data (on the
interfaces between cells). The Γ is the dielectric constant on
Poisson’s equation. On the other hand, if we take the wave-
function, ψ, as the dependent variable then the Γ is the dif-
fusion coefficient of the Schrödinger equation (which is pro-
portional to the inverse of effective-mass). We emphasize that
the continuity of the dielectric constant or the effective-mass
are disregarded. Whereas, the qualities such as equation (A.1)
should be considered. The above relations are approximated
by the central difference approximation as

Γe
ϕE−ϕP
δxe

= ΓP
ϕe−ϕP
δxe−

,

Γe
ϕE−ϕP
δxe

= ΓE
ϕE−ϕe
δxe+

.

(A.2)

The two above equality can be written as

Γe
δxe

δxe−
ΓP

(ϕE−ϕP) = (ϕe−ϕP) ,

Γe
δxe

δxe+
ΓE

(ϕE−ϕP) = (ϕE−ϕe) .

(A.3)

The ϕe will be canceled out by adding the two above
equations as
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Figure A1. A schematic of three FV cells. Continuity of fluxes on
eastern and western interfaces can be established by taking an
averaging rule for material properties which requires the knowledge
of relative distances between cell centers and interfaces.

Γe
δxe

(
δxe−
ΓP

+
δxe+
ΓE

)
(ϕE−ϕP) = (ϕE−ϕP) . (A.4)

Then, the Γe reads as

Γe = δxe

(
δxe−
ΓP

+
δxe+
ΓE

)−1

. (A.5)

The Γe can also be given by

Γe =
ΓEΓP

βΓE+(1−β)ΓP
, (A.6)

where β = δxe−/δxe and (1−β) = δxe+/δxe. Equation (A.6)
must be implemented during the evaluation of matrix coeffi-
cients to enforce the continuity of flux out of the surface. We
call equation (A.6) the opposite relative distance averaging,
since the β, a geometrical quantity belongs to the cell P, mul-
tiples to the ΓE which is a diffusion coefficient belongs to the
opposite cell. The other multiplication (1−β)ΓP has a sim-
ilar reverse fashion. Elsewhere, equation (A.6) has been called
Harmonic mean and it guarantees the continuity of the flux
out of surface at interfaces despite material discontinuities.
Subtracting the two equality in equation (A.3) gives

Γe
δxe

(
δxe−
ΓP

− δxe+
ΓE

)
(ϕE−ϕP) = 2ϕe− (ϕE+ϕP) . (A.7)

Modification of ϕe in terms of β, (ϕE−ϕP) and (ϕE+ϕP) and
using equation (A.6) give rise to

ϕe =

(
βΓE− (1−β)ΓP
βΓE+(1−β)ΓP

)
ϕE−ϕP

2
+
ϕE+ϕP

2
. (A.8)

We can use the translational method to derive the Γw on
the western interface as the following. We rename cells as
P→W and E→P. This means the old Eastern interface is now
the Western interface. Consequently, the same equation as
equation (A.6) can be used to enforce the continuity on the
western interface as

Γw =
ΓWΓP

β ′ΓW+(1−β ′)ΓP
. (A.9)

Here β ′ = δxw+/δxw and (1−β ′) = δxw−/δxw. We have
used the notation β ′ to keep the consistency between
equations (A.6) and (A.9) [i.e. the role of the opposite relative
distance averaging]. Similarly, the ϕw can be calculated via the
following relation

ϕw =

(
β ′ΓP− (1−β ′)ΓW
β ′ΓP+(1−β ′)ΓW

)
ϕP−ϕW

2
+
ϕP+ϕW

2
. (A.10)

Equations (A.8) and (A.10) resemble to a weighted linear
interpolation. Nodal data, ϕe and ϕw (or ϕn and ϕs) do not play
an essential role in our calculation. However, they can be use-
ful in some cases. For instance, to approximate components
of the directional electric field, ∂ϕ/∂x≈ (ϕe−ϕw)/∆x and
∂ϕ/∂y≈ (ϕn−ϕs)/∆y, as an average value for each cell. The
same procedures in the y-axis give us similar expressions for
Γs, Γn, ϕs, and ϕn.

Appendix B. Flowchart of the iterative process

We have summarized the iterative processes for the Thomas–
Fermi and our finite-volume self-consistent predictor–
corrector methods in figure B1.
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Figure B1. (a) Flowchart of the iterative process for Thomas–Fermi approximation. (b) Flowchart of our predictor–corrector method to
solve Schrödinger Poisson system.
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