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We present a non-perturbative theory that describes how light regulates chiral-induced spin selectivity (CISS)
from the perspective of strong light-matter interactions. The research results indicate that 1) light can have
opposite effects on the CISS, 2) the difference in CISS is caused by the steady states of nuclei coupled to spin
electrons and 3) this steady state differences are caused by the different light-induced Lorentz forces felt by
spin-up and spin-down electrons. The fundamental reason for these results is the impact of light on spin-orbital
coupling (SOC), which is a complex process. This theoretical framework is verified by the calculations of
Floquet SOC non-adiabatic nuclear dynamics.

I. INTRODUCTION

According to Moore’s Law[1], the number of transistors
doubles approximately every 18 to 24 months, leading to con-
tinuous improvement in processor performance and a decrease
in chip size. However, as time goes by, Moore’s Law faces
increasing challenges. Because transistors are already ap-
proaching atomic scale, it becomes increasingly difficult to
continue reducing their size at the same speed.[2, 3] Spintron-
ics has the potential to break through limitations and enable
electronic devices to truly reach atomic scale.[4] This multi-
disciplinary area of study has paved the way for numerous ad-
vancements, including the exploration of phenomena such as
the spin Hall effect, the utilization of ferroelectric materials,
the investigation of topological insulators, and the develop-
ment of quantum computing technologies.[5]

In recent years, the integration of chiral molecules into
the realm of spintronics has opened up new avenues of re-
search and innovation.[6] Chiral molecules possess asym-
metry in their spatial arrangement, resulting in distinct left-
handed and right-handed forms.[7] This intrinsic chirality can
interact with the spin degrees of freedom of electrons, giv-
ing rise to a phenomenon known as chiral-induced spin selec-
tivity (CISS), which was initially reported in 1999 by Naa-
man and collaborators.[8]. Since then, a number of additional
experimental[9–24] and theoretical[25–40] studies have been
conducted. The unusual spin polarization observed in CISS
has been confirmed to exhibit the following three characteris-
tics: 1) chiral molecules induce spin polarization rather than
spin filtering, 2) the direction of spin polarization is deter-
mined by the chirality of the molecule and the direction of
electron incidence, and 3) the magnitude of spin polariza-
tion is dictated by the strength of local spin-orbit coupling
(SOC).[41]

At the microscopic level, we do know of a source of CISS is
SOC, but the SOC generated by electron motion within chiral
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molecules is very weak. Additionally, some spin selection oc-
curs prior to electron passage through the chiral molecule, and
this initial spin selection is primarily due to the strong SOC of
the metal substrate.[42] How to enhance CISS has attracted
extensive research. Some calculations indicate that electron-
vibration coupling enhances the CISS effect, leading to an in-
crease in the electron polarizability in double-helix DNA.[43]
When considering the coupling between atomic nuclei and
electron spins, calculations reveal strong spin selectivity near
the conical intersection, even when the SOC is small, with
spin selectivity reaching up to 100%.[44] In the presence of
a non-zero current, Berry curvature can induce nuclear spin
separation and electron spin polarization.[45] Even the CISS
effect observed in different systems has different mechanisms
for amplification.

In this work, we present a non-perturbative theory to de-
scribe the regulation of CISS by light from the perspective
of strong light-matter interaction. We show three main re-
sults, which are important for understanding how to use light
to regulate CISS: 1) light can have the opposite effect on the
CISS effect, 2) the spin polarization is caused by the differ-
ent steady states of the motion of nuclei coupled to spin-up
and spin-down electrons, and 3) this steady-state difference is
caused by the different photoinduced Lorenz-like force felt by
electrons with different spins. The underlying cause of these
results is the influence of light on SOC, which is a complex
process. This theoretical framework is verified by the calcula-
tions of Floquet SOC non-adiabatic nuclear dynamics.

II. THEORY

We start from a simple model with two spatial orbitals cou-
pled to left and right leads whose voltages are µL and µR, such
that the Hamiltonian depends on two nuclear degrees of free-
dom (x and y are considered, uniformly represented as R).
The total model Hamiltonian Ĥtot consists of the kinetic en-
ergy and another three parts: the system Hamiltonian Ĥs, the
bath Hamiltonian Ĥb composed of left and right leads, and the
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system-bath coupling Hamiltonian Ĥsb,

Ĥtot =
P2

2M + Ĥs + Ĥb + Ĥsb, (1)

Ĥs = ∑i j[hs]i j(R, t)d̂†
i d̂ j +U(R), (2)

Ĥb = ∑kζ εkζ ĉ†
kζ

ĉkζ , (3)

Ĥsb = ∑ζ k,i Vζ k,i(ĉ
†
kζ

d̂i + d̂†
i ĉkζ ). (4)

In system Hamiltonian (Hs), the operators d̂†
i and d̂i respec-

tively create and annihilate an electron in the i-th spin orbital
of the subsystem, while U(R) represents the electrostatic po-
tential between nuclei. As for the Hamiltonian (Hb), the op-
erators ĉ†

kζ
and ĉkζ create and annihilate electrons in the k-th

spin orbital of the lead ζ , where the energy of the orbital is
denoted by εkζ . Lastly, in the interaction Hamiltonian (Hsb),
the tunneling element Vζ k,i indicates the interaction between
subsystem spin orbital i and lead spin orbital kζ . In Eq. 4, the
Condon approximation has been utilized, implying that Vζ k,i
is independent of R.

Next, we focus on a shifted parabola model under periodic
driving:

hs(R, t) = [Ax+C cos(Ωt)]σx +Byσy +(x+∆)σz. (5)

Here, σx, σy, and σz represent Pauli matrices, respectively.
C and Ω denote the amplitude and frequency of the periodic
driving, respectively. ∆ represents the energy gap between
two spatial orbitals, which is zero as to symmetric spatial or-
bitals and non-zero as to asymmetric spatial orbitals. More-
over, parameters A, B are introduced to control the rates of
diabatic, spin-orbit with respect to geometries x and y. The
shifted parabola model is extensively employed to simulate
electron transfer and excitation energy transfer processes.[46]
Note that Eq. 5 is an effective Hamiltonian, where positive B
represents spin-up and negative B represents spin-down.

Furthermore, we present the scalar potential U(R)
that characterizes the tilted energy landscape, illustrated
below:[47]

U(R) =
1
2
(x−λxx)2 +

1
2
(y−λyy)2. (6)

Note that the scalar potential U(R) is not affected by elec-
tronic friction. Additionally, the linear terms λx and λy serve
to introduce asymmetry to the adiabatic state, and we can ad-
just them to generate the strong spin current necessary for our
purposes. At this point, our model has been fully introduced.
We use Floquet theory and non equilibrium Green’s function
method to solve this model, and the specific solution process
is listed in the Appendix A.

Finally, we define spin polarization ξ as follows,

ξ =
I↓− I↑

I↓+ I↑
×100%. (7)

Here, I↑/↓ denotes spin-up or spin-down current. The specifc
procedures of solving I↑/↓ see Appendix B.

III. RESULTS AND DISCUSSIONS

A. Spin Polarization Manipulated by Light

In this section, we present our findings on how light ma-
nipulation affects spin polarization. We provide steady-state
kinetic energy, spin current, and spin polarization diagrams
in Fig. 1 for symmetric (∆ = 0) and in Fig. 2 for asymmetric
(∆ = 3) cases both with µL =−µR.

In Fig. 1, the left panel [(a), (d), and (g)] represents cases
without light (C = 0), where the CISS effect induces spin po-
larization that increases with the absolute value of µL. Specifi-
cally, for the symmetric case, the increase in spin polarization
as µL becomes more negative tends to converge. When we
introduce light regulation in the middle panel [(b), (e), and
(h)] with Ω = 1 and C = 3, we observe a significant increase
in spin polarization, particularly when µL = 4.0, where spin
polarization increases from 13.1% to 18.7% compared to the
non-light case. Further increasing Ω to 3 in the right panel
[(c), (f), and (i)] results in a continued increase in spin po-
larization, reaching 20.3%. These results indicate that, in the
symmetric case, light significantly enhances spin polarization,
regardless of increasing light intensity or frequency.

FIG. 1. We consider a system with parameters ∆ = 0, A = 1, B = 1.2,
kT = 0.5, λx = 0, λy = 1, Γ̃ = 1, µL =−µR and Floquet level N = 5,
where C takes the value of 0 for cases (a), (d), and (g), 3 with Ω = 1
for cases (b), (e), and (h), and 3 with Ω = 3 for cases (c), (f), and
(i). Using Eq. B1 and Eq. 7, we calculate the spin current and spin
polarization. No spin polarization is expected at zero voltage bias,
while a significant polarization can be observed for finite values of
µL.

In Fig. 2, we investigate the asymmetric case (∆ = 3) with
µL =−µR, revealing an opposite phenomenon. The left panel
[(a), (d), and (g)] represents cases without light (C = 0), where
spin polarization is observed due to the CISS effect. However,
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in the middle panel [(b), (e), and (h)], the introduction of light
regulation with Ω = 1 and C = 3 results in a decrease in spin
polarization, particularly when µL = −4.0, where spin polar-
ization decreases from −16.1% to −5.58% compared to the
non-light case. Further increasing Ω to 3 in the right panel
[(c), (f), and (i)] leads to a further suppression of spin polar-
ization to −3.33%. These findings demonstrate that, in asym-
metric scenarios, the presence of light significantly suppresses
spin polarization, with the suppression effect becoming more
pronounced as light intensity increases and frequency rises.

It is worth noting that the spatial distribution of current re-
mains unaffected by spin, while spin polarization undergoes
a completely opposite trend. To clarify this observation, we
turn our attention to the distinct steady states of nuclear mo-
tion associated with electrons of different spin directions in
both symmetric and asymmetric cases. This crucial distinc-
tion is further elaborated upon in the subsequent sections.

FIG. 2. We consider a system with parameters ∆ = 3, A = 1, B = 1.2,
kT = 0.5, λx = 0, λy = 0.8, Γ̃= 1, µL =−µR and Floquet level N = 5,
where C takes the value of 0 for cases (a), (d), and (g), 3 with Ω = 1
for cases (b), (e), and (h), and 3 with Ω = 3 for cases (c), (f), and (i).

B. Steady States Manipulated by Lorentz-like Force

The observed different steady states of nuclei with spin-
up and spin-down electrons, as depicted in Fig. 3, can be at-
tributed to the influence of the Lorentz-like force derived from
γA

xy.[48] This force primarily acts in the γA
xy < 0 region, induc-

ing rotational motion in a clockwise direction for both spin
directions. However, the rotations in nuclei’s steady states are
absent in the asymmetric case of light regulation, mainly due
to electronic friction exceeding excitation, causing all nuclei
to dissipate to the same point.

In Fig. 4, we visualize γA
xy for the symmetric case (∆ = 0).

FIG. 3. The current distribution is depicted by a heat map, where the
red dot indicates the steady states of nuclei with spin up electrons
and the blue dot represents the steady states of nuclei with spin down
electrons. The values of the general parameters used in this figure
include µR =−µL, A = 1, B = 1.2, kT = 0.5, λx = 0, Γ̃ = 1 and Flo-
quet level N = 5. For cases (a), (c), and (e), the parameters employed
are as follows: ∆ = 0, µL = 4.0 and λy = 1. On the other hand, for
cases (b), (d), and (f), the parameters used include ∆ = 3, µL =−4.0
and λy = 0.8. It is worth noting that for cases (a) and (b), the value
of the parameter C is set to 0. In contrast, for cases (c) and (d), the
value of C takes on a value of 3 with Ω = 1. Lastly, for cases (e) and
(f), the parameter C is also set to 3 but with Ω = 3.

The red and blue dots represent the steady states of nuclei
with spin-up and spin-down electrons, respectively. Both spin
directions experience clockwise rotations due to the negative
values of γA

xy, explaining the observed spin polarization in this
scenario.

However, in the asymmetric case with light regulation, the
predominant effect of γS

xy,[48] as shown in Fig. 5, leads to ei-
ther energy injection or dissipation from the environment, pre-
venting the observed rotations and spin polarization.

In Fig. 5, we present γS
xy for the asymmetric case (∆ = 3),

where the red and blue dots represent the unsteady and steady
states of nuclei, respectively. The predominance of γS

xy > 0 re-
sults in continuous energy dissipation from the environment,
ultimately preventing rotations and causing a lack of spin po-
larization, as observed in this scenario.

These findings highlight the critical role of the Lorentz-
like force in influencing the steady states of nuclear motion
and, consequently, spin polarization in electronic systems sub-



4

FIG. 4. γA
xy is depicted by a heat map, where the red and blue dots

represent the steady states of nuclei with spin-up and spin-down elec-
trons. The values of the parameters used in this figure include ∆ = 0,
µL = 4.0, µR =−µL, A = 1, B = 1.2, kT = 0.5, λx = 0, λy = 1, Γ̃ = 1
and Floquet level N = 5. It is worth noting that for cases (a) and (b),
the value of the parameter C is set to 0. In contrast, for cases (c) and
(d), the value of C takes on a value of 3 with Ω = 1. Lastly, for cases
(e) and (f), the parameter C is also set to 3 but with Ω = 3.

jected to light regulation.

C. Broader Implications

In addition to the specific cases discussed here, our results
have broader implications for the fields of spintronics and
optoelectronics. The ability to manipulate spin polarization
through light regulation opens up possibilities for developing
spin-based devices with tunable properties. Furthermore, the
understanding of the underlying mechanisms, such as the in-
fluence of Lorentz-like forces, can guide the design of novel
materials and structures for spin control and manipulation.

IV. CONCLUSIONS

In conclusion, our investigation into the influence of light
regulation on spin polarization in electronic systems has
yielded valuable insights. We have demonstrated that light can
exert a profound impact on spin polarization, with its effects

FIG. 5. The heat map illustrates γS
xy, where the red and blue dots

indicate the unsteady and steady states of nuclei, respectively. The
yellow cross marks the initial position of all six cases, which are
(−2,2) and initial momentum (px = −1, py = 0). The parameters
used in this figure are ∆ = 3, µL =−4.0, µR =−µL, A = 1, B = 1.2,
kT = 0.5, λx = 0, λy = 0.8, Γ̃ = 1, and Floquet level N = 5. It’s
important to note that for cases (a) and (b), the parameter C is set at
0, while for cases (c) and (d), C takes a value of 3 with Ω = 1. Lastly,
for cases (e) and (f), the parameter C is again set to 3, but with Ω = 3.

varying depending on the system’s symmetry and the char-
acteristics of the light source. Our study has also shed light
on the underlying mechanisms at play, particularly the pivotal
role of Lorentz-like forces in manipulating the steady states of
nuclear motion and thereby influencing spin polarization.

These findings not only advance our fundamental under-
standing of spin dynamics in optoelectronic systems but also
open up exciting opportunities for practical applications in the
realm of spintronics. The ability to control and manipulate
spin polarization through light-matter interactions holds great
promise for the development of novel technologies, including
spin-based quantum computing and information storage.

As we peer into the future, several promising avenues for
further research emerge. In the realm of electronic struc-
ture theory, there is an urgent need for higher-precision cal-
culations of excited-state electronic spin states in large sys-
tems, surpassing the capabilities of traditional Density Func-
tional Theory (DFT). Accurately modeling spin-orbit cou-
pling (SOC) and its derivative couplings is equally crucial, as
SOC plays a pivotal role in shaping electronic spin states and
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interactions.
Moving forward, it is imperative to validate our findings

by applying first-principles calculations to real-world systems,
transcending the confines of our model. The evidence pre-
sented here suggests that we are on the cusp of an era where
spin polarization manipulation through light-matter interac-
tions becomes increasingly feasible. We are optimistic that
our work will have far-reaching implications for a multitude
of disciplines, propelling the fields of spintronics, quantum
computing, and beyond, and ultimately enabling the break-
throughs needed to surpass current limits in information stor-
age and computing power.

This work is supported by the startup funding from West-
lake University. W.L. acknowledges support from the high-
performance computing center of Westlake University.

Appendix A: Floquet Electronic Friction Model

The periodic driving term (Eq. 5) makes the system Hamil-
tonian Hs time dependent, posing difficulties in numerically
solving the model. Electronic friction could be evaluated by
the Green’s function methods when Hs is time independent,
however, previous Green’s function cannot deal with time de-
pendent Hamiltonian [49]. To tackle the complex and re-
curring time-dependent issue at hand, we have recently de-
vised a Floquet electronic friction model that employs non-
equilibrium Green’s functions [48].

In Floquet electronic friction model, the dynamics of the
molecule in the junction could be described by the following
Langevin dynamics:

Mµ R̈µ = FF
µ −∑

ν

γ
F
µν Ṙν +δFF

µ , (A1)

where M and R refer to the mass and position of the nuclei,
while µ and ν symbolize the degrees of freedom (DOFss);
the superscript F denotes the term after the Floquet transfor-
mation. Concerning the right-hand side of the equation, FF

µ

represents the mean force, γF
µν stands for the friction tensor,

and δFF
µ denotes a Markovian random force [50–53]. The

equation at hand can be interpreted as follows: the motion
of nuclei disrupts the equilibrium of the system’s electronic
structure. Given a prompt electronic response, the electrons
generate an opposing force that responds to the nuclear move-
ments.

The feedback between the nuclei and electrons can be
simulated through approximations of frictional damping and
Markovian random force [49, 54]. The following expressions
are used to denote the adiabatic force (FF

µ ), friction tensor
(γF

µν ), and the symmetrized correlation function of the random
force [ 1

2 (D
F
µν +DF

νµ)]:

FF
µ =− 1

2πi(2N +1)

∫ +∞

−∞

dεTr
{

∂µ hF
s GF

<

}
−∂µU, (A2)

γ
F
µν =− h̄

2π(2N +1)

∫ +∞

−∞

dεTr
{

∂µ hF
s ∂ε GF

r ∂ν hF
s GF

<

}
+H.c.,

(A3)

1
2
(DF

µν +DF
νµ)=

h̄
4π(2N +1)

∫ +∞

−∞

dεTr
{

∂µ hF
s GF

>∂ν hF
s GF

<

}
,

(A4)
where GF

r , GF
a , GF

<, and GF
> are the retarded, advanced, lesser,

and larger Floquet Green’s functions of the electron in the en-
ergy domain, respectively. The Floquet Green’s function is
given by

GF
r (ε) =

(
ε −Σ

F
r −hF

s
)−1

,

GF
<,>(ε) = GF

r (ε)Σ
F
<,>(ε)G

F
a (ε),

GF
a (ε) = GF

r (ε)
†,

(A5)

where

Σ
F
r =− i

2
Γ̃,

Σ
F
< = iΓ̃

N

∑
n=−N

(
fn,L 0
0 fn,R

)
L̂n,

Σ
F
> =−iΓ̃

N

∑
n=−N

(
1− fn,L 0

0 1− fn,R

)
L̂n,

(A6)

and

fn,L = f (ε +nh̄ω,µL),

fn,R = f (ε +nh̄ω,µR).
(A7)

Here, according to the wide-band approximation, Γ̃ is a con-
stant representing the coupling strength between the system
and the bath, L̂n is the n-th ladder operator which turns the
vector-like Fourier expansion into a matrix-like representa-
tion, ε is called quasi-energy and f is Fermi function,

f (ε,u) =
1

exp[β (ε −u)]+1
, (A8)

where β = 1/kT .
In particular, we define the symmetric and antisymmetric

components [γS
µν = (γF

µν + γF
νµ)/2,γA

µν = (γF
µν − γF

νµ)/2] of
the friction tensor [48]. The symmetric component γS

µν of the
friction tensor has contrasting effects depending on whether it
has a positive or negative value. For example, when it is pos-
itive, it dissipates energy, whereas a negative value implies
it can excite energy [48, 55]. The antisymmetric component
γA

µν of the friction tensor for electrons is associated with a
non-zero Berry curvature. This phenomenon implies that the
nuclear wave packets are subject to different pseudo magnetic
fields, which can lead to either a clockwise or counterclock-
wise influence on the direction of steady-state electron rota-
tion [48, 55].

During our study, all terms were expressed using the Flo-
quet transformation. It is essential to note that the total num-
ber of Floquet levels is equal to (2N + 1), where the precise
value of N must be determined to obtain reliable outcomes.
In particular, we need to choose N which is large enough to
converge the current numerically. (see the procedures for cal-
culating current in Sec. B.)

To evaluate the the adiabatic force (FF
µ ), friction tensor

(γF
µν ), and the symmetrized correlation functions [ 1

2 (D
F
µν +
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DF
νµ)], we need to represent hs(R, t) (Eq. 5) in Floquet lev-

els. Here, we provide an explicit formula for each block of
the extensive matrix, which is in the Fourier space:

hF
s =

N

∑
n=−N

h(n)s L̂n + N̂ ⊗ Înh̄ω, (A9)

h(n)s =
1
T

∫ T

0
hs(R, t)e−inΩtdt, (A10)

where N̂ is the number operator, În is the identity matrix for
the n-th order and T is the period, equal to 2π/Ω. Specif-
ically, Eq. A9 represents the decomposition of hs(R, t) into
different energy components rotating at different frequencies
in the Fourier space. The term h(n)s denotes the decomposition
of hs(R, t) at the frequency of nΩ. The first term of Eq. A9
is the weighted sum of each Floquet potential, while the sec-
ond term is the tensor product of N̂ and În. This term can
be added to the Hamiltonian because N̂ commutes with the
Hamiltonian. Eq. A9 allows us to understand the time evolu-
tion of the system at different rotating frequencies, and further
investigate the physical properties of the system.

Lastly, we will outline how to generate the random force
(δFF

µ ) in the Langevin dynamics in Eq. A1. It is essential to
emphasize that the matrix DF

µν in Eq. A4 specifically repre-
sents the correlation function matrix of a randomly generated
force. However, we have not yet provided a clear explanation
of how to generate random forces that correspond to various
DOFs. Within the context of the Hamiltonian being studied,
only two DOFs exist, namely x and y. As a result, our corre-
lation function matrix can be expressed as:

DF =

(
DF

xx DF
xy

DF
yx DF

yy

)
. (A11)

We shall proceed by diagonalizing this matrix to obtain the
diagonal matrix, denoted as:

D̃F =

(
D̃F

x 0
0 D̃F

y

)
. (A12)

Subsequently, we generate two random numbers follow-

ing a Gaussian distribution using the norm σµ =
√

2D̃F
µ/dt,

where µ = x,y. Lastly, to obtain the random forces that corre-
spond to the x and y directions, we multiply the eigenvectors
of DF by the random number matrix.

Appendix B: Evaluate the Spin Current

In this section, we provide a detailed account of the current
and spin polarization calculations.

First, we outline how to calculate the spin current.In the
molecular junction, we consider a molecule connected with
a left and a right metal electrode, with chemical potential µL
and µR , respectively. The two electrode will contribute to
a voltage V = µR − µL. The spin current I↑/↓ is obtained by
averaging over the nuclear DOFs through Langevin dynamics,
and is given by the expression [45]:

I↑/↓ =
∫

dRdPIF
loc(R)ρ↑/↓(R,P). (B1)

Here, the probability density distribution of nuclear configura-
tion ρ↑/↓(R,P) is obtained by sampling 10000 trajectories ac-
cording to Eq. A1, and evaluating the steady-state phase space
trajectories. We make the ansatz that the Floquet local spin
current IF

loc flowing from the left lead through the molecule
to the right lead can be evaluated by the Landauer formula
[56, 57],

IF
loc =

e
2π h̄(2N +1)

∫ +∞

−∞

dεTr
{

T F(ε)[ f F
L (ε)− f F

R (ε)]
}
.
(B2)

In the above equation, f F
L (ε) and f F

R (ε) represent the Floquet
Fermi-Dirac distribution functions that correspond to the left
and right leads, respectively. Additionally, T F(ε) denotes the
Floquet transmission probability, which can be deconstructed
using the Green’s functions.

T F(ε) = Γ
F
L GF

r (ε)Γ
F
R GF

a (ε), (B3)

where

Γ
F
L = ΓL ⊗ În, Γ

F
R = ΓR ⊗ În. (B4)

In this project, we examine the distinct interaction between
a molecule and two leads where solely orbital 1 (x+∆) cou-
ples to the left lead and only orbital 2 (−x − ∆) couples to
the right lead. This arrangement is demonstrated in the subse-
quent definition of the Γ matrices:

ΓL =

(
Γ̃ 0
0 0

)
, ΓR =

(
0 0
0 Γ̃

)
. (B5)

Note that T F(ε) is invariant to changing B → −B, which
implies that the local current IF

loc is in fact independent of the
exact spin carrier. For this reason we have not included any
superscripts ↑ / ↓ in Eq. B2 and Eq. B3.
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