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ABSTRACT
In the previous study Wang and Dou [J. Chem. Phys. 158, 224109 (2023)], we have derived a Floquet classical master equation (FCME) to
treat nonadiabatic dynamics near metal surfaces under Floquet engineering. We have also proposed a trajectory surface hopping algorithm to
solve the FCME. In this study, we map the FCME into a Floquet Fokker–Planck equation in the limit of fast Floquet driving and fast electron
motion as compared to nuclear motion. The Fokker–Planck equation is then being solved using Langevin dynamics with explicit friction
and random force from the nonadiabatic effects of hybridized electrons and Floquet states. We benchmark the Floquet electronic friction
dynamics against Floquet quantum master equation and Floquet surface hopping. We find that Floquet driving results in a violation of the
second fluctuation–dissipation theorem, which further gives rise to heating effects.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0161292

I. INTRODUCTION

Floquet engineering is referred to as controlling the quantum
systems with time-periodic external fields, which can give rise to var-
ious phenomena in the limit of the strong field regime.1,2 To model
the system under Floquet engineering, we employ a periodic Hamil-
tonian, H(t + T) = H(t). Here, T is the periodicity (T = 2π/Ω),
and Ω is the driving frequency.3,4 Recently, Floquet engineering
is been realized by strong light–matter interactions.5–9 The strong
light–matter interactions can result in the hybrid states, termed
polaritonic states. Recent studies show that polaritons strongly
modify photophysical and photochemical processes, including the
enhancement of vibrational energy transfer,10–12 maximizing super-
conducting current,13 reducing energy losses in photovoltaics,14,15

tilting the ground-state reactivity landscape,16–18 etc.
The problem we are concerned with in this study is the Floquet

engineered nonadiabatic (electron transfer and vibrational relax-
ation) processes at the molecule–metal interface. Actually, Floquet
driving on the system can be mapped onto the case of driving on a

metal surface.19,20 Therefore, the methods in this study can be widely
used in the plasmon-assisted chemistry,21 such as water splitting22–24

and the reduction of carbon dioxide.25–27 In addition, our meth-
ods can be used in the field of surface-enhanced Raman scattering
(SERS) for biological and chemical sensing applications.28,29 In our
previous work,30 we have derived a Floquet classical master equa-
tion (FCME) to describe Floquet engineered nonadiabatic dynam-
ics near metal surfaces. We have also proposed a Floquet surface
hopping (FSH) algorithm to solve the FCME, where we evolve tra-
jectories on the potential energy surfaces (PESs) with stochastic
hopping between different PESs. The hopping rates are determined
by the Floquet replicas modified molecule–metal interactions. This
method is valid when two conditions are met: (1) high temperature
limit (hω≪ kT) so that the nuclear motion can be treated classi-
cally; and (2) weak molecule–metal coupling (Γ≪ kT) so that the
effect of molecular level broadening can be disregarded. We have
also benchmarked our FSH algorithm, where FSH agrees with the
FQME well as long as the nuclei can be treated classically regard-
less of the driving amplitude and driving frequency. Note that the
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advantage of the FCME over the FQME is that the FCME can be
easily applied to many nuclear degrees of freedom with anharmonic
potentials.

In this paper, we show that in the limit of strong
molecule–metal coupling (hω≪ Γ) and fast Floquet driving (hω
≪ hΩ) as compared to nuclear motion, indeed, these regimes are
very relevant to the application of plasmonic chemistry.24,31 The
FCME can be mapped onto a Floquet Fokker–Planck (FFP) equation
with Floquet replicas, modified damping force, and random force.
This FFP equation can be then solved easily by Langevin dynam-
ics with explicit Floquet electronic friction (FEF). It is known that
electronic friction theory has widely been implemented in nonadia-
batic processes on metal surfaces.32–34 Here, we benchmark the FEF
against the FQME and FSH for electronic population and nuclear
kinetic energy dynamics under different Floquet driving amplitudes
(A) and frequencies (Ω). We find that FEF fails to capture the
oscillation feature caused by Floquet driving at small driving fre-
quencies. By contrast, FEF agrees well with the FQME and FSH
under fast Floquet drivings regardless of driving amplitudes. We fur-
ther observe that the violation of the second fluctuation–dissipation
theorem induced by Floquet driving leads to the heating effect of
nuclear motion, especially under strong driving amplitude.

The structure of this paper is organized as follows: In Sec. II, we
show the derivation of the FFP equation from the FCME. In Sec. III,
we benchmark the dynamics for electronic population as well as
nuclear kinetic energy from the FFP equation against the FQME and
FSH methods. Finally, we conclude in Sec. IV.

II. THEORY
A. Floquet classical master equation (FCME)

We start from the Anderson–Holstein (AH) model with the
periodic drivings acting on the impurity energy level (molecule),
which is coupled both to a vibrational degree of freedom (DoF) and
a continuum of electronic states,

Ĥ = ĤS + ĤB + ĤT , (1)

ĤS = (E(x) + A sin (Ωt))d+d + V0(x) +
p2

2M
, (2)

ĤB =∑
k

εkc+k ck, (3)

ĤT =∑
k

Vk(d+ck + c+k d), (4)

Here d(d+) and ck(c+k ) are the annihilation (creation) operators
for an electron in the impurity (subsystem) and in the continuum
(bath), E(x) is the on-site energy for the impurity that depends
on nuclear position. V0(x) is the diabatic potential energy surface
(PES) for the unoccupied state. We can further define the diabatic
PES for the (time-independent) occupied state as V1(x) = V0(x)
+ E(x). The periodic driving acts on the impurity energy level with
a driving amplitude A and a driving frequency Ω. Without loss of
generality, we assume that V0(x) is taken the form of a harmonic
oscillator

V0(x) =
1
2

Mω2x2. (5)

In the FCME, we define the classical phase space probability
densities P0(x, p, t)(P1(x, p, t)) for the nuclear DoFs with the impu-
rity level being unoccupied (occupied). The time evolution of phase
space probability densities is given by30

∂P0(x, p, t)
∂t

= ∂V0(x)
∂x

∂P0(x, p, t)
∂p

− p
M

∂P0(x, p, t)
∂x

− γ0→1(t)P0(x, p, t) + γ1→0(t)P1(x, p, t), (6)

∂P1(x, p, t)
∂t

= ∂V1(x)
∂x

∂P1(x, p, t)
∂p

− p
M

∂P1(x, p, t)
∂x

+ γ0→1(t)P0(x, p, t) − γ1→0(t)P1(x, p, t), (7)

where

γ0→1(t) =
Γ
h̵

f̃ (E(x)), (8)

γ1→0(t) =
Γ
h̵
(1 − f̃ (E(x))), (9)

Here, f̃ (E(x)) is the modified Fermi function with Floquet replicas,
which is given by

f̃ (E(x)) =∑
nm

cos{(n −m)(Ωt + π/2)}

× Jn(z)Jm(z)
1

1 + eβ(E(x)−mΩ) , (10)

where n, m are integers ranging from −∞ to +∞. Jn(z) is the n-th
Bessel function of the first kind with z = A

h̵Ω .
In the limit of fast driving, we can perform the time average on

f̃ (E(x)), such that we arrive at a time-independent ¯̃f (E(x))

¯̃f (E(x)) =∑
n
∣Jn(z)∣2

1
1 + eβ(E(x)−nΩ) (11)

Correspondingly, time-averaged hopping rate γ̄0→1(γ̄1→0) is also
time-independent. Here, Γ is the hybridization function given by

Γ(ε) = 2π∑
k
∣Vk∣2δ(εk − ε). (12)

In the wide band limit, we can assume that Γ is a constant (i.e.,
does not change with ε or x). Note that the driving frequency
Ω and the Γ should satisfy hΩ, Γ≪ ∣εmax − εmin∣, where εmax and
εmin are band edges of the metal surface,19 to meet the wide band
approximation.

The equation of motion for the phase space densities in this
FCME can be solved via a Floquet surface hopping algorithm
in real time, which is denoted as the Floquet averaged surface
hopping with density (FaSH-density) algorithm. In short, in the
FaSH-density algorithm, we use time-averaged γ̄0→1(γ̄1→0) as the
hopping rates to propagate nuclear dynamics, whereas we use
time-dependent hopping rate to propagate electronic dynamics via
Ṗ0 = −γ0→1P0 + γ1→0P1 and Ṗ1 = γ0→1P0 − γ1→0P1. The electronic
population is then calculated using P0 and P1. See Ref. 30 for
details. For simplicity, we use FSH to refer to FaSH-density in the
following.
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B. Floquet Fokker–Planck equation (FFP)
We now map the Floquet CME into a Floquet FP equation

with explicit electronic friction and random force. To do so, we first
define new densities A(x, p, t) and B(x, p, t) as (similar to Ref. 35)

P0(x, p, t) = (1− ¯̃f (E(x)))A(x, p, t) + B(x, p, t), (13)

P1(x, p, t) = ¯̃f (E(x))A(x, p, t) − B(x, p, t). (14)

Note that A(x, p, t) = P0(x, p, t) + P1(x, p, t), which is the total prob-
ability density. When the electronic motion and Floquet driving are
very fast, the phase space densities P0 and P1 will be very close to
equilibrium densities (1− ¯̃f (E(x)))A and ¯̃f (E(x))A, respectively.
Such that B(x, p, t) can be seen as the nonadiabatic phase space
density.

The time evolution of A(x, p, t) can be obtained by plugging
Eqs. (13) and (14) into Eqs. (6) and (7),

∂A(x, p, t)
∂t

= − p
M

∂A(x, p, t)
∂x

+ (∂V0(x)
∂x

+ d(E(x))
dx

¯̃f )

× ∂A(x, p, t)
∂p

− d(E(x))
dx

∂B(x, p, t)
∂p

(15)

The time evolution of B(x, p, t) = ¯̃f (E(x))P0(x, p, t) − (1
− ¯̃f (E(x)))P1(x, p, t) can be formulated as

∂B(x, p, t)
∂t

= − p
M

∂B(x, p, t)
∂x

+ ∂V0(x)
∂x

∂B(x, p, t)
∂p

+ p
M

A(x, p, t)∂
¯̃f

∂x
− d(E(x))

dx
¯̃f (1− ¯̃f )∂A(x, p, t)

∂p

+ d(E(x))
dx

(1− ¯̃f )∂B(x, p, t)
∂p

− ΓB(x, p, t) − Γ(f̃ − ¯̃f )A. (16)

Note that we only invoked the fast driving approximation (Ω > ω),
so far, such that Eqs. (15) and (16) are exact as long as FCME is valid.
We now invoke the assumption of fast electronic motion as com-
pared to nuclear motion (Γ > hω). In such a limit, the phase space
densities are very close to equilibrium densities. Hence, B(x, p, t)
should be small relative to A(x, p, t) and change slowly with respect
to x, p, and t. Such that several terms in Eq. (16) can be ignored,

B(x, p, t) ≈ −d(E(x))
dx

1
Γ

¯̃f (1− ¯̃f )∂A(x, p, t)
∂p

+ p
ΓM

A(x, p, t)∂
¯̃f

∂x
− (f̃ − ¯̃f )A. (17)

If we substitute Eq. (17) back into Eq. (15), we arrive at a FFP
equation with a periodic driving system,

∂A(x, p, t)
∂t

= − p
M

∂A(x, p, t)
∂x

+ ∂U(x, t)
∂x

∂A(x, p, t)
∂p

+ γe(x)
∂

∂p
(pA(x, p, t)) +D(x)∂

2A(x, p, t)
∂p2 . (18)

FIG. 1. Diabatic potential V0 [Eq. (5), yellow dash line] and V1 (blue dash line),
time-averaged potential of mean force (aPMF) Ū(x) [Eq. (23), gray solid line],
electronic friction γe(x) [Eq. (19), red solid line], and γ′e(x) [Eq. (20), green solid
line] as a function of position x under different driving amplitudes A and driving
frequencies Ω. g = 0.75, hω = 0.3, Γ = 1, Ed = −2, kT = 1.

Here, γe(x) is the electronic friction coefficient,

γe(x) = −
1

ΓM
dE(x)

dx
∂ ¯̃f
∂x

. (19)

The correlation function of the random force is D(x) = γ′e(x)MkT.
We have defined γ′e(x) as

γ′e(x) =
β

ΓM
(dE(x)

dx
)

2
¯̃f (1− ¯̃f ) (20)

and ∂U(x,t)
∂x is the time-dependent mean force

∂U(x, t)
∂x

= h̵ωx + d(E(x))
dx

f̃ . (21)

We can write the time-dependent potential of mean force (PMF)
U(x, t) explicitly as (up to a constant),

U(x, t) = 1
2

h̵ωx2 − 1
β∑nm

cos{(n −m)(Ωt + π/2)}

× Jn(z)Jm(z) log (1 + exp (−β(E(x) −mΩ)) (22)

If we further invoke the time average on the PMF, we arrive at the
time-averaged PMF (aPMF) as

Ū(x) = 1
2

Mωx2 − 1
β∑n

∣Jn(z)∣2 log (1 + exp (−β(E(x) − nΩ)).

(23)
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FIG. 2. Electronic population and nuclear kinetic energy as a function of time for different Γ. The driving amplitude and frequency are fixed A = 1 and Ω = 10. We prepare an
initial state satisfying the Boltzmann distribution at temperature 2T . Note that FEF(FEF-force) agrees well with FSH in the limit of Γ≫ hω. Parameters: g = 0.75, hω = 0.3,
Γ = 1, Ed = −2, and kT = 1.

FIG. 3. Electronic population and nuclear kinetic energy as a function of time for different driving frequencies (Ω = 0.2, 1, and 10) under a small driving amplitude A = 0.2.
g = 0.75, hω = 0.3, Γ = 1, Ed = −2, and kT = 1. Note that the four methods (FQME, FSH, FEF-force, and FEF) give nearly the same features of dynamics under small
strength of drivings.

This FFP can be solved via Floquet electronic friction-Langevin
dynamics either with time-dependent potential energy surface
U(x, t) (FEF-force), or with time-independent Ū(x) (FEF)

ṗ = −∂U
∂x
− γep + ξ, (24)

ẋ = p
M

, (25)

where ξ is the random force that is assumed to be a Gaussian variable
with a norm σ =

√
2Mγ′ekT/dt. Again, dt is the time step interval.

We use fourth Runge–Kutta to integrate Eqs. (24) and (25), and
10000 trajectories are used for both FSH and FEF simulations.

Equations (18)–(23) are the main results of this paper. To better
understand these formulas, E(x) is chosen to be a linear dependence
on x,

E(x) =
√

2gx + Ed. (26)

We define the renormalized energy as Ēd ≡ Ed − Er , where
Er = g2/hω is the reorganization energy. In Fig. 1, we plot the aPMF
Ū(x) [Eq. (23)], electronic friction γe(x) [Eq. (19)], and γ′e(x)
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FIG. 4. Electronic population and nuclear kinetic energy as a function of time for different driving frequencies (Ω = 0.5, 1, and 10) under a medium strength of driving
amplitude A = 1. g = 0.75, hω = 0.3, Γ = 1, Ed = −2, and kT = 1. Note that the FEF method using time-independent aPMF fails to capture the oscillation feature introduced
by the drivings at small driving frequencies (Ω = 0.5 or 1).

[Eq. (20)] as a function of x under different driving conditions. It
is noteworthy that when driving amplitude (A = 1 or 4) is much
larger than nuclear oscillation (hω = 0.3), γe ≠ γ′e = D(x)

MkT , which vio-
lates the second fluctuation–dissipation theorem. The heating effects
on nuclear motion arise from such violations as seen in the Results
section. The code is available online.36

III. RESULTS
First, we compare the electronic and nuclear dynamics between

Floquet surface hopping and Floquet electronic friction meth-
ods. In Floquet electronic friction, we could either use the time-
dependent PMF (denoted as FEF-force) or the time-independent
aPMF (denoted as FEF). In Fig. 2, we benchmark these Floquet
electronic friction methods for different Γ. We fix the driving ampli-
tude A = 1 and driving frequency Ω = 10 and prepare the initial
states of the oscillators in one well with a Boltzmann distribution
at temperature 2T. Similar to the non-Floquet case,35 the poten-
tial of mean force is a mixture of two diabatic potentials of energy
surfaces (PESs), such that the initial (t = 0) electronic popula-
tions from FEF are not equal to 1. In the long time dynamics of
the electronic population, Floquet electronic friction agrees with
Floquet surface hopping very well. As for the nuclear dynamics,
when electronic motion is fast (large Γ), we reach good agree-
ments between Floquet surface hopping and Floquet electronic
friction. As expected, Floquet electronic friction fails in the slow elec-
tronic motion limit (small Γ). Below, we mainly focus on the large
Γ limit.

We now benchmark the FEF and FSH against the Floquet quan-
tum master equation (FQME). The FQME is exact as long as the
broadening effects from the lead can be ignored Γ < kT. Details on
FQME can be found in Ref. 30.

In Fig. 3, we benchmark the Floquet electronic friction method
under relatively small driving amplitude (A = 0.2), which is compa-
rable to the nuclear oscillation (hω = 0.3). In such a case, all these
four methods nearly agree with each other regardless of the driv-
ing frequencies. Note that under small driving frequency (Ω = 0.2),
electronic dynamics reach to a limit cycle, instead of a steady state,
which can be reflected by the FQME, FSH, and FEF-force. The FEF
method fails to reproduce this limit cycle feature since we average
the time-dependent PMF. Under large driving frequency (Ω = 10),
the electronic populations reach a steady state of N = ¯̃f (Ēd), and
nuclear kinetic energy reaches a steady state of kT

2 , where T is the
temperature of the metal bath.

We now turn to the case of medium strength in driving ampli-
tude (A = 1), as shown in Fig. 4. The oscillation feature from
the FQME, FSH, and FEF-force under small driving frequencies
(Ω = 0.5, 1) is more pronounced than the small driving amplitude
case (Fig. 3), which reaches a cycle limit in a long time. Note that
FEF-force gives smaller oscillation feature for electronic popula-
tion in the limit cycle as compared to the FQME, whereas the FEF
method fails to capture these oscillations. In the limit of high driving
frequency (Ω = 10), all these methods reach the same steady state
for both electronic and nuclear dynamics.

Finally, we show the case where the driving amplitude is rela-
tively large (A = 4) in Fig. 5. In this limit, the oscillation feature is
very strong, especially when the driving frequency is small. Again,
FEF fails to capture these oscillation features when the driving is
slow. FEF-force predicts the oscillator features with a smaller oscil-
lating amplitude. It is noteworthy that under such strong driving
amplitude, the nuclear kinetic energies reach a steady state above kT

2 .
This violation of the second fluctuation–dissipation theorem is due
to the Floquet driving, as shown in Fig. 1. Such a nonequilibrium
condition gives rise to the heating effect of nuclear motion.
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FIG. 5. Electronic population and nuclear kinetic energy as a function of time for different driving frequencies (Ω = 0.5, 1, and 10) under a strong driving amplitude A = 4.
g = 0.75, hω = 0.3, Γ = 1, Ed = −2, and kT = 1. FEF fails to capture the oscillation features when the driving is slow (Ω = 0.5 or 1). FEF-force predicts the oscillator features
with smaller oscillating amplitude. The effective temperature of nuclear motion is above kT

2
, which arises from the violation of the second fluctuation–dissipation theorem.

IV. CONCLUSIONS
In this paper, we derived a Floquet Fokker–Planck equation

(FFP) to characterize the Floquet classical master equation (FCME)
in the limit of slow nuclear motion as compared to fast electronic
motion as well as fast external driving (Γ≫ hω and hΩ≫ hω).
The FFP can be solved using Langevin dynamics with explicit Flo-
quet replicas, modified electronic friction, and random force. By
employing time-dependent and time-averaged mean force, we pro-
posed two FEF methods in this study, which agree well with the
FQME and FSH under fast Floquet drivings regardless of driving
amplitudes. We find that Floquet driving leads to a violation of
the second fluctuation–dissipation theorem, especially under large
driving amplitudes. which gives rise to a heating effect on nuclear
motion. Our method offers an alternative means to study non-
adiabatic dynamics with periodic drivings in an open quantum
system.
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