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Periodically driven open quantum systems with vibronic interaction:
Resonance effects and vibrationally mediated decoupling
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Periodic driving and Floquet engineering have emerged as invaluable tools for controlling and uncovering
novel phenomena in quantum systems. In this study, we adopt these methods to manipulate nonequilibrium
processes within electronic-vibronic open quantum systems. Through resonance mechanisms and by focusing
on the limit-cycle dynamics and quantum thermodynamic properties, we illustrate the intricate interplay between
the driving field and vibronic states and its overall influence on the electronic system. Specifically, we observe
an effective decoupling of the electronic system from the periodic driving at specific frequencies, a phenomenon
that is mediated by the vibrational mode interaction. Additionally, we engineer the driving field to obtain a
partial removal of the Franck-Condon blockade. These insights hold promise for efficient charge current control.
Our results are obtained from numerically exact calculations of the hierarchical equations of motion and further
analyzed by a time-periodic master-equation approach.
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I. INTRODUCTION

The idea to realize functional devices based on open quan-
tum systems with time-dependently controlled parameters
was established by Alicki and Kosloff [1,2]. Among various
applications, high-efficiency energy converters are particu-
larly targeted [3–5]. Even though the theoretical description is
challenging, various model systems have been considered in
this context [3,6–15]. Typical investigations considered spe-
cific models that obey an exact solution [16–19] or applied
additional approximations. Examples of such approxima-
tions are a weak system-environment coupling approximation
[20–23], the limit of a slow variation of the parameters with
time [24–29], the opposite limit of a fast change of the pa-
rameters with time [25,30], or the regime of linear response
[8,31]. Moreover, the time periodicity was utilized via the
Floquet formalism to focus on the operation of the system
at the limit of long times [7,20,24,25,32,33]. Electronic-
vibrationally interacting systems, in particular, have been
studied in the context of autonomous driving without external
control [34–36], under the influence of an AC bias voltage
[37–39], with an optical driving field [40–42], and with a
time-dependent electronic state energy [21].

In this paper, we employ the numerically exact hierar-
chical equations of motion (HEOM) approach [43–46] to
describe the dynamics of periodically driven open quantum
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systems with electronic-vibrational interaction. Thereby, we
employ our previously introduced framework [47] for the
intriguing case of periodic driving. Such periodic protocols
are of particular importance for the replication of conven-
tional thermodynamic cycles in quantum systems. We, thus,
turn towards electronic-vibrationally interacting systems as
functional devices under out-of-equilibrium conditions. We
emphasize that the HEOM approach is applicable for a
wide range of driving frequencies and can resolve both the
short- as well as the long-time dynamics induced by the
driving. Here, we limit the periodic driving to the energy
of the electronic state, which can be realized by an exter-
nally controlled gate voltage. However, the approach can be
straightforwardly extended to more time-dependent param-
eters without physical limitations. We find that observables
such as the induced power, electronic population, and charge
current show strong resonance effects when the driving fre-
quency equals an integer multiple of the vibrational frequency.
In particular, we observe a resonance mechanism in which the
vibrational mode counteracts the effect of external driving on
the electronic system. Moreover, external driving can trigger a
removal of the Franck-Condon blockade. These insights hold
promise for efficient charge current control. A comparison
of the results of the HEOM method and the Floquet quan-
tum master equation yields qualitative agreement. Overall, we
demonstrate the power of using HEOM to study dynamics
and thermodynamics for open quantum systems subjected to
time-dependent driving.

The paper is organized as follows: In Sec. II, we present
the details of the periodically driven model, and we briefly
introduce both the HEOM approach and the Floquet quantum
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FIG. 1. Sketch of the model consisting of a periodically driven
electronic state interacting with a single vibrational mode and two
electronic reservoirs. The vibrational mode is further coupled to a
vibrational heat bath.

master equation induced by a periodic driving field. We also
introduce definitions for the description of the driving-induced
dynamics. Then, in Sec. III, the periodically driven electronic-
vibrationally interacting system is examined, where the effects
of bias voltages and vibrational relaxation are added layer by
layer. Finally, we conclude in Sec. IV.

II. MODEL AND METHODS

A. Model

We consider the archetypal electronic-vibrational transport
model with the inclusion of an external periodic driving field,
as sketched in Fig. 1. Using units with h̄ = kB = 1, the Hamil-
tonian reads as

H = εd (t )d†d + λ(a† + a)d†d + �a†a

+
∑
kα

νkα (c†
kα

d + d† ckα
) +

∑
kα

εkα
c†

kα
ckα

+ (a† + a)
∑

j

ξ j (b
†
j + b j ) +

∑
j

ω jb
†
jb j

+ (a† + a)2
∑

j

ξ 2
j

ω j
. (1)

Here, the system part of the Hamiltonian consists of an
electronic state with an externally controlled energy εd (t ), a
harmonic mode with frequency �, and an adiabatic coupling
of the electronic state to the harmonic mode with coupling
strength λ. Both the electronic state and the harmonic mode
are addressed by their creation (annihilation) operator d† (d )
and a† (a). The externally controlled electronic state energy

is further assumed to obey a sinusoidal time dependence
εd (t ) = ε0 + ADsin(�Dt ), where AD denotes the amplitude of
the driving field and �D characterizes the driving frequency.
The system part of the Hamiltonian can, in principle, be diag-
onalized via the small polaron transformation [48], where the
electronic-vibrational interaction results in the renormalized
electronic energy

ε̄d (t ) ≡ εd (t ) − λ2

�
. (2)

It is noted, however, that the polaron transformation is not
used in the HEOM or quantum master-equation (QME)
method.

Electronic transport through the system is introduced by
two macroscopic electron reservoirs acting as electron sources
and drains. When isolated, both electron reservoirs, α ∈
{L, R}, are characterized by their chemical potential μα and
temperature Tα . Microscopically the electron reservoirs are
described by electronic states with an energy εkα , which are
addressed by the corresponding creation (annihilation) op-
erators c†

kα
(ckα

). The collective influence of each electronic
reservoir is further characterized by its spectral density

	α (ε) = 2π
∑

k

|νkα|2δ(ε − εkα ) = 	α

D2
α

D2
α + (ε − μα )2

.

(3)

Here, 	α denotes the coupling strength of the electronic
reservoir and Dα the bandwidth of the Lorentzian-shaped
spectral density. In the following, we effectively investigate
wide bands by the choice of Dα = 30 eV and assume sym-
metrically coupled reservoirs with 	L = 	R = 	

2 .
The environment also introduces vibrational relaxation to

the system. The macroscopic heat bath with temperature T
is microscopically characterized by a continuum of mutually
independent harmonic modes, where the jth mode has a fre-
quency ω j , the creation (annihilation) operator b†

j (b j ), and
the coupling strengths ξ j . The collective influence of the mi-
croscopic vibrational modes is specified by the Ohmic spectral
density

�(ω) = π
∑

j

|ξ j |2δ(ω − ω j ) = �
ω

�

ω2
c

ω2
c + ω2

. (4)

Here, the � denotes the collective coupling strength and ωc

is the cutoff frequency of the Lorentzian cutoff. Throughout
this paper, we choose ωc = �. Furthermore, the last term in
Eq. (1) counteracts the renormalization of the harmonic oscil-
lator frequency induced by the coupling to the environment
[49,50].

B. Hierarchical equations of motion (HEOM) method

In the following, we present the most important steps of
the derivation of the numerically exact HEOM approach for
the model under investigation. Thereby, we closely follow
Refs. [51] and [46]. More detailed derivations are presented
in Refs. [43,45].

The derivation of the HEOM is based on the system-
environment partitioning [see Eq. (1)]. The central quantity of
the approach is the reduced density matrix ρ(t ) of the system,
where the bath degrees of freedom are traced out. The influ-
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ence of the environment on the system dynamics is taken into
account by the Feynman-Vernon influence functional without
approximations. For our model Hamiltonian, all information
about system-environment coupling is completely encoded in
the two-time correlation functions of the free environments

C̃(t − τ ) =
∑

j

|ξ j |2〈b†
j (t )b j (τ ) + b j (t )b†

j (τ )〉, (5a)

Cs
α (t − τ ) =

∑
k

|νkα|2〈cs
kα (t )cs̄

kα (τ )
〉
, (5b)

which are determined by the spectral densities

C̃(t ) =
∫ ∞

0
dω

�(ω)

π

[
coth

(
βω

2

)
cos(ωt ) − i sin(ωt )

]
,

(6a)

Cs
α (t ) = 1

2π

∫ ∞

−∞
dε esiεt	α (ε) f [s(ε − μα )]. (6b)

Here, f (ε) = [exp(βε) + 1]−1 denotes the Fermi-Dirac
distribution function and β = T −1 the inverse temperature
(with kB = 1). Furthermore, the notations c+ ≡ c†, c− ≡ c,
and s̄ ≡ −s are employed. To derive a closed set of equa-
tions of motion within the HEOM formalism, all correlation
functions are expressed by sums over exponentials [45].
To this end, the Fermi, as well as the Bose distribution,
are represented by sum-over-poles schemes employing Padé
decompositions [52–54]. Recently, more advanced represen-
tations have been presented extending the applicability of the
approach [55,56]. Accordingly, the correlation functions of
the free baths are given by

C̃(t ) = �

pmax∑
p=0

η̃pe−γ̃pt , (7a)

Cs
α (t ) = 	α

qmax∑
q=0

ηα,qe−γα,s,qt . (7b)

Therefore, one obtains the HEOM in the form of

∂

∂t
ρ

(m|n)
g|h = −

(
iLS +

m∑
l=1

γ̃gl +
n∑

l=1

γhl

)
ρ

(m|n)
g|h

−
∑

hx

Ahx ρ
(m|n+1)
g|h+

x
−

n∑
l=1

(−1)lChl ρ
(m|n−1)
g|h−

l

+
∑

gx

Bgx ρ
(m+1|n)
g+

x |h +
m∑

l=1

Dgl ρ
(m−1|n)
g−

l |h , (8)

with the multi-indices g = (p) and h = (α, s, q), the notation
for the multi-index vectors v = v1 . . . vp, v+

x = v1 . . . vpvx,
and v−

l = v1 . . . vl−1vl+1 . . . vp, and the operator LSO =
[HS(t ), O]. In addition, the superoperators Ah, Ch, Bg, and Dg

read as

Ahρ
(m|n)
g|h = 	αh

(
dshρ

(m|n)
g|h + (−1)(n)ρ

(m|n)
g|h dsh

)
, (9a)

Bgρ
(m|n)
g|h = �

[
(a† + a), ρ (m|n)

g|h
]
, (9b)

Chρ
(m|n)
g|h = (−1)nηhds̄hρ

(m|n)
g|h − η∗̄

hρ
(m|n)
g|h ds̄h , (9c)

Dgρ
(m|n)
g|h = η̃g(a† + a)ρ (m|n)

g|h − η̃∗
gρ

(m|n)
g|h (a† + a). (9d)

Due to system-environment interaction, these superoperators
couple the different levels of the hierarchy.

Here, ρ (0|0) ≡ ρ represents the reduced density matrix and
ρ

(m|n)
g|h (n + m > 0) denote auxiliary density matrices, which

describe environment-related observables such as the charge
current

Iα = −e

〈
dNα

dt

〉
= e 	α

∑
hα

shTr
{
ds̄hα ρ

(0|1)
|hα

}
. (10)

In the following, we consider the symmetrized charge current
through the system defined by I = IL−IR

2 .
The importance of the auxiliary density operators to the

system dynamics is estimated by assigning them the impor-
tance values [46,57]

I
(
ρ

(m|n)
g|h

)
=

∣∣∣∣∣
n∏

l=1

	∑
a∈{1...l} Re[γha ]

ηhl

Re[γhl ]

∣∣∣∣∣
×

∣∣∣∣∣
m∏

l=1

�∑
a∈{1...l} Re[γga ]

ηgl

Re[γgl ]

∣∣∣∣∣. (11)

In the calculations presented in this paper, the results are
quantitatively converged for truncation of the hierarchy at
level m = 2 and n = 2, neglecting auxiliary density operators
having an importance value smaller than 10−9.

C. Time-periodic Born-Markov quantum master equation

Next, we present the time-periodic Born-Markov quantum
master equation (QME) to the system above while excluding
the vibrational relaxation, i.e., � = 0. More details about the
derivation of the QME can be found in Ref. [58]. In this
Floquet QME formalism, the reduced density matrix of the
system is represented by

ρ0 = Trel{ρdd†}, (12a)

ρ1 = Trel{ρd†d}, (12b)

where ρ0 and ρ1 denote the reduced density matrix with the
system electronic level being unoccupied (state 0) and occu-
pied (state 1), respectively. In the limit of weak system-bath
couplings, the reduced density matrices evolve as

dρ0

dt
= −i[h0, ρ0] −

∑
k

|νk|2
∫ ∞

0
dτ

× [eiεkτ−i[g(t )−g(t−τ )] f (εk )e−ih1τ eih0τ ρ0

− eiεkτ−i[g(t )−g(t−τ )][1 − f (εk )]ρ1e−ih1τ eih0τ

+ e−iεkτ+i[g(t )−g(t−τ )] f (εk )ρ0e−ih0τ eih1τ

− e−iεkτ+i[g(t )−g(t−τ )][1 − f (εk )]e−ih0τ eih1τ ρ1], (13)

dρ1

dt
= −i[h1, ρ1] −

∑
k

|νk|2
∫ ∞

0
dτ

× [e−iεkτ+i[g(t )−g(t−τ )][1 − f (εk )]e−ih0τ eih1τ ρ1

− e−iεkτ+i[g(t )−g(t−τ )] f (εk )ρ0e−ih0τ eih1τ

+ eiεkτ−i[g(t )−g(t−τ )][1 − f (εk )]ρ1e−ih1τ eih0τ

− eiεkτ−i[g(t )−g(t−τ )] f (εk )e−ih1τ eih0τ ρ0]. (14)
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Here, we used the time-independent part of the system Hamil-
tonian HS = h0dd† + h1d†d and introduced g(t ) = AD

�D
[1 −

cos(�D)t]. In addition, we can employ the Jacobi-Anger ex-
pansion to express the term e−ig(t ) in the above equations:

e−ig(t )= e−i AD
�D ei AD

�D
cos (�Dt )= e−i AD

�D

+∞∑
n=−∞

inJn(z)ein�Dt , (15)

where n is an integer, Jn(z) is the nth Bessel function of
the first kind, and z = AD

�D
. Thus, we can expand the term

e−i[g(t )−g(t−τ )] as

e−i[g(t )−g(t−τ )] =
∑
n,m

in−mJn(z)Jm(z)ei(n−m)�Dt eim�Dτ . (16)

Next, we expand the reduced density matrix in a basis of
harmonic oscillator eigenstates (h0|i〉 = E0(i)|i〉, h1|i′〉 =
E1(i′)|i′〉, ρ0(i, j) = 〈i|ρ0| j〉, ρ1(i′, j′) = 〈i′|ρ1| j′〉), and
obtain

dρ0(i, j)

dt

= −i[E0(i) − E0( j)]ρ0(i, j)

− 	

2

∑
i′,k

f̃ [E1(i′) − E0(k)]Fi→i′Fk→i′ρ0(k, j)

+ 	

2

∑
i′, j′

{1 − f̃ ∗[E1( j′) − E0( j)]}Fi→i′Fj→ j′ρ1(i′, j′)

− 	

2

∑
i′,k

ρ0(i, k) f̃ ∗[E1(i′) − E0(k)]Fj→i′Fk→i′

+ 	

2

∑
i′, j′

ρ1(i′, j′){1 − f̃ [E1(i′) − E0(i)]}Fi→i′Fj→ j′ ,

(17)
dρ1(i′, j′)

dt

= −i[E1(i′) − E1( j′)]ρ1(i′, j′)

− 	

2

∑
i,k′

{1 − f̃ ∗[E1(k′) − E0(i)]}Fi→i′Fi→k′ρ1(k′, j′)

+ 	

2

∑
i, j

f̃ [E1( j′) − E0( j)]Fi→i′Fj→ j′ρ0(i, j)

− 	

2

∑
i,k′

ρ1(i′, k′){1 − f̃ [E1(k′) − E0(i)]}Fi→ j′Fi→k′

+ 	

2

∑
i, j

ρ0(i, j) f̃ ∗[E1(i′) − E0(i)]Fi→i′Fj→ j′ . (18)

The above equations are referred to as our time-periodic Born-
Markov QME. Here, E0(i) = �(i + 1

2 ) and E1(i′) = �(i′ +
1
2 ) + ε̄d , and F is the Franck-Condon factor,

Fi→i′ = 〈i′|i〉

=
√

p!

Q!

(
λ

�

)Q−p

e− λ2

2�2 LQ−p
p

(
λ2

�2

)
[sgn(i′ − i)]i−i′ ,

(19)

FIG. 2. Realization of the time-dependent protocol. Shown are
the sinusoidal driving and the electronic occupation at different
phases of the protocol, until arriving at the limit cycle. The parame-
ters are T = 0.025 eV = 	, AD = 0.4 eV, and �D = 0.16 eV.

with p(Q) denoting the minimum (maximum) of i and i′, and
Lm

n is a generalized Laguerre polynomial. We further defined
f̃ (x) as a modified Fermi function with Floquet replicas,

f̃ (x) =
∑
n,m

in(−i)mJn(z)Jm(z)ei(n−m)�Dt f (x − m�D), (20)

which is a time-dependent complex number, and f̃ ∗(x) its
complex conjugate.

D. The limit cycle and its characterization

The periodic driving field has a significant influence on
the dynamics of the open quantum system. In Fig. 2, we
exemplify our protocol, which is the basis for the subsequent
investigations. The protocol consists of three phases:

(1) Initialization: We propagate the system according to a
constant electronic state energy εd (t ) = ε0 towards its station-
ary state, which corresponds to the limit AD → 0. Thereby, we
also obtain an estimate for the relaxation time of the system
independent of the driving frequency.

(2) Warmup: We turn on the periodic driving field and
record the time evolution of the system. Once the time evo-
lution exhibits truly the same periodicity as the driving field,
the so-called limit cycle is reached.

(3) Limit cycle: We follow one complete limit cycle with
a fine time resolution with a constant increment given by a
fraction of the driving period.

As the limit cycle is of main interest when exploring the
operation of periodically driven devices, in this work, we
focus on the open-quantum-system response by means of the
limit-cycle dynamics.

To allow for a fair comparison of the device operation in
different parameter regimes, we characterize the limit-cycle
dynamics of an observable 〈O〉(t ) by its cycle average 〈O〉,
amplitude �〈O〉, and phase shift �ϕ〈O〉 in comparison to the
adiabatic response limit, i.e., the limit of �D → 0 eV. We
define the phase shift by the behavior of the fundamental
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FIG. 3. Electronic population dynamics during a limit cycle in
comparison to the dynamics in the limit of �D → 0. On the one hand,
the definition of the amplitude �〈d†d〉 is visualized. On the other
hand, the definition of the delay time �t〈d†d〉 via the delay time of the
Fourier component corresponding to the driving frequency (indicated
by the lighter dashed lines) is illustrated. The parameters are 	 =
0.025 eV, T = 0.1 eV, � = 0 eV, ε0 = 0 eV, and AD = 0.2 eV.

frequency in the discrete Fourier decomposition of the observ-
able dynamics,

�ϕ〈O〉 = −i ln

(
a1

|a1|
)

− �ϕ
(�D→0)
〈O〉 , (21)

where we subtract the phase shift �ϕ
(�D→0)
〈O〉 corresponding to

the limit �D → 0 and ak denote the frequency components
obtained from a discrete Fourier decomposition of N data
points (t j, 〈O〉 j ):

ak = 1

N

N−1∑
j=0

exp(−ik�Dt j )〈O〉 j . (22)

In Fig. 3, these quantities are illustrated using the limit-cycle
dynamics of the electronic population 〈d†d〉 for different driv-
ing frequencies �D. The amplitude �〈d†d〉 is obtained from
the difference between the maximum and minimum during
the limit-cycle dynamics. Moreover, the phase shift of the
fundamental frequency �ϕ〈d†d〉 = �t〈d†d〉/�D is visualized via a
delay in time �t〈d†d〉 of the maximum of the according Fourier
component.

The list of considered observables includes the electronic
population 〈d†d〉, the charge current I , the displacement of the
harmonic mode 〈a†+a〉, the occupation of the harmonic mode
〈a†a〉, and the driving-field-induced power P. In the case of
the periodic driving field introduced in Eq. (1), the induced
power is given by

P = AD�Dcos(�Dt )
〈
d†d

〉
(t ). (23)

Analogous to a mechanical resonator, the power absorption
from the driving field is maximal for a π

2 -shifted response in
the electronic population.

FIG. 4. Amplitudes of (a) electronic population and (b) harmonic
oscillator displacement dynamics as a function of the driving fre-
quency. Furthermore, in (c) the relative delay of these dynamics is
shown based on the corresponding phase difference �ϕ = �ϕ〈d†d〉 −
ϕ〈a†+a〉. Further parameters are ε0 = 0 eV, � = 0.2 eV, λ

�
= 1.5,

AD = 0.4 eV, and T = 0.025 eV.

III. RESULTS AND DISCUSSION

In the following, we investigate the effect of the peri-
odic driving field on an open quantum system exhibiting
electronic-vibrational interaction. In Sec. III A, we present
results without directed charge transport through the interact-
ing system and without vibrational relaxation. Subsequently,
we add layer by layer the influence of bias voltages (see
Sec. III B) and vibrational relaxation (see Sec. III C).

A. Application of the driving field to a system in equilibrium

We begin our investigation with the electronic-vibrational
interacting system without an applied bias voltage � = μL −
μR = 0, and without vibrational relaxation � = 0.

Figures 4(a) and 4(b) show the driving-field-induced dy-
namical amplitudes of both the electronic population and
the displacement of the harmonic mode as a function of the
driving frequency. In the limit of slow driving frequencies
�D → 0, the relaxation of the open quantum system is fast in
comparison to the driving frequency. Hence, the state of the
system is quasi-instantaneously adapting to the energetic sit-
uation, and the amplitude of the observables is determined by
the amplitude of the observables in the instantaneous station-
ary state within the swept energy range. In the opposite limit,
�D → ∞, the driving frequency is faster than any relaxation
process of the open quantum system. Accordingly, the system
approaches the state corresponding to the average energy of
the driving field and the amplitudes of all observables vanish.
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FIG. 5. Limit-cycle-averaged vibrational excitation (a) and in-
duced power (b) as a function of the driving frequency �D for two
different electronic system-environment couplings 	. The dashed
lines are QME results. Further parameters are the same as in Fig. 4.

The general form of the transition between these limits is
influenced by the different timescales of the relaxation pro-
cesses like the coupling strength 	 and the temperature T .

At the resonance of the driving frequency with the fre-
quency of the harmonic mode �D = �, we find additionally
a collapse of the electronic population dynamics as well as
a strong enhancement in the harmonic oscillator (HO) dis-
placement dynamics. We can understand this behavior in the
context of the mechanical resonator. The harmonic oscillator
absorbs energy very efficiently at its resonance frequency
leading to pronounced oscillation in its displacement. The
connection to the mechanical resonator is further supported
by the phase shift between the dynamics of the electronic
population �ϕ, which exhibits a π -step behavior at resonance
[see Fig. 4(c)]. However, the HO displacement also has a
back-action on the electronic population, which serves as a
driving force of the HO. Hence, the amplitude of the HO
displacement dynamics can only increase until its influence
on the electronic population dynamics is exactly counteracting
the periodic driving field. Consequently, the electronic system
is effectively decoupled from the driving field at resonance.

Another perspective of this decoupling mechanism is
shown in Fig. 5(a), where the average driving power over
a cycle induced by the driving field vanishes at resonance.
Furthermore, in Fig. 5(b) we plot the cycle-averaged vibra-
tional excitation of the harmonic oscillator as a function of
the driving frequency. In agreement with the effective decou-
pling from the driving field, the vibrational excitation does
not exhibit a sharp resonance feature. Instead, we observe
a relatively broad and moderate increase of the vibrational
excitation in the vicinity of the resonance frequency. It reflects
the quantized energy transfer assisted by the driving field that
provides the necessary energy for charge transfer processes
involving one vibrational quantum of the harmonic oscilla-
tor [37,59]. Similar to the stepwise increase of the charge
current with increasing bias voltage, the vibrational excita-

tion is correspondingly enhanced when the driving frequency
allows for n-phonon processes at the frequencies �D = n�.
Moreover, the small peak at �D = �

2 is another fingerprint
of the quantized interaction with the driving field as it results
from a conversion of two driving field quanta to one excita-
tion of the harmonic oscillator. Furthermore, the driving field
causes sharp peaks in the vibrational excitation at �D = 2�.
Such a peak is known from a classical parametric resonance,
which can also be exploited on a swing. In contrast to the
resonance case, the decoupling mechanism mediated by the
electronic-vibrational interaction is not observed at the driving
frequencies of both sharp peaks �D = �

2 and �D = 2�.
The results of QME and HEOM are consistent in both

strengths of 	. Although 	 = T is beyond the weak coupling
region, the electronic-vibrational interaction reduces the ef-
fective coupling strength [60], giving rise to the reliability of
QME.

B. Effects of an applied bias voltage

So far, we have focused on the action of the driving field on
a system without directed transport through the nanosystem.
Next, we consider the additional effect of an applied bias volt-
age � = μL − μR. For small bias voltages, charge transport
is suppressed due to the electronic-vibrational interaction, an
effect also referred to as the Franck-Condon blockade [61,62].
In the following, we add the charge current to the observables
of interest and focus on the induced power as a reference for
the effective decoupling mechanism.

Figure 6 illustrates the response of the open quantum
system for three different bias voltages based on the in-
duced driving power, the vibrational excitation, and the charge
current through the junction as a function of the driving
frequency. The induced power exhibits a big drop at the
resonance frequency of the harmonic oscillator for all bias
voltages. Hence, the charge transport through the nanosystem
does not interfere with the decoupling mechanism arising
from the interplay of the electronic population and harmonic
oscillator dynamics. Moreover, we observe a reduction in
the induced power once the bias voltage energetically allows
for inelastic charge transport processes accompanied by ex-
citations of the harmonic oscillator. At these bias voltages,
processes exciting the harmonic oscillator become energet-
ically accessible whereas processes lowering the excitation
of the harmonic oscillator become prohibited [63,64]. Hence,
the applied bias voltage significantly contributes to the ex-
citation of the vibrational mode. Consequently, the driving
field competes against the bias voltage to induce power into
the vibrational mode. This is also reflected in the vibrational
excitation [see Fig. 6(b)]. Although the vibrational excitation
generally increases as the bias voltage is increased, the largest
relative enhancement is not obtained for the largest bias volt-
age values, meaning, the enhancement with respect to zero
driving field, i.e., AD → 0, is more significant for smaller
values of the bias voltage.

The decoupling mechanism is also expressed in the charge
current which attains the same value as in the limit of no
driving field when in resonance. The peaked recovery of the
charge current in combination with a remainder of the general
driving-induced vibrational excitation also leads to a peak
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FIG. 6. Shown are the limit-cycle-averaged induced power (a),
vibrational excitation (b), and charge current (c) as a function of the
driving frequency �D for two nonvanishing bias voltages � in com-
parison to the zero-bias voltage case. For an improved comparison
of the driving-frequency dependence, some data sets are shifted by
a constant value specified next to the data. The light dashed lines
indicate the result in the limit of a vanishing driving amplitude. The
lighter colored points are QME results. Further parameters are ε0 =
0 eV, AD = 0.4 eV, λ

�
= 1.5, � = 0.2 eV, and T = 	 = 0.025 eV.

in the vibrational excitation for high-bias voltages. More-
over, the pronounced vibrational-excitation enhancement at
�D = 2� yields a lift of the Franck-Condon blockade [42].
Accordingly, we find a charge-current enhancement beyond
the limit without driving the field up to intermediate bias
voltages.

Regardless of the bias, QME and HEOM give accordant re-
sults, which demonstrates the small broadening effect within
these conditions. Moreover, the resonance features are not ap-
parent without electronic-vibrational interaction in the system
(see Appendix).

C. Influence of vibrational relaxation

Finally, we explore the influence of vibrational relaxation
on the decoupling mechanism as well as the lifting of the
Franck-Condon blockade. To this end, we show the response
of the open quantum system for three different bias voltages
and comparatively strong environmental damping based on
the induced power, the vibrational excitation, and the charge
current through the junction as a function of the driving fre-
quency in Fig. 7.

Including the vibrational relaxation effects, we notice that
the collapse of the induced power at the resonant frequency

FIG. 7. Shown are the limit-cycle-averaged induced power (a),
vibrational excitation (b), and charge current (c) as a function of the
driving frequency �D for two nonvanishing bias voltages � in com-
parison to the zero-bias voltage case. For an improved comparison
of the driving-frequency dependence, some data sets are shifted by
a constant value specified next to the data. The light dashed lines
indicate the result in the limit of a vanishing driving amplitude. Fur-
ther parameters are ε0 = 0 eV, AD = 0.4 eV, λ

�
= 1.5, � = 0.2 eV,

T = 	 = 0.025 eV, and � = 0.01 eV.

is no longer complete [see Fig. 7(a)]. In this case, the damp-
ing of the harmonic oscillator dynamics interferes with the
effective decoupling mechanism. The relative enhancement
of the vibrational excitation is weakened by the environ-
ment. This can be observed by comparing Figs. 7(b) and
6(b). The charge current is also affected by the environment
and its profile roundout. However, the partial removal of the
Franck-Condon blockade due to the vibrational excitation en-
hancement still remains visible in the charge current at �D =
2� [see Fig. 7(c)]. Moreover, the charge current still approx-
imately recovers the limit of vanishing driving amplitude at
�D = 2�. These features hold true even for a comparatively
strong damping strength, that is, � = 5	

2 .

IV. CONCLUSIONS

In this paper, we investigated an electronic-vibrationally
interacting system under the influence of a time-periodic
driving field. Employing the numerically exact HEOM ap-
proach, we examined the entire range from slow to fast driving
frequencies. Over a wide range of driving frequencies we
observed a transition from an adiabatic slow driving case to
a fast and quasistatic average energy case. Beyond the limit-
cycle-averaged observables, the amplitude and phase shift
definitions facilitate a comprehensive picture of the driving-
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FIG. 8. Response of the open quantum system without
electronic-vibrational interaction. Shown are the limit-cycle-
averaged induced power (a) and charge current (b) as a function
of the driving frequency �D for two nonvanishing bias voltages
� in comparison to the zero-bias voltage case. For an improved
comparison of the driving-frequency dependence, some data sets
are shifted by a constant value specified next to the data. The light
dashed lines indicate the result in the limit of a vanishing driving
amplitude. Further parameters are ε0 = 0 eV, AD = 0.4 eV, λ = 0,
and T = 	 = 0.025 eV.

induced dynamics. Overall, the study provides basic insights
for engineering heat engines or machines based on quantum
systems.

The periodically driven and electronic-vibrationally inter-
acting system exhibits a nontrivial interaction between the
harmonic oscillator and the driving field. At resonance, �D =
�, we found that the influence of the harmonic oscillator
on the electronic system is counteracting the driving field.
Thus, a driving-frequency specific collapse of the response
occurs in the electronic population and induced power. The
application of a bias voltage is not affecting this mechanism.
Accordingly, the charge-current response at resonance is in-
dependent of the driving amplitude. At higher harmonics,
the vibrational excitation and the charge current exhibit clear

fingerprints of the interaction between the harmonic oscillator
and the driving field. In particular, at �D = 2�, a significant
enhancement of the vibrational excitation causes a lifting of
the Franck-Condon blockade. The introduction of an addi-
tional environmental damping affects the interaction between
the harmonic oscillator and the driving field. In particular,
the harmonic oscillator counteraction to the periodic driving
is no longer perfect. Moreover, we found that the charge-
current enhancement due to the driving-induced lifting of the
Franck-Condon blockade is persistent under the influence of
environmental damping.

In this work we have used the HEOM method directly for
the time-periodic Hamiltonian. Another possibility for future
applications would be to employ the Floquet formalism within
the HEOM method.
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APPENDIX: DRIVEN OPEN QUANTUM SYSTEM
WITHOUT VIBRATIONAL DEGREES OF FREEDOM

We show the response of a time-periodically and externally
driven open quantum system without vibrational degrees of
freedom in Fig. 8. The driving-frequency dependence of the
induced power and the charge current are both reflecting
the importance of the Floquet replica of the electronic state
[20,25,37,59]. In particular, the charge current reflects the
deactivation or activation of the different transport channels
in accordance with the Bessel functions of the first kind,
Jn( AD

�D
). However, the visible features are distinct from the

resonances observed in the electronic-vibrationally interacting
system. Hence, the features in the main text are related to the
electronic-vibrational interaction.
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