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ABSTRACT
We develop a Floquet surface hopping approach to deal with nonadiabatic dynamics of molecules near metal surfaces subjected to time-
periodic drivings from strong light–matter interactions. The method is based on a Floquet classical master equation (FCME) derived from
a Floquet quantum master equation (FQME), followed by a Wigner transformation to treat nuclear motion classically. We then propose
different trajectory surface hopping algorithms to solve the FCME. We find that a Floquet averaged surface hopping with electron density
(FaSH-density) algorithm works the best as benchmarked with the FQME, capturing both the fast oscillations due to the driving and the
correct steady-state observables. This method will be very useful to study strong light–matter interactions with a manifold of electronic states.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0148418

I. INTRODUCTION

Floquet engineering is a powerful tool to control the dynam-
ics of quantum systems using time-periodic external fields (e.g.,
electromagnetic fields), which accounts for various phenomena.1 In
practice, a surface plasmon or a Fabry–Pérot cavity can create a
resonant electromagnetic (EM) field and realize Floquet engineer-
ing through strong light–matter interactions. For instance, strong
light–matter coupling is achieved by placing materials in a resonance
EM field and shows great promise to control the properties of mat-
ter without structural modifications.2,3 In addition, n-type or p-type
organic semiconductors deposited on top of a metal surface, which
acts as an open electromagnetic cavity, have been observed a note-
worthy conductivity enhancement.4,5 Moreover, strong light–matter
coupling can largely extend the spatial range of energy trans-
port in organic materials.6–8 Furthermore, numerous photophys-
ical and photochemical properties, such as electronic relaxation
pathways,9–11 quantum yields,12–15 and chemical reactivities,16–19

can also be manipulated in the strong coupling regime. The micro-
scopic mechanisms leading to these modifications through strong

light–matter interactions, however, remain largely unexplained. In a
recent article, the authors showed the connection between Floquet
theory and quantum electrodynamics in an optical cavity.20

On the one hand, without Floquet driving, when nuclei inter-
act non-adiabatically with a manifold of electronic states (e.g., an
adsorbate at a metal surface), there is a drastic breakdown of the
Born–Oppenheimer approximation. There are several numerically
exact solutions for such non-adiabatic processes when only a few
degrees of freedom (DoFs) are considered, including multicon-
figuration time-dependent Hartree (MCTDH),21 quantum Monte
Carlo (QMC),22 numerical renormalization group (NRG),23–25 and
hierarchical quantum master equation (HQME).26,27 That being
said, these methods are difficult to apply to large, realistic systems.
Many attempts have been made to develop approximate meth-
ods to deal with realistic systems involving nonadiabatic dynamics
in open quantum systems.28–31 On the other hand, when consid-
ering nonadiabatic dynamics under Floquet driving, there exists
Floquet surface hopping32–34 as well as coupled-trajectory mixed
quantum–classical35 methods to study dynamics for a closed sys-
tem. For open quantum systems, there are far less approaches
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available with only a few exceptions, such as the Floquet scatter-
ing matrix,36–38 Floquet–Green’s functions,39–42 and Floquet master
equations.43–45 Again, these methods are only applicable to small
systems. Accurate methods are needed to study large and realistic
systems.

In this article, we attempt to offer accurate and efficient tools to
study nonadiabatic dynamics in open quantum systems with Floquet
engineering. We first derive a Floquet quantum master equation
(FQME) to accurately uncover the non-adiabatic processes of a peri-
odically driven impurity level near a metal surface. The FQME is
only useful for incorporating only one or two phonon modes and/or
one or two electronic levels. For many nuclear DoFs and arbi-
trary electron-nuclear couplings, we will employ a Floquet classical
master equation (FCME), which is achieved by taking the Wigner
transformation of FQME, similar to the steps in Ref. 46 for a non-
Floquet scenario. We then propose three Floquet surface hopping
algorithms to solve the FCME. We find that an algorithm named
time-averaged Floquet surface hopping with density (FaSH-density)
is able to reproduce full dynamics as well as steady-state results as
benchmarked against FQME.

An outline of this paper is as follows: In Sec. II, we outline
how to derive the FQME and FCME and present the Floquet sur-
face hopping (FSH) algorithm. In Sec. III, we present the results of
both electronic population and phonon relaxation dynamics under
different Floquet drivings employing five different methods (FQME,
FSH, FaQME, FaSH, and FaSH-density). We conclude in Sec. IV.

II. THEORY
A. Model Hamiltonian

We consider the Newns–Holstein Hamiltonian with one impu-
rity level coupled to a Fermionic bath as well as subjected to periodic
driving. The molecule consists of a single electronic level coupled to
a single phonon and a manifold of electrons,

Ĥ(t) = ĤS(t) + ĤB + ĤT , (1)

ĤS(t) = (Ed + A sin (Ωt))d+d + g(a+ + a)d+d + h̵ω(a+a +
1
2
),

(2)

ĤB =∑
k

εkc+k ck, (3)

ĤT =∑
k

Vk(d
+ck + c+k d). (4)

ĤS(t) is the system Hamiltonian with Ed being the energy level and
ω being the frequency of the harmonic oscillator. g represents the
electron–phonon (el–ph) coupling strength. A is the driving ampli-
tude, and Ω is the driving frequency. In addition, ĤB represents the
bath Hamiltonian with εk being the energy level of the fermion ck in
the bath. ĤT is the interaction Hamiltonian with Vk being the cou-
pling strength between the impurity level d and the fermion ck in the
bath.

Note that we can generalize our FCME into many DoFs
and arbitrary electron–phonon coupling easily. For compari-
son to FQME, we restrict ourselves to one phonon and linear

electron–phonon couplings. For a harmonic oscillator, it will be con-
venient to replace a+ and a with the position x and momentum p

(i.e., x =
√

h̵
2Mω(a

+
+ a) and p = i

√
Mh̵ω

2 (a
+
− a)), where M is the

nuclear mass, such that the system Hamiltonian can be written as

ĤS = (Ed + A sin (Ωt))d+d +

√
2Mω

h̵
gxd+d +

p2

2M
+

1
2

Mω2x2.

(5)

To derive a Floquet quantum master equation for treating the
dynamics of the periodically driven open quantum system, we first
separate the time-independent part from the time-dependent part in
HS(t) such that

ĤS(t) = Ĥmol + A sin (Ωt)d+d, (6)

Ĥmol =
⎛

⎝
Ed +

√
2Mω

h̵
gx
⎞

⎠
d+d +

p2

2M
+

1
2

Mω2x2. (7)

We can further write Ĥmol as

Ĥmol = H0∣0⟩⟨0∣ +H1∣1⟩⟨1∣, (8)

Ĥ0 =
p2

2M
+

1
2

Mω2x2, (9)

Ĥ1 =
p2

2M
+

1
2

Mω2x2
+

√
2Mω

h̵
gx + Ed, (10)

where ∣0⟩ (∣1⟩) denotes the unoccupied (occupied) state of the
impurity. Below, we eliminate the hats over the Hamiltonians for
simplicity.

B. Floquet quantum master equation
We now sketch out the derivation of a Floquet quantum master

equation for treating the dynamics of the system. The key quantity
of interest is the reduced density matrix of the system. Starting with
the quantum Liouville equation in the interaction picture, we find
that the total density matrix can be expressed as

dρ(t)
dt
= −

i
h̵
[HT(t), ρ(0)] −

1
h̵2∫

t

0
dt′[HT(t), [HT(t

′
), ρ(t′)]],

(11)
where

HT(t) = U+(t)HTU(t). (12)

Here, the time evolution operator U(t) is

U(t) = T̂ exp [−
i
h̵∫

t

0
dt′(HB +HS(t′))]

= T̂ exp [−
i
h̵∫

t

0
dt′(HB +Hmol + A sin (Ωt′)d+d)]

= exp (−i(HB +Hmol)t/h̵ − ig(t)d+d/h̵), (13)

where T̂ is the time ordering operator and g(t) = A
h̵Ω(1 − cos (Ωt)).

Note that we have used the fact that the time-dependent term
commutes with the system Hamiltonian. In the most general case,
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we need to diagonalize the time-dependent Hamiltonian using the
Floquet propagator. See Ref. 47.

In the Born–Markovian approximation, we replace ρ(t′) in
Eq. (11) by ρeq

B ⊗ ρS(t) in the integrand that relies on the assumptions
that the bath remains in equilibrium throughout the process and that
bath correlation functions decay fast on the system time scale. Note
that in the Born–Markovian approximation, it is assumed that the
bath correlation function decays much faster than the timescale of
electron transfer, which is mainly determined by Γ. Although elec-
tron transfer is related to periodic drivings, the Born–Markovian
approximation still holds in fast drivings. It should be noted that the
driving frequency Ω should satisfy h Ω≪ ∣εmax − εmin∣, where εmax
and εmin are band edges of the metal surface45 so that the Markovian
approximation is appropriate. This leads to (setting τ = t − t′)

dρ(t)
dt
= −

i
h̵
[HT(t), ρ(0)]

−
1
h̵2∫

∞

0
dτ[HT(t), [HT(t − τ), ρeq

B ⊗ ρS(t)]]. (14)

Next, we assume the initial total density matrix is a direct prod-
uct of the system density matrix and the equilibrium bath density
matrix, i.e., ρ(0) = ρeq

B ⊗ ρS(0), and take the trace of Eq. (11) over
bath degrees of freedom. We also use TrB(HT(t)ρ

eq
B ) = 0, which

yields48,49

dρS(t)
dt

= −
1
h̵2∫

∞

0
dτTrB[HT(t), [HT(t − τ), ρeq

B ⊗ ρS(t)]]. (15)

We then go back to Schrödinger picture, ρS(t) = eiHmoltρse−iHmolt .
We assume ρs = ρ0∣0⟩⟨0∣ + ρ1∣1⟩⟨1∣, which ensures that there will be
no coherence between occupied and unoccupied states at later time.
The reduced density matrix for state 0 (unoccupied) and state 1
(occupied) evolves as

dρ0

dt
= −i[H0, ρ0] −∑

k

∣Vk∣
2

h̵2

× ∫

∞

0
dτ[eiεkτ/h̵−i(g(t)−g(t−τ))/h̵ f (εk)e

−iH1τ/h̵eiH0τ/h̵ρ0

− eiεkτ/h̵−i(g(t)−g(t−τ))/h̵
(1 − f (εk))ρ1e−iH1τ/h̵eiH0τ/h̵

+ e−iεkτ/h̵+i(g(t)−g(t−τ))/h̵ f (εk)ρ0e−iH0τ/h̵eiH1τ/h̵

− e−iεkτ/h̵+i(g(t)−g(t−τ))/h̵
(1 − f (εk))e

−iH0τ/h̵eiH1τ/h̵ρ1], (16)

dρ1

dt
= −i[H1, ρ1] −∑

k

∣Vk∣
2

h̵2

× ∫

∞

0
dτ[e−iεkτ/h̵+i(g(t)−g(t−τ))/h̵

(1 − f (εk))e
−iH0τ/h̵eiH1τ/h̵ρ1

− e−iεkτ/h̵+i(g(t)−g(t−τ))/h̵ f (εk)ρ0e−iH0τ/h̵eiH1τ/h̵

+ eiεkτ/h̵−i(g(t)−g(t−τ))/h̵
(1 − f (εk))ρ1e−iH1τ/h̵eiH0τ/h̵

− eiεkτ/h̵−i(g(t)−g(t−τ))/h̵ f (εk)e
−iH1τ/h̵eiH0τ/h̵ρ0]. (17)

Here, f is the Fermi function ( f (x) = 1/(1 + eβx
)). By employing

the Jacobi–Anger expansion, we can express e−ig(t) as

e−ig(t)
= e−

i
h̵

A
Ω e

i
h̵

A
Ω cos (Ωt)

= e−
i
h̵

A
Ω

+∞

∑
n=−∞

(i)nJn(z)einΩt , (18)

where n is the integer, Jn(z) is the nth Bessel function of the first
kind, and z = A

h̵Ω . Thus, we can expand the term e−i(g(t)−g(t−τ))/h

appearing in Eqs. (16) and (17) as

e−i(g(t)−g(t−τ))/h̵
=∑

n,m
(i)n−mJn(z)Jm(z)ei(n−m)ΩteimΩτ. (19)

Substituting Eq. (18) into the time evolution operator in Eq. (13)
enables us to give out the time evolution operator in Floquet
representation.50,51

We now expand the reduced density matrix in a basis of
harmonic oscillator eigenstates (H0∣i⟩ = ε0(i)∣i⟩, H1∣i′⟩ = ε1(i′)∣i′⟩),

dρ0(i, j)
dt

= −
i
h̵
(ε0(i) − ε0( j))ρ0(i, j)

−
Γ

2h̵∑i′ ,k
f̃ (ε1(i′) − ε0(k))Fi→i′Fk→i′ρ0(k, j)

+
Γ

2h̵∑i′ ,j ′
(1 − f̃ ∗(ε1(j ′) − ε0( j)))Fi→i′F j→j ′ρ1(i′, j ′)

−
Γ

2h̵∑i′ ,k
ρ0(i, k)f̃ ∗(ε1(i′) − ε0(k))F j→i′Fk→i′

+
Γ

2h̵∑i′ ,j ′
ρ1(i′, j ′)(1 − f̃ (ε1(i′) − ε0(i)))Fi→i′F j→j ′ ,

(20)

dρ1(i′, j ′)
dt

= −
i
h̵
(ε1(i′) − ε1(j ′))ρ1(i′, j ′)

−
Γ

2h̵∑i,k′
(1 − f̃ ∗(ε1(k′) − ε0(i)))Fi→i′Fi→k′ρ1(k′, j ′)

+
Γ

2h̵∑i, j
f̃ (ε1(j ′) − ε0( j))Fi→i′F j→j ′ρ0(i, j)

−
Γ

2h̵∑i,k′
ρ1(i′, k′)(1 − f̃ (ε1(k′) − ε0(i)))Fi→j ′Fi→k′

+
Γ

2h̵∑i, j
ρ0(i, j)f̃ ∗(ε1(i′) − ε0(i))Fi→i′F j→j ′. (21)

The above-mentioned equations are referred to as our Floquet quan-
tum master equation (FQME). Here, ε0(i) = h̵ω(i + 1

2) and ε1(i′)
= h̵ω(i′ + 1

2) + Ed. Ed is the renormalized impurity energy level,

Ed ≡ Ed − Er , (22)

where Er ≡ g2
/h ω is the reorganization energy. F is the

Frank–Condon factor,

Fi→i′ = ⟨i
′
∣i⟩ = ∫ dxϕi′(x +

√
2λ)ϕi(x), λ ≡ g/h̵ω, (23)
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where ϕi(x) is the ith eigenfunction of the harmonic oscillator. The
Frank–Condon factor can be expressed as

Fi→i′ = (p!/Q!)1/2λQ−pe−λ2
/2LQ−p

p (λ2
)[sgn (i′ − i)]i−i′. (24)

p(Q) is the minimum (maximum) of i and i′, and Lm
n is a generalized

Laguerre polynomial. f̃ (x) in the above-mentioned equations is the
modified Fermi function with Floquet replicas, which is given by

f̃ (x) =∑
n,m
(i)n
(−i)mJn(z)Jm(z)ei(n−m)Ωt f (x −mΩ). (25)

Notice that f̃ (x) is a time-dependent complex number (f̃ (x)∗ is
its complex conjugate). When taking time average over a cycle, we
arrive at the time-independent modified Fermi function,

f̄ (x) =∑
n

Jn(z)2 f (x − nΩ). (26)

Finally, Γ in Eqs. (20) and (21) is the hybridization function,

Γ(ε) = 2π∑
k
∣Vk∣

2δ(εk − ε). (27)

In the wide band limit, we assume that Γ is a constant (i.e., does not
change with ε or x).

C. Floquet classical master equation
In the limit of kT > hω, we can treat the nuclear motion classi-

cally such that we will arrive at the Floquet classical master equation
(FCME). The FCME is obtained by taking the Wigner transform of
the FQME [Eqs. (20) and (21)], similar to the steps taken in Ref. 46,

∂P0(x, p)
∂t

=
∂H0(x, p)

∂x
∂P0(x, p)

∂p
−
∂H0(x, p)

∂p
∂P0(x, p)

∂x
− γ0→1P0(x, p) + γ1→0P1(x, p), (28)

∂P1(x, p)
∂t

=
∂H1(x, p)

∂x
∂P1(x, p)

∂p
−
∂H1(x, p)

∂p
∂P1(x, p)

∂x
+ γ0→1P0(x, p) − γ1→0P1(x, p), (29)

where

γ0→1(t) =
Γ
h̵
R(f̃ (ΔV)), (30)

γ1→0(t) =
Γ
h̵
(1 −R(f̃ (ΔV))), (31)

ΔV = H1 −H0 = Ed +

√
2Mω

h̵
gx. (32)

f̃ (ΔV) is given in Eq. (25). Note that only the real part of f̃ (ΔV) is
used for the hopping rate. As we can see from the above-mentioned
equations, the hopping rates here are time-dependent. When using
f̄ (ΔV) in Eq. (26), we can get the time-independent hopping rates
γ̄0→1 and γ̄1→0.

The Floquet CME is similar to the non-Floquet CME,46 except
that the Fermi function is modified with Floquet replicas. In the
non-Floquet CME, γ0→1 (γ1→0) is a real positive number and can
be interpreted as the hopping rates such that the detailed balance is
achieved. In the Floquet CME, however, the modified γ0→1 (γ1→0)

can be negative. Such negative valued rates will not result in hop-
ping events in our surface hopping (see our algorithm below). Still,
in the limit of fast driving (large Ω), we can take the time average
of the modified Fermi function such that γ̄0→1 (γ̄1→0) will become
real positive valued. Below, we will use a trajectories based surface
hopping algorithm to solve the Floquet CME.

D. Floquet surface hopping
As stated above, the Floquet CME is similar to the non-Floquet

CME in form, except the hopping rates have negative values. We
now introduce three surface hopping algorithms to solve the Floquet
CME:

(1) FSH: in FSH, we interpret the real positive part of γ0→1 as our
hopping rates and determine a hopping event from state ∣0⟩
to state ∣1⟩ based on ξ < γ0→1dt, where ξ is a random number
between 0 and 1, such that the negative valued hopping rates
will be automatically discarded. Similarly, a hopping event
from state ∣1⟩ to state ∣0⟩ is determined by ξ < γ1→0dt.

(2) FaSH: in FaSH, we take the time average of f̃ (ΔV) over a
cycle that becomes f̄ (ΔV) such that the hopping rates are
real valued and determine the hopping probability.

(3) FaSH-density: in FaSH-density, we use the time-averaged
f̄ (ΔV) as our hopping rates to propagate nuclear dynam-
ics as same as FasH. In addition, we propagate electron
density using Ṗ0 = −γ0→1P0 + γ1→0P1 and Ṗ1 = γ0→1P0(x, p)
− γ1→0P1(x, p). Here, γ0→1 and γ1→0 are non-time-averaged
such that we can capture the oscillation in a cycle for
electronic dynamics.

We initialize our nuclei in one well (the unoccupied electronic
state) with a Boltzmann distribution. Notice that the initial nuclei
temperature can be different from the electronic temperature such
that we can simulate the energy relaxation of the nuclear kinetic
energy. In the realistic calculation, we need to truncate for the hop-
ping rates. The Bessel function Jn(z) appearing in Eqs. (25) and (26)
decreases with the increase in n when fixing z; thus, we can choose
the largest n to confirm Jn(z)→ 0. For different z = A

Ω , we need to
choose a different number n to make sure the convergence of the
hopping rates. For Floquet surface hopping, we average the results
over 10 000 trajectories.

III. RESULTS
We now benchmark our trajectory based algorithms against

FQME for electronic population as well as nuclear kinetic energy.
We first look at the electronic population with periodic driving

as a function of time. In Fig. 1(a), we show the electronic pop-
ulation dynamics from FQME and FSH at different temperatures
(kT = 0.25, 0.5, 1). Here, we set the nuclear vibration frequency as
hω = 0.3. As expected, at high temperatures (kT > hω), FSH agrees

with the FQME very well, whereas at low temperatures, FSH shows
discrepancies as compared to FQME. A similar trend is observed for

J. Chem. Phys. 158, 224109 (2023); doi: 10.1063/5.0148418 158, 224109-4

Published under an exclusive license by AIP Publishing

D
ow

nloaded from
 http://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0148418/17983920/224109_1_5.0148418.pdf

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 1. The impurity electronic population as a function of time for (a) non-time-averaged FQME and FSH; (b) time-averaged FaQME and FaSH. Γ = 1, hω = 0.3, el–ph
coupling g = 0.75, and Ed = 0. The driving amplitude is A = 0.2, and the driving frequency is Ω = 0.2. Note that FSH and FaSH agree with the FQME and FaQME at high
temperatures. At time zero, the phonon is prepared to be equilibrated thermally at an unoccupied impurity level.

FaSH and FaQME as shown in Fig. 1(b): in the high temperature
limit, FaSH agrees with the FaQME very well. Notice that the time-
averaged Floquet results (FaSH or FaQME) do not show oscillations
and reach a steady state in the long time. The non-time-averaged
methods (FSH or FQME) do show the oscillations due to the non-
vanishing driving. In the long time, FSH or FQME reaches a cycle
limit instead of a steady state. The frequency of the oscillation in the
electronic population is equal to the frequency of the driving (we
have set Ω = 0.2).

To further verify our methods, we show the electronic popula-
tion and phonon relaxation dynamics as a function of time without
any Floquet driving in Fig. 2. In such a case, we expect that the
five algorithms (FQME, FSH, FaQME, FaSH, and FaSH-density)
should all agree with each other at high temperatures. Indeed,
for the case of kT > h ω (kT = 1 and hω = 0.3), the algorithms all
agree with each other for both electronic population [Fig. 2(a)] and
nuclear kinetic energy [Fig. 2(b)]. Obviously, without any Floquet

driving, both electronic population and nuclear kinetic energy reach
a steady state or an equilibrium state. Indeed, the steady-state kinetic
energy is Ek = 1/2kT and the electronic population is N = f (Ed).
Here, kT is the temperature of the electronic bath. Below, we will
mainly look at the high temperature limit where the classical nuclei
are valid.

In Fig. 3, we benchmark our algorithms for relatively small
driving amplitudes with different driving frequencies. Here, the
driving amplitude is A = 0.2, which is comparable to the nuclear fre-
quency (hω = 0.3). In such a case, all five methods agree with each
other regardless of the driving frequencies. That being said, the non-
time-averaged methods (FSH, FQME, and FaSH-density) do show
small oscillations in electronic dynamics. The steady states of elec-
tronic population and nuclear kinetics in this case are very close to
the equilibrium states with Ek = 1/2kT and N = f (Ed).

We now turn to the intermediate driving amplitude, where
we have set A = 1. In such a case, the five methods start to

FIG. 2. We show (a) the impurity elec-
tronic population and (b) the phonon
relaxation as a function of time without
Floquet engineering for the five methods,
i.e., FQME, FSH, FaQME, FaSH, and
FaSH-density. kT = 1, Γ = 1, hω = 0.3,
el–ph coupling g = 0.75, and Ed = −2.
Note that without Floquet engineering,
the five approaches show exactly the
same results.
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FIG. 3. (a) The impurity electronic population as a function of time under a small strength of driving amplitude that is comparable with the nuclear oscillator (A = 0.2) with
three degrees of driving frequencies (Ω = 0.2, 1, and 10). kT = 1, Γ = 1, hω = 0.3, el–ph coupling g = 0.75, and Ed = −2. The five methods, i.e., FQME, FSH, FaQME,
FaSH, and FaSH-density, are put together for comparison. Note that at small strength of the drivings, the five methods give nearly the same feature of electronic and nuclear
dynamics as that in Fig. 2, regardless of the driving frequencies.

show deviations, as shown in Fig. 4. For smaller driving frequen-
cies (e.g., Ω = 0.5), the oscillation feature from the FQME and
FSH becomes stronger in both electronic population and nuclear
dynamics, whereas FaSH and FaQME miss the feature completely.

FaSH-density shows oscillation in electronic dynamics and fails to
reproduce the feature in nuclear dynamics. For a slightly larger driv-
ing frequency (Ω = 1 or 10), the oscillation feature becomes weaker.
However, FSH starts to show deviations in the steady state at a very

FIG. 4. (a) The impurity electronic population as a function of time under a medium strong driving amplitude (A = 1) with three degrees of driving frequencies
(Ω = 0.5, 1, and 10). kT = 1, Γ = 1, h ω = 0.3, el–ph coupling g = 0.75, and Ed = −2. We compare the five methods, i.e., FQME, FSH, FaQME, FaSH, and FaSH-
density, for intermediate driving amplitudes. Note that the time-averaged FaQME and FaSH cannot capture the oscillation feature in both electronic and nuclear dynamics,
especially under slow and medium quick drivings (Ω = 0.5 or Ω = 1). FSH does not obey the detailed balance, resulting in a higher effective temperature at a large driving
frequency (Ω = 10). The FaSH-density method enables us to capture the oscillation feature in electronic dynamics and results in the correct effective temperature at
large Ω.
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large driving frequency (Ω = 10), where the kinetic energy is higher
than the results from FQME (and others). Consequently, the elec-
tronic population from FSH is smaller than the results from other
methods. This deviation under quick drivings is mainly derived from
disregarding the negative part of the hopping rate in the FSH algo-
rithm, which violates the detailed balance. As a result, the effective
temperature of the system from FSH is higher than the true effective
temperature from other methods. Note also that the true effective
temperature is slightly different from the equilibrium temperature.
This is due to the effects of the driving.

Finally, we show the case of a very strong driving amplitude
(A = 4) in Fig. 5. In such a case, the oscillation feature becomes
very strong, particularly for small driving amplitudes. Again, FSH
works very well at small driving frequencies but fails to produce
the steady states of electronic population and nuclear kinetic energy
at large driving frequencies. FaSH misses all oscillation features at
small driving frequencies but does reach correct steady states. FaSH-
density performs the best, working at both small driving frequencies
and large driving frequencies.

Overall, we propose three Floquet surface hopping algorithms
that are appropriate in the high temperature limit (kT > hω). The
FaSH method works well in fast drivings ( A

h̵Ω is small), while fails in
slow drivings ( A

h̵Ω is large) due to the time average. The FSH method
works well in slow drivings, while it fails in fast drivings due to its
negative hopping rates. The FaSH-density method is appropriate for
all kinds of drivings.

IV. CONCLUSIONS
In summary, we derived the Floquet quantum master equa-

tion to study the dynamics of a periodically driven system near a
metal surface. At the high temperature limit, the FQME reduces to a
FCME. We proposed three surface hopping algorithms (FSH, FaSH,
and FaSH-density) to solve the FCME. In the limit of small driv-
ing frequencies, FSH works very well, capturing the full dynamics
for both electronic population and nuclear kinetic energy as being
benchmarked against FQME. At large driving frequencies, FSH fails
to produce the correct steady states. This is due to the fact that we
throw out the negative hopping rates in FSH. The FaSH works well
at large driving frequencies but fails to reproduce the oscillation fea-
tures at small driving frequencies. The FaSH-density performs the
best, which reproduces the full electronic dynamics at small and
large driving frequencies and reaches the correct steady states for
nuclear motion. In the future, we will go beyond the one level case
and study the multiple-level case in the molecule near metal sur-
faces and under periodic driving such that we will need to embed a
Floquet quantum–classical Liouville equation (FQCLE) into a CME.
Such work is under investigation.47
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