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ABSTRACT
Simulating dynamics of open quantum systems is sometimes a significant challenge, despite the availability of various exact or approximate
methods. Particularly when dealing with complex systems, the huge computational cost will largely limit the applicability of these methods. In
this work, we investigate the usage of dynamic mode decomposition (DMD) to evaluate the rate kernels in quantum rate processes. DMD is a
data-driven model reduction technique that characterizes the rate kernels using snapshots collected from a small time window, allowing us to
predict the long-term behaviors with only a limited number of samples. Our investigations show that whether the external field is involved or
not, the DMD can give accurate prediction of the result compared with the traditional propagations, and simultaneously reduce the required
computational cost.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0170512

I. INTRODUCTION

Dynamic mode decomposition (DMD) was introduced by
Schmid1 in fluid dynamics to study spatio-temporal coherent struc-
tures from high-dimensional data. Built upon the proper orthog-
onal decomposition (POD) and the singular value decomposition
(SVD), DMD method aims to efficiently reduce the dimensional-
ity of complex systems. Different from the original POD or SVD
which disregards the temporal information, DMD offers a modal
decomposition method which not only achieves the dimensional-
ity reduction but also produces the dynamical behaviors of these
modes. Shortly after the initial development of the DMD algorithm,1
Rowley, Mezic, and their collaborators established the connection
between the DMD and the Koopman’s theory.2 Seeking to iden-
tify the most suitable temporal frequencies and spatial modes,3
DMD essentially serves as an approximation to the Koopman’s oper-
ator which governs the dynamics of a high-dimensional system.
Using the linear DMD framework to study nonlinear dynami-
cal systems has attracted a lot of research interest over the past
years.4 Recently, DMD has emerged as a versatile algorithm for
the data-driven characterization of high-dimensional systems. This

algorithm is applicable to both experimental and numerical data,
and combines the advantageous features of the SVD for spatial
dimensionality reduction and the Fast Fourier Transform (FFT)
for identifying temporal frequencies.4,5 Consequently, each DMD
mode corresponds to a distinct eigenvalue λ = a + ib, wherein b
denotes the oscillation frequency and a represents the rate of growth
or decay.

It is a natural and attractive idea to use the DMD method
for simulating dynamics of complex quantum systems, since DMD
does provide real-time and real space information. Note that DMD
has been used in real-time time-dependent density functional the-
ory (TDDFT) calculations.6 As known, simulating open quantum
systems is a significant challenge, despite the availability various
exact or approximate methods, such as the quantum jump opera-
tor method,7 the quantum master equation,8–15 the quantum ran-
dom walk method,16 the quantum Monte Carlo method,17–19 the
machine learning time-local generators,20 and the dissipaton equa-
tion of motion (DEOM).21–24 The DEOM serves as the benchmark
method exploited in this work, which is the second quantization
generalization of the well-known hierarchical equations of motion
(HEOM).10,25–36 Employing the linear space algebra, DEOM enables
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the utilization of the Nakajima-Zwanzig projection operator tech-
nique. This technique allows for a focus on the dynamics of specific
subspaces and the construction of non-Markovian rate kernels.9,37,38

However, when dealing with complex systems, the huge computa-
tional cost will largely limit the applicability of these methods. For
example, the computational bottleneck emerges when calculating
the non-Markovian rate kernels in DEOM simulations, especially
for large systems at low temperatures. To overcome this shortcom-
ing, we use the DMD algorithm to compute snapshots of non-
Markovian rate kernels within short span of time and subsequently
predict the rate kernel information for the entire time window. This
approach significantly reduces the computational resource required
for simulating the quantum rate processes.

The remainder of this paper is organized as follows. Section II
provides an overview of the theoretical framework of the DMD
method, followed by the introduction of the Hamiltonian for the
electron transfer system, as well as the rate kernels. In Sec. III, we
present the numerical results for the rate kernels, population or
coherence dynamics, exemplified with the non-Markovian processes
in both the time-independent and the Floquet scenarios. Finally, we
summarize our paper in Sec. IV.

II. THEORY
A. Dynamic mode decomposition

In this section, we provide a concise overview of the funda-
mental principles underlying the DMD technique, as well as the
numerical procedures for implementing this method.

DMD is a data-driven technique to extract significant spatial
modes and temporal frequencies from a nonlinear dynamical sys-
tem to reduce the large number of degrees of freedom.1,4,39,40 The
extracted modes and frequencies are then used to predict the future
states of the nonlinear system. To be more explicit, let us consider
a dynamical system governed by the following nonlinear ordinary
differential equation:

dx(t)
dt
= f(x(t), t), t ≥ 0. (1)

Here, x(t) ∶= [x1(t), x2(t), . . . , xn(t)]T ∈ Cn is the time-dependent
state variable, and f : Cn ⊗R+ → Cn is a nonlinear function of x and
time t. Here, x(t) is the observable of interest, which can be our rate
kernels as shown below. The overall goal of DMD is to identify a col-
lection of time-independent spatial modes ϕ1, ϕ2, . . . , ϕk alongside a
set of temporal frequencies ω1, ω2, . . . , ωk to approximate x(t):

x(t) ≈
r

∑
ℓ=1

βℓϕℓeiωℓt , (2)

where βℓ is a set of coefficients and r is the rank (which is relatively
small). In practice, the trajectory x(t) is not known before solving
Eq. (1). We now explain how to obtain the most significant values of
ϕi and ωi from a limited number of snapshots (or samples) of x(t)
that we can solve.

To obtain the dynamic modes ϕℓ and their corresponding fre-
quencies ωℓ, we first map the trajectories of the nonlinear dynamics
to a linear system, which can be characterized easily through a spec-
tral decomposition of the linear operator. This strategy is referred
to as Koopman theory.2,41–46 To be more explicit, a scalar observable

g(x(t))within a small time interval (Δt > 0) for a dynamical system
described by Eq. (1) can be characterized as

g(x(t + Δt)) = KΔtg(x(t)). (3)

Here, KΔt is a linear operator that is independent of both the time
parameter and the choice of the observable function g. In general,
KΔt is an infinite-dimensional linear operator that has an infi-
nite number of eigenvalues {λi} and eigenfunctions {φi(x)} satisfy
φi(x(t + Δt)) = KΔtφi(x(t)) = λiφi(x(t)). If a set of n observable
functions g j(x(t)), j = 1, 2, . . . , n is contained in such an invariant
subspace of KΔt , then there are vectors ν1, ν2, . . . , νn ∈ Cn, such that

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g1(x(t))
g2(x(t))
⋅
⋅
⋅

gn(x(t))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= [ν1 ν2 ⋅ ⋅ ⋅ νn]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ1(x(t))
φ2(x(t))
⋅
⋅
⋅

φn(x(t))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4)

Here φ1(x), . . . , φn(x) and λ1, . . . , λn are the eigenfunctions and
eigenvalues of KΔt that span a subspace with n ∈ N+ the dimen-
sion. Thus, the expansion of the observable function in Eq. (4) can
be thought of as a change of basis into eigenfunction coordinates.

In particular, if g j(x(t)) is the jth component of x(t), i.e.,
g j(x(t)) = xj(t), we have

x(t + Δt)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

KΔtx1(t)
KΔtx2(t)
⋅
⋅
⋅

KΔtxn(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= [λ1ν1 λ2ν2 ⋅ ⋅ ⋅ λnνn]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ1(x(t))
φ2(x(t))
⋅
⋅
⋅

φn(x(t))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= Ax(t),

(5)

Here, we have defined

A = [λ1ν1 λ2ν2 ⋅ ⋅ ⋅ λnνn][ν1 ν2 ⋅ ⋅ ⋅ νn]
†
∈ Cn×n, (6)

where (⋅)† denotes the Moore-Penrose pseudoinverse. As a result,
the dynamical system of x(t) is completely governed by A, which
is the main object of interest. Notice that the Koopman operator
KΔt is not known in advance. Below, we offer the procedures to
approximate A.

Suppose we have a sample of predetermined snapshots of x(t),
we can approximate A using these snapshots. We take the uniformly
distributed samples at ti = t1 + (i − 1)Δt (where i = 1, . . . , m), such
that the snapshots are represented as xi = x(ti). We then determine
A by minimizing the Frobenius norm of R(A), which is defined as

R(A) = AX1 −X2. (7)
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Here, X1 = (x1x2 . . . xm−1) and X2 = (x2x3 . . . xm). The least squares
solution to minA∥R(A)∥F (where ∥ ⋅ ∥F denotes the Frobenius
norm) is

A = X2X†
1. (8)

The pseudoinverse X†
1 can be obtained from the singular value

decomposition (SVD)47 of X1, i.e.

X1 = UΣV∗, (9)

with U ∈ Cn×n, Σ ∈ Cn×m, V ∈ Cm×m and (⋅)∗ denotes the conjugate
transpose. Here we have U∗U = I and V∗V = I.

In many cases, singular values on the diagonal of Σ decay
rapidly, such that the rank of Σ is small compared to the dimen-
sion of the X1, i.e. r ≪ min{n, m}. We can then define the projection
matrices:

Ũ = U(:, 1 : r), Σ̃ = Σ(1 : r, 1 : r), Ṽ = V(:, 1 : r). (10)

Using the projection matrices, we can map original A matrix into a
r-rank matrix Ã:

Ã = Ũ∗AŨ ≈ Ũ∗X2ṼΣ̃−1Ũ∗Ũ = Ũ∗X2ṼΣ̃−1. (11)

We have used the low-rank approximation in the above equation,
i.e. X1 ≈ ŨΣ̃Ṽ∗.

To proceed, we solve the eigenvalue problem of the reduced
matrix:

ÃW =WΛ, (12)

where Λ is the eigenvalue matrix,

Λ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1

. . .

λr

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

(13)

and matrix W is the corresponding eigenvectors. To further repre-
sent the dynamical system in the form of Eq. (2), we can redefine the
eigenvalue matrix:

Ω = ln Λ
Δt
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

iωDMD
1

. . .

iωDMD
r

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (14)

where ωDMD
l = − i ln λℓ

Δt , for ℓ = 1, . . . , r. In addition, to obtain spectral
modes in the original state space of Cn, we perform the following
transformation:

Φ = X2ṼΣ̃−1W. (15)

where the columns of Φ are referred to as the DMD modes. Such
that the dynamical system x can be approximated by:

x(t) ≈ Φ exp (Ωt)b =
r

∑
ℓ=1

ϕℓ exp (iωDMD
ℓ t)bℓ. (16)

The amplitude vector b in the above equation is left to be deter-
mined. There are two approaches to calculate b. The first approach
determines b directly by taking the projection of the initial value x1
onto the DMD modes using the matrix Φ†:

b = Φ†x1, (17)

Alternatively, b can be computed as the least squares fit of the
approximated DMD modes on the sampled trajectories. To be
more explicit, we minimize the difference between the expression
Φ exp (Ωt j)b and the observed data xj over a set of m sampled time
points.

b = arg min b̃∈Cn

m

∑
i=1
∥Φ exp (Ωti)b̃ − xi∥2

l2 , (18)

where ∥ ⋅ ∥l2 denotes the standard Euclidean norm of a vector.
The description of the DMD procedure indicates that the

primary computational expense arises from the SVD calculation
described in Eq. (9), with a complexity of O(min(m2n, nm2)). Note
that DMD does not require knowledge of the underlying dynam-
ics given by the function f(x(t), t) in Eq. (1). Instead, DMD utilizes
data from the initial time steps and predicts the future states of the
system. Additionally, DMD reduces the computational cost by pro-
jecting the n-dimensional space into r-dimensional subspace. Thus,
this method is useful for analyzing nonlinear or high-dimensional
dynamical systems.

B. Model Hamiltonian
In this subsection, we introduce the electron transfer system

that will be used in the following sections. Let us consider a donor-
bridge-acceptor system for electron transfer, whose Hamiltonian
reads,48

HT = hD∣D⟩⟨D∣ + (E○ + hA)∣A⟩⟨A∣ +HB

+ V({q̃k})(∣D⟩⟨A∣ + ∣A⟩⟨D∣). (19)

Here, E○ represents the standard reaction Gibbs energy for the
electron transfer process from the donor state (∣D⟩) to the accep-
tor state (∣A⟩). The donor state and the acceptor state are each
influenced by their respective solvent environments, hD and hA.
Specifically, hD can be described as hD = ∑ j

ω j
2 (p

2
j + x2

j), while hA is
given by hA = ∑ j

ω j
2 [p

2
j + (x j − d j)2]. In Eq. (19), V({q̃k}) depends

on the coordinates of the bridge, and the Hamiltonian for the fluc-
tuating bridges can be expressed as HB = ∑k

ω̃k
2 (p̃

2
k + q̃2

k). Initially,
the total density operator can be represented as ρT(t0) = ∣D⟩⟨D∣⊗
(e−βhD/ tre−βhD)⊗ (e−βHB/ tre−βHB), which denotes the thermal equi-
librium in the donor state, with β = 1/(kBT) being the inverse
temperature.

We also consider the presence of external periodic driving,
which is referred to as the Floquet scenario. In this case,

E○ → E(t) = E○ + ε cos Ωt, (20)

with ε being the driving amplitude and Ω the driving frequency.
The Hamiltonian in Eq. (19) can be decomposed into the

system and the environment as follows:48

HT = HS + hE − ∣A⟩⟨A∣δÛ − Q̂δV̂ (21)
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Here hE = hD +HB is the Hamiltonian for the environment, Q̂ is
defined as Q̂ = ∣D⟩⟨A∣ + ∣A⟩⟨D∣, and the system Hamiltonian is
given by

HS = (E○ + ε cos Ωt + λ)∣A⟩⟨A∣ + ⟨V⟩B(∣D⟩⟨A∣ + ∣A⟩⟨D∣). (22)

In Eqs. (21) and (22), δÛ ≡ Û − ⟨Û⟩D with Û ≡ hA − hD and ⟨Û⟩D
≡ trD(Ûe−βhD)/trD(e−βhD), whereas δV̂ ≡ ⟨V⟩B − V({q̃k}) = ∑k c̃k

q̃k with ⟨V⟩B ≡ trB(Ve−βHB)/trB(e−βHB).
In the simulations, we incorporate the spectral densi-

ties, JD(ω) ≡ (1/2)∫ ∞−∞dteiωt⟨[δÛ(t), δÛ(0)]⟩D and JB(ω) ≡ (1/2)
∫ ∞−∞dteiωt⟨[δV̂(t), δV̂(0)]⟩B, as49–51

JD(ω) =
2λγω

ω2 + γ2 (23)

and

JB(ω) =
2λ′ω2

0ζω
(ω2 − ω2

0)2 + ω2ζ2 , (24)

respectively.

C. Rate kernel calculation
In this subsection, we present the DEOM of the rate kernels.

From a theoretical perspective, it is possible to precisely construct
the generalized rate equation as

ṖD(t) = −∫
t

0
dτk(t − τ; t)PD(τ) + ∫

t

0
dτk′(t − τ; t)PA(τ). (25)

Here, PD(t) and PA(t) denote the populations of the donor and
acceptor, respectively. Here, we employ the forward and backward
rate memory kernels, k(τ; t) and k′(τ; t), in the rate equation. τ
is the memory time scale, capturing the non-Markovian nature of
the system. Note that t in k(τ; t) and k′(τ; t) represents the time
dependence of the rate kernels due to the presence of an external
field. These rate kernels are regularly calculated and examined to
investigate the memory effect in rate processes.38,52–55

The rate kernels are constructed using the generalized master
equation.38 Based on the composite Hamiltonian in Eq. (19), the
DEOM can be expressed as

ρ̇(t) = −iL(t)ρ(t). (26)

This equation is similar to the time evolution equation for the total
system, ρ̇T = −iLT(t)ρT, despite that the total Liouvillian LT(t) is
mapped to the DEOM-space dynamics generator L(t), and the total
density matrix ρT(t) is mapped to the DEOM density matrix ρ(t)
= {ρ(n)n (t); n = 0, 1, 2, . . .}. Here, LT(t) ≡ [HT(t), ⋅]. To proceed, we
define the projection operators in DEOM space, P and Q = I −P,
to separate ρ into its population and coherence components:38

Pρ(t) = {∑
a

ρ(0)aa (t)∣a⟩⟨a∣; 0, 0, ⋅ ⋅ ⋅} ≡ p(t)

Qρ(t) =
⎧⎪⎪⎨⎪⎪⎩
∑
a≠b

ρ(0)ab (t)∣a⟩⟨b∣; ρ(n>0)
n (t)

⎫⎪⎪⎬⎪⎪⎭
≡ σ(t).

(27)

We can now express the DEOM in Eq. (26) in a different form by
using the following matrix representation:

⎡⎢⎢⎢⎢⎢⎣

ṗ(t)
σ̇(t)

⎤⎥⎥⎥⎥⎥⎦
= −i
⎡⎢⎢⎢⎢⎢⎣

PL(t)P PL(t)Q
QL(t)P QL(t)Q

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

p(t)
σ(t)

⎤⎥⎥⎥⎥⎥⎦
. (28)

Similar to the procedure in Nakajima–Zwanzig equation,38,56,57 we
can obtain the equation of motion for p(t) as follows:

ṗ(t) = ∫
t

0
dτK̃(t − τ; t)p(τ), (29)

where the rate kernel K̃(t − τ; t) can be expressed as:38

K̃(t − τ; t) = −PL(t)QU(t, τ)QL(τ)P. (30)

In Eq. (31), we define the time-evolution operator U(t, τ) as:

U(t, τ) ≡ exp+[−i∫
t

τ
dτ′L(τ′)]. (31)

It is worth noting that −k(t − τ; t) and k′(t − τ; t) in Eq. (25) corre-
spond to the ∣D⟩⟨D∣→ ∣D⟩⟨D∣ and ∣A⟩⟨A∣→ ∣D⟩⟨D∣ components
of K̃(t − τ; t), respectively.

III. RESULTS AND DISCUSSIONS
A. Population rate without driving

If the system is time-independent, the forward and backward
rate memory kernels, k(t − τ; t) and k′(t − τ; t), in Eq. (25) can

FIG. 1. The rate kernels kDD/AD(t) (upper panel) and their Fourier transformations
kDD/AD(ω) (lower panel), obtained through three methods: snapshots, DEOM, and
DMD. kDD(t) and kAD(t) represent the rate kernels from the donor to the donor
and the acceptor to the donor, respectively. Snapshots are obtained by sampling
DEOM from 0 ≤ t ≤ 1.5. This study utilizes a total of 150 snapshots. To ensure
graph clarity, the snapshots are plotted every ten intervals. Based on the snap-
shots, DMD predicts kernels of the same length as DEOM. In reality, DMD has the
capability to predict for any future time. However, for visualization purposes, the
results are plotted only up to t = 6. The spectral density is represented by JD(ω).
HS is defined as σx + σz , where σ refers to the Pauli matrices. The time step is
dt = 0.01. Additionally, we have λ = 1, γ = ω0 = ζ = 1 in our model. And we have
kept r = 8 in the DMD calculations for both kDD and kAD.
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be simplified as kDD(t − τ) and kAD(t − τ), respectively, due to the
time–translation invariance. We first obtain a small number of snap-
shots of the rate kernels calculated by DEOM. Then the DMD is used
to predict the remaining part based on these snapshots, as depicted
in upper panel of Fig. 1.

Without an external field, we observe that both rate kernels
kDD(t) and kAD(t) decrease to a value that slightly below zero, fol-
lowed by an increase to a value slightly above zero, until ultimately
approaching to zero. We see that DMD can accurately predict the
rate kernels for short and long time, which agree with DEOM results
completely. In lower panel of Fig. 1, we plot the Fourier transfor-
mation of the rate kernels. Notice that the spectral function of rate
kernels predicted by the DMD is more accurate than that obtained
directly from Fourier transform of the short time DEOM results,
especially near ω = 0. This is due to the fact that DMD provides accu-
rate dynamics in longer time, which results in precise spectra near
ω = 0.

FIG. 2. The population of the donor, PD(t), is computed using the kernels depicted
in Fig. 1 and Eq. (25). All the parameters used are identical to those in Fig. 1.

As a validation, we use the rate kernels namely kDD(t) and
kAD(t) obtained through the DMD to calculate donor population
PD(t) by Eq. (25). We also plot PD(t) obtained directly from DEOM
calculation as a benchmark in Fig. 2. In the DMD calculation, we

FIG. 3. The rate kernels kDD/AD(t) (upper panel) and their Fourier transformations kDD/AD(ω) (lower panel), obtained through three methods: snapshots, DEOM, and DMD. td
is the decay time of the kernels. ts is the selected time of the snapshots, which is also the difference between subgraphs (a)–(d). kDD(t) and kAD(t) represent the rate kernels
from the donor to the donor and the acceptor to the donor, respectively. Snapshots are obtained by sampling DEOM from 0 ≤ t ≤ ts and the time step is dt = 0.01. To ensure
graph clarity, the snapshots are plotted every ten intervals. The fewer snapshots used, the more inaccurate the DMD prediction results. When ts = 0.4, DMD is significantly
ineffective. The spectral density is represented by JD(ω). HS is defined as σx + σz , where σ refers to the Pauli matrices. Additionally, we have λ = 1, γ = ω0 = ζ = 1 in our
model. And we have r = 8, 6, 6, 4 in the DMD calculation for subgraphs (a)–(d) respectively.
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have used 150 snapshots with dt = 0.01. We can see that DMD
results agree with DEOM results perfectly. The DMD accuracy can
be further enhanced if the number of snapshots are increased and the
value of dt is decreased. Importantly, note that only a small number
of snapshots for a short time of the rate kernels are required in DMD,
such that DMD significantly reduces the overall computation cost.

In order to explore the efficiency limit of DMD, we selected
different numbers of snapshots for the same calculations as Figs. 1
and 2. The results are shown in Figs. 3 and 4 with subgraphs (a)–(d)
where td is the decay time of the kernels and ts is the selected time
of the snapshots. In Fig. 3, we can see that the fewer snapshots used,
the more inaccurate the DMD prediction results. Especially, when
ts = 0.4, DMD is significantly ineffective. In Fig. 3, we can more
clearly observe the deterioration process of DMD from the perspec-
tive of the population as the number of snapshots decreases. In some
cases such as ts = 1.0 or ts = 0.6, DMD predicts longer-term evolu-
tion well when stable patterns exist. However, at ts = 0.4, the DMD
results fail completely, while at this moment, the kernel information
covered by snapshots has lost crucial turning points. Now we can
say that the number of snapshots cannot be continuously reduced,
because to improve prediction accuracy, although snapshots need
not extend to the scale of decay, they must encompass the essential
information of the kernel. After all, DMD learns from data without
a detailed model.

TABLE I. The efficiency of DMD compared to DEOM tested on one Mac M1 chip.
The first column is the calculation time termination for kernels. The second column
shows the proportion of improvement in computational efficiency by DMD compared
to DEOM calculation and speed up = (timeDMD/timeDEOM) ∗ 100%. DMD calcula-
tion adopts ts = 0.6. Considering fair comparison, timeDMD used here includes the
time of the generation of snapshots.

t (a.u.) Speed up (%)

1.50 32.1
2.90 46.3
20.0 70.5
100 78.7

To put a number on how efficient DMD calculations are, we
calculate the proportion of improvement in computational effi-
ciency by DMD compared to DEOM calculation tested on one Mac
M1 chip as shown in Table I. For this example, DMD calculation
adopts ts = 0.6 and speed up = (timeDMD/timeDEOM) ∗ 100%. Con-
sidering fair comparison, timeDMD used here includes the time of the
generation of snapshots. We can see that the longer the calculation
time of the kernels, the greater the improvement in computational
efficiency by DMD, from 32.1% saved when t = 1.5 to 78.7% saved
when t = 100.

FIG. 4. The population of the donor, PD(t), is computed using the kernels depicted in Fig. 3 and Eq. (25). All the parameters used are identical to those in Fig. 3. As
the number of snapshots used decreases, the population of the donor obtained by DMD becomes increasingly inaccurate. When ts = 0.4, the DMD results have become
significantly invalid.
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Additionally, DMD is capable of predicting observables for
any future time. In other word, DMD doesn’t require costly
time-stepping computations, leading to higher efficiency.

B. Population rate with Floquet driving
If the system is Floquet-driven, the forward and backward rate

memory kernels in Eq. (25) will satisfy

k(t − τ; t + T0) = k(t − τ; t), (32)

k′(t − τ; t + T0) = k′(t − τ; t). (33)

Here, T0 = 2π/Ω is the period of the Floquet driving [cf. Eq. (20)].
We use kDD and kAD to denote the rate kernel from donor to donor
k and acceptor to donor k′, respectively. Obviously, kDD(τ; t) and
kAD(τ; t) have two independent variables, τ and t. Due to the
periodicity of the rate kernels, we perform a Fourier expansion on t,

kDD/AD(τ; t) =
∞
∑

n=−∞
kDD/AD

n (τ)einΩt. (34)

Here, the Fourier component {kDD/AD
n (τ)} is given by

kDD/AD
n (τ) = 1

T0
∫

T0

0
dtkDD/AD(τ; t)einΩt. (35)

FIG. 5. The Fourier expansion terms of the kernel from donor to donor kDD
n and

n = 0, 1, 2, 3, obtained by three methods: snapshots, DEOM and DMD. Among
them, snapshots are obtained by sampling of DEOM, and DMD predicts kernels
of the same length as DEOM based on the snapshots. The spectral densities
are JD(ω) and JB(ω), dt = 0.01, and the number of snapshots is 150. Besides,
ε = 2, Ω = 4, E○ = 1.5, λ = λ′ = 0.2 and γ = ω0 = ζ = 1. We have
r = 32, 16, 19, 23 in the DMD calculations for n = 0, 1, 2, 3 respectively.

Since the Fourier component approaches zero rapidly with increas-
ing n, we only need to compute finite number of the Fourier
components. Also, due to the symmetry kDD/AD

n (τ) = kDD/AD
−n (τ)∗,

we only need to calculate Fourier components with n ≥ 0.
We use JD(ω) in Eq. (23) and JB(ω) in Eq. (24) as spectral

densities in the DEOM calculation and the initial state is on the
donor. We utilize DMD to predict the Fourier components kDD

n (τ)
and kAD

n (τ) based on the snapshots sampled from DEOM results
as shown in Figs. 5 and 6, respectively. As we can see, unlike in
the time-independent scenario, in the case where n is non-zero,
the Fourier expansion terms of the rate kernels exhibit oscillation
in both the real and imaginary parts. Furthermore, with increas-
ing n, the magnitudes of the Fourier components decrease rapidly,
ultimately converging to zero. Notice that even we do not sample
kn(τ) until convergence to zero, DMD can accurately predict long
time behavior. This is due to the fact that the temporal frequen-
cies and spatial modes can be extracted efficiently from the short
time dynamics, such that DMD can predict future results with suffi-
ciently small error. In our example, we have used only the snapshots
within the range 0 ≤ t ≤ 1.5 with dt = 0.01. Still, the predicted results
obtained using DMD are nearly identical to those obtained using
DEOM. This greatly reduces the overall amount of computation
time.

To further verify our prediction, we substitute the values of
kDD/AD

n (τ) obtained using DMD in Figs. 5 and 6 back into the rate

FIG. 6. The Fourier expansion terms of the kernel from acceptor to donor kAD
n

and n = 0, 1, 2, 3, obtained by three methods: snapshots, DEOM and DMD, with
the same parameters used in Fig. 5. We have r = 30, 22, 19, 24 in the DMD
calculations for n = 0, 1, 2, 3 respectively.
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FIG. 7. The population of the donor PD(t) calculated using the kernels shown in
Figs. 5 and 6 together with Eqs. (34) and (25). All the parameters are the same as
those used in Fig. 5.

kernels [in Eq. (34)] and solve for donor population PD(t) [using
Eq. (25)]. The results are illustrated in Fig. 7. Under the influence
of Floquet driving, PD(t) reaches to a limit cycle instead of a steady
state. The period of the limit cycle is equal to the period of the driving
frequency. This proves that DMD can even predict long time behav-
ior that is not a steady state. The accuracy of predicting the period of
this oscillation mainly depends on the accuracy of DMD in predict-
ing the imaginary part of kDD/AD

n (τ), which jointly determines the
range of ultimate convergence along with the real part of kDD/AD

n (τ).

C. Density matrix evolution
In both Secs. III A and III B, we obtain PD(t) by integrat-

ing only the rate kennels. In this subsection, we utilize DMD to
predict the complete kernel tensor K(t) and evolve the reduced

FIG. 8. The elements of kernel tensors for KDD[i, j] (left column) and KAA[i, j]
(right column) obtained by three methods: snapshots, DEOM and DMD.
KDD/AA[i, j] represents the i-th row and j-th column position of KDD/AA at every
timestep. All the parameters in our model are the same as those used in
Fig. 1. Additionally, in the DMD calculations, we have r = 11 for KDD[i, j] and
r = 15, 14, 10 for KAA[0, 0], Re KAA[0, 1], and Im KAA[0, 1].

density matrix ρ(t) to obtain PD(t) and coherence evolution simul-
taneously. From Nakajima-Zwanzig formulation,56,57 the equation
of motion for the reduced density operator reads

ρ̇(t) = −i[HS, ρ(t)] + ∫
t

0
dτK(t − τ)ρ(t), (36)

where ρ(t) is a 2-by-2 matrix that represents the reduced density
operator for the donor and acceptor:

ρ(t) =
⎡⎢⎢⎢⎢⎢⎣

ρDD(t) ρDA(t)
ρAD(t) ρAA(t)

⎤⎥⎥⎥⎥⎥⎦
, (37)

and K(t) is the projected memory kernel.
Here, ρij(t) satisfies ρDD + ρAA = 1 and ρDA = ρ∗AD. As a result,

by denoting Ki j[k, l] ≡ ⟨⟨kl∣K∣i j⟩⟩, we have K ij[D, D] = −K ij[A, A]
and Ki j[D, A] = K∗ji[A, D]. Therefore, we only need to calculate
K ij[0, 0] ≡ K ij[D, D] and K ij[0, 1] ≡ K ij[D, A] in our simulations.
We have used the Liouville-space projection operator approach in
DEOM to calculate the memory kernels.38

As a example, we use the same time-independent system as
in Sec. III A. We obtain 150 snapshots of the kernel tensors with
dt = 0.01, calculated by DEOM using the spectral density JD(ω)
in Eq. (23) and the initial state is on the donor. We predict the

FIG. 9. The elements of kernel tensor for KDA[i, j] (left column) and KAD[i, j] (right
column) obtained by three methods: snapshots, DEOM and DMD, with the same
parameters in our model used in Fig. 1. Additionally, in the DMD calculations, we
have r = 7, 10, 22, 9 for Re KDA[0, 0], Im KDA[0, 0], Re KDA[0, 1], Im KDA[0, 1]
and r = 7, 10, 20, 7 for Re KDA[0, 0], Im KDA[0, 0], Re KDA[0, 1], Im KDA[0, 1],
respectively.
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kernels using DMD based on these snapshots as shown in Figs. 8
and 9. For all kernel tensors K ij[k, l](t), we see the DMD predic-
tion agrees well with the DEOM calculation for both the real part
and the imaginary part. We then assemble these kernel tensors into
the generalized master Eq. (36) to calculate the time evolution of
the density matrix. We plot the coherence ρDA(t) in Fig. 10 and the
donor population ρDD(t) in Fig. 11. Note that the coherence is com-
plex and DMD predicts both the real part and the imaginary part
very well. In particular, the time-scale required for the imaginary
part of the coherence approaching zero is the so-called decoherence
time, which is captured well by DMD. Note that we have used the
same parameters in Figs. 11 and 2, and the results are identical. Dif-
ferent from the generalized master equation, the rate kernels do not
require the information of coherence. Nevertheless, the rate kernel
methods give identical results as the generalized master equation.

FIG. 10. The coherence between donor and acceptor obtained by DEOM and DMD
using the kernel tensors in Figs. 8 and 9 together with Eq. (36), with the same
parameters used in Fig. 1.

FIG. 11. The population of the donor PD(t) obtained by DEOM and DMD, with the
same parameters used in Fig. 1.

IV. CONCLUSIONS
To summarize, in this work, we exploit the DMD method

to investigate the rate kernels in the simulation of open quantum
systems. Traditional numerical methods to obtain the rate ker-
nels involve solving coupled two-time nonlinear integral differential
equations, which results in high memory requirement and large
computational cost. In contrast, the data-driven DMD method only
depends on a small sampled set of the numerical solutions, and
can be easily applied through the truncated SVD decomposition.
Our numerical results on the rate kernels of open quantum sys-
tems show that the DMD successfully captures the major dynamical
modes and the frequencies of rate kernels, whether the external field
is involved or not. Not limited to the specific forms of spectral den-
sity used in this article, DEOM can be used to describe arbitrary
spectral density and anharmonic system potential as well. In addi-
tion, DEOM can be used to study Anderson model (one type of
strong correlation model). DEOM can be very expensive to study the
dynamics of Anderson model, especially in very low temperature,
while DMD approach can be used to significantly reduce the com-
putational cost in this case and this work is on-going. We anticipate
that the DMD would become a useful tool for simulating dynamics
of open quantum systems.
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