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ABSTRACT: Directly simulating a large number of molecules interacting with cavity
modes is important to understand the polariton chemistry. However, such a task is
challenging due to the steep scaling of the computational cost as a function of the
number of molecules. Here, we simulate the dynamics and spectra of 1 million gas-phase
molecules in a Fabry−Peŕot cavity, each weakly interacting with light. We emphasize the
effects of molecular rotations and disorder on the polariton dynamics and spectra. Our
calculations reveal the existence of the collective effects in the spectra despite the
disorder and rotations. Increasing rotational frequencies leads to larger Rabi splitting between lower and upper polaritons, whereas
random rotational phases reduce this splitting. These findings await validation in gas-phase polariton experiments.

■ INTRODUCTION
Polaritons, which are hybrid states resulting from the exchange
of energy between a light-excited transition in matter and the
confined photon mode of an optical cavity,1−5 exhibit strong
light−matter coupling. This coupling is evidenced by distinct
peaks observed in the transmission spectrum of the cavity, with
these peaks separated by the vacuum Rabi splitting frequency
(ΩR).

6,7 Initially observed in cold atoms8 and semiconductors,9

polariton chemistry has recently expanded to include cavity-
coupled solution-phase molecules. This exciting development
has sparked significant interest and enthusiasm within the
scientific community.1,2,4,5,10−33

Recent research has revealed that when molecules are
coupled to optical cavities, the molecules exhibit distinct
energetics, reactivity, and photochemistry compared to their
counterparts in free space.1,3,4,10 Of particular interest is the
concept of strong coupling of molecular vibrations, which
offers a promising approach for achieving mode-selective
chemistry without the need for direct laser excitation. This
concept, known as vibrational strong coupling (VSC), was first
demonstrated in 2015 by the Ebbesen34 and Simpkins35,36

groups using Fabry−Peŕot cavities. Since then, a growing body
of theoretical and experimental research studies37−43 has
demonstrated reduced reaction rates,44−46 modified branching
ratios,20 and altered equilibrium constants47 for thermal,
solution-phase reactions under VSC.

While these observations of cavity-altered chemistry are
intriguing, there is still intense discussion within the scientific
community regarding the underlying mechanisms and
reproducibility. Experimental studies on VSC have predom-
inantly focused on condensed-phase systems, where solvent
effects, complex mechanisms, and detailed theoretical treat-
ments present challenges.4,5,48−51 To overcome these chal-
lenges, investigating polariton behavior in the gas phase offers

an opportunity to study cleaner and more isolated systems,
facilitating a better theoretical understanding of the underlying
mechanisms involved.5,25,52−55

Recent progress has shown the successful accomplishment
of VSC in gas-phase methane (CH4) by coupling it to a
Fabry−Peŕot cavity.56,57 However, the influence of molecular
rotations on polaritons remains poorly understood, as there are
currently no analytical results available for the linear response
of molecular polaritons in the regime of extensively disordered
molecules with free rotations.49,58−60

In this study, we investigate the behavior of polaritons in a
Fabry−Peŕot cavity containing one million gas-phase mole-
cules and a single photon. Our focus is on understanding the
effects of molecular rotations and level disorder on the
dynamic properties and spectral characteristics of polaritons.
Through comprehensive theoretical simulations and calcu-
lations, we analyze how molecular rotations and disorder
impact the frequencies and dephasing time of polaritonic
states. This analysis provides valuable insights into the
robustness of these states and their potential applications in
gas-phase polaritons.

■ MODEL AND METHOD
Floquet Tavis−Cummings Model. As shown in Figure 1,

we investigated the behavior of gas-phase molecules confined
within a Fabry−Peŕot cavity, taking into account their
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rotational motion.61,62 The dipole moments of these molecules
can be influenced by the molecular geometries, and we can
capture the impact of molecular rotations by incorporating a
cosine (or sine) function. To model the system, we utilized a
single-mode Tavis−Cummings (TC) model with periodic
driving, defined by the Hamiltonian = + +H H H HM C MC,
where

= =

= + +

=
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=

†
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In the Hamiltonian of molecules ĤM, B̂j is the annihilation
operator for the vibrational mode of the jth molecule. The
vibrational energy of the jth molecule ℏωj are distributed
according to a Gaussian function with mean value ωm, and the
level disorder can be represented by standard deviation σ. The
level disorder here is the disorder of the vibrational frequencies
of the molecules due to inhomogeneous broadening. We
define the range of the Gaussian distribution of molecular
energies as ΔE. In the Hamiltonian of cavity ĤC, the light field
is quantized by the photonic operators a ̂ (under the single
mode approximation). The light−matter interaction in ĤMC is
given by +g tcos( )c , where Ω means the molecular
rotational frequency, and ϕ means the molecular rotational
phase. We omit counter-rotating light−matter coupling terms
in the Hamiltonian because the collective coupling strength is
insufficient for these terms to have a significant impact.63,64 To
simplify the calculation of the Schrödinger equation, we
leveraged the temporal periodicity of molecular rotations and
applied the Floquet theory,65−71 which allows us to transform
the original time-dependent Hamiltonian Ĥ(t) into a time-
independent Floquet Hamiltonian ĤF:
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where Ĥ0 means the diagonal part of Ĥ, and Ĥ1 means the off-
diagonal part of Ĥ removing +tcos( ). I ̂ is the identity

matrix. Dirac delta function δ is used. NF is the number of
Floquet levels. By doing so, we can effectively handle the time
evolution of the system and the energy levels we calculate
correspond to the Floquet quasi-energy levels.72

Sparse Matrix Framework. In our study, we specifically
focused on molecular rotations and energetic disorder within a
system consisting of NM ≥ 106 molecules and NC = 1 cavity
mode. When dealing with such a large-scale system, the
primary concern shifts from computational speed to memory
usage.73 To address this, we adopted a memory-efficient
approach that takes advantage of the sparsity of the Floquet
Hamiltonian ĤF, which has the dimensions of (2NF + 1)(NM +
NC) × (2NF + 1)(NM + NC). Specifically, we utilized the
coordinate format (COO) sparse matrix framework,74 which
stores only the nonzero elements (data) and their correspond-
ing coordinates (row and column) in the matrix, denoted as
Hs

F
. The total number of nonzero elements in this sparse

matrix representation is given by × + +N N N3 (2 1)( )F M C .
This approach not only alleviates memory constraints but also
enhances computational efficiency by performing matrix
multiplications solely on the nonzero elements.
Density of States. For the single-mode TC model, upper

polariton (UP) and lower polariton (LP) exist on both sides of
the dark states (DS). To handle this, we employed the
implicitly restarted Lanczos method75,76 to calculate half (k/2)
eigenvalues (represented as Λ) and their corresponding
eigenvectors (represented as U) from each end of the
spectrum of the sparse matrix Hs

F, instead of diagonalizing
the entire matrix. The implicit restart Lanczos method is an
iterative algorithm used to solve the eigenvalues and
eigenvectors of large symmetric matrices, which improves
computational efficiency by regularly restarting.75,76 This
method acts as a wrapper for the ARPACK,77 SSEUPD, and
DSEUPD functions.78 Then, the density of states (DOS) ρ of
polaritons can be written as

= [ ]†H U P U( ) Tr ( ) C (3)

where =H diag( ) and diag means diagonal matrix mapping.
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C
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Here,
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Before taking the trace, the delta function δ(·) was initially
implemented numerically with Gaussian regularization.79−81

The Gaussian regularization can be interpreted as applying a
Gaussian line-broadening to the traditional time correlation
function. The density of states was then directly related to this
transformed function by a specific transform:

Figure 1. Our theoretical model is based on the setup that employs a
cryogenic buffer gas cell apparatus to facilitate cavity coupling of a gas-
phase molecular sample.56,57 This apparatus resides within a vacuum
chamber and is enveloped by a Fabry−Peŕot optical cavity, enabling
strong in situ coupling.
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in the small γ (the standard deviation) limit. Through this
transformation, we have reduced the originally calculated

+ + × + +N N N N N N(2 1)( ) (2 1)( )F M C F M C dimensions of
DOS to a controllable k × k dimension of local DOS, greatly
reducing computational memory, while not losing the key
information we need about polaritons.
Correlation Function. We calculated the correlation

function in Hilbert space, but at the same time, we need to
use the Floquet Hamiltonian to evolve the wave function in
Floquet space, such as

|
= |

t

t
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So we need a transformation from the wave function in
Floquet space to the wave function in Hilbert space:
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Then, the correlation function of photonic wave function in
Hilbert space will be

| = †t t(0) ( ) (0) ( ) (9)

Here, we want to emphasize that without molecular
rotations, there exist analytical results of the linear spectra
for the TC model.49,58−60 The numerical method enables us to
study the spectra and dynamics of polariton with disorder and

Figure 2. (a) Normalized DOS (heat map) with respect to energy frequency ω under different molecular rotational frequencies Ω. The white
dotted line represents the truncation position of the Gaussian distribution. ΔE represents the range of disordered molecular energy levels. Note that
the amplitude of polariton and molecular DOS has been adjusted to display on the same graph. (b) Time evolution of correlation functions of
photon−matter hybrid wave functions φ under different Ω, as defined in eq 9. After introducing molecular rotations, the oscillation period of the
photon−matter hybrid states will depend on the molecular rotation period (2 , red dash lines). Parameters: Ω = 0, 0.1, 0.5, ϕ = 0, k = 30, ℏ = 1, gc
= 0.01, ωc = ωm = 0, σ = 2, γ = 0.1, NF = 3, Δt = 0.001, NM = 106, and NC = 1. We use the relative unit.

Figure 3. (a) Normalized DOS with respect to the energy frequency ω under different disorders σ. The black dotted line represents the truncation
position of the Gaussian distribution. As the disorder increases, the polarities will become closer to the dark states (DS). ΔE represents the range of
disordered molecular energy levels. Note that the amplitude of polariton and molecular DOS has been adjusted to display on the same graph. (b)
Time evolution of correlation functions of photon−matter hybrid wave functions φ under different disorders σ, as defined in eq 9. After introducing
molecular rotations, the oscillation period of the photon−matter hybrid states will depend on the molecular rotation period (2 , red dash lines).
When the disorder increases, the dephasing time of polaritons rapidly decreases and approaches disappearance. Parameters: σ = 2, 3, 4, k = 30, ℏ =
1, gc = 0.01, ωc = ωm = 0, Ω = 0.1, ϕ = 0, γ = 0.1, NF = 3, Δt = 0.001, NM = 106, and NC = 1. We use the relative unit.
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molecular rotations of up to 1 million molecules. Moreover,
the numerical method is not limited to the TC model. For a
more realistic model that can be used to describe reactivity, no
analytical tools are available. The numerical methods presented
here can be very helpful to describe the reactivity as well.

■ RESULTS AND DISCUSSION
In Figure 2a, we explore the DOS of polaritons for varying
rotational frequencies Ω = 0, 0.1, 0.2,···, 2 with a strong light−
matter interaction regime, considering NM = 106 molecules
coupled to a single cavity mode. In general, we observe that
with larger and larger rotational frequencies Ω, the Rabi
splitting between LP and UP gets larger and larger. This proves
that there is the formation of the rovibrational polariton, which
is the effect of the couplings between vibrations, rotations, and
light−matter interactions. In Figure 2b, the correlation
function of the photonic wave function undergoes substantial
changes for Ω = 0, 0.1, 0.5. For Ω = 0, the correlation function
evolves uniformly and periodically. As Ω increases, the
fluctuation period becomes dominated by a molecular
rotational frequency with T = 2π/Ω. The change in the
fluctuation period from Ω = 0.1 to Ω = 0.5 highlights the
profound impact of molecular rotations on polariton state
evolution.

In Figure 3a, we investigate the influence of molecular
energy disorder (varying σ) on the polariton DOS. As σ
increases from 2 to 4, polariton energies deviate significantly
from the center of molecular DOS. At the same time, these
polaritons are very close to the dark states. The increase in
disorder causes the polariton states to mix with the dark

states.41,82−85 In Figure 3b, we analyze the impact of disorder σ
on the correlation function of photons. For σ = 3 and 4, the
correlation function decays close to zero and loses its periodic
fluctuations. The fast decay of the polaritonic state that we
observed is due to dephasing into the dark states,86 which
depends on the overlap between the polaritons and the dark
state manifold.87

We want to clarify that there are two kinds of disorder: (1)
disorder in the energy of the molecules and (2) disorder in the
coupling between the molecules and cavity modes. The first
kind of disorder may increase the Rabi splitting as mentioned
in the previous study, and the latter will decrease the Rabi
splitting.41,82−85 Here, we find that adding rotations to the
coupling between the molecule and cavity modes will increase
the Rabi splitting. So, the phenomena we see here are different
from the previously reported finding.

In Figure 4a,c, we find that the randomness of the rotational
phase tends to shrink the Rabi splitting. Besides, double peaks
will appear in the upper and lower polaritons when Ω = 0.1, σ
= 2, and ϕ within the range of ( ),

2 2
to (−π,π). By

increasing Ω to 0.5, the bimodal pattern disappears. Further
increasing Ω to 2, UP and LP will significantly move to
positions (14 and −14), but UP and LP will no longer
approach DS as n increases. As shown in Figure 4b, we increase
σ to 3, and its molecular DOS distribution range is within
[−10,10], which also produces the phenomenon shown in
Figure 4d. But at this point, UP and LP are very close to the
edge of DS. From Figure 3b, we know that in this case, UP and
LP will quickly decay.

Figure 4. Normalized DOS (heat maps) with respect to the energy frequency ω under different phases ϕ, which are sampled uniformly fromÄ
Ç
ÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑ,n n

32 32
. The larger the number, the greater the disorder of the phase. The white dotted line represents the truncation position of the Gaussian

distribution. Parameters: k = 30, ℏ = 1, gc = 0.01, ωc = ωm = 0, γ = 0.1, NF = 3, NM = 106, and NC = 1. We use the relative unit.
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Finally, in Figure 5, under strong disorder, we observe that
the introduction of molecular rotations enhances the

dephasing time of polariton states. With larger Rabi splitting,
the polaritonic states survive against the level disorder of the
molecules, such that we observe a longer dephasing time of the
polaritonic state in Figure 5.

■ CONCLUSIONS
In conclusion, our study presents a thorough investigation into
the spectra and dynamic behaviors of polaritons influenced by
gas-phase molecular rotations and level disorder. Our
simulations reveal that even in the presence of disorder and
rotations, collective effects manifest in the spectra. Notably, we
observed that increasing rotational frequencies leads to larger
Rabi splitting between LP and UP, while randomness in
rotational phases tends to diminish this splitting. Moreover, the
amplification of Rabi splitting proves crucial in bolstering
polaritons against molecular-level disorder.

Our findings not only deepen our understanding of
polaritonic phenomena but also furnish crucial insights into
the advancement and refinement of polaritonic devices. Since
we are using the TC model, the chemical reactivity cannot be
easily obtained from our results. However, the numerical
method presented in the manuscript is general, which does not
restrict to the TC model. We hope that we can use the method
to study a more realistic model that can be used to describe
chemical reactivity.

Additionally, there is considerable interest in exploring the
formation of rovibrational polaritons amidst disorder at
rotational frequencies. This avenue of research holds promise
for uncovering new dimensions of polaritonic behavior and
warrants further exploration in forthcoming studies. Last but
not least, cavity leakage can be incorporated into our numerical
method. One way of incorporating cavity leakage is to model
multiple cavity modes instead of just one mode.
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