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ABSTRACT
Interband and intraband transitions are fundamental concepts in the study of electronic properties of materials, particularly semiconductors
and nanomaterials. These transitions involve the movement of electrons between distinct energy states or bands within a material. In addition,
charge mobility is also a critical parameter in materials science and electronics. A thorough understanding of these transitions and mobility is
critical for the development and optimization of advanced electronic and optoelectronic devices. In this study, we investigate the influence of
external periodic drivings on interband and intraband transitions, as well as charge mobility, within a driven two-band model that includes
electron–phonon coupling. These external periodic drivings can include a periodic laser field, a time-varying magnetic or electric field, or an
alternating current voltage source. We have developed the Floquet surface hopping and Floquet mean field methods to simulate electronic
dynamics under various drivings in both real and reciprocal spaces. Our findings demonstrate that periodic drivings can enhance interband
transitions while suppressing intraband transitions. In addition, charge mobility is restrained by these external periodic drivings in the driven
two-band model.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0233477

I. INTRODUCTION

Carrier dynamics, which refers to the behavior and motion
of charge carriers (such as electrons and holes) in solid mate-
rials, plays a crucial role in determining the electronic, optical,
and transport properties of materials.1–3 For solid-state materi-
als, electron–phonon couplings significantly influence the electronic
and thermal characteristics.4,5 Phonon-assisted transitions involve
the absorption or emission of a phonon to conserve momentum,
facilitating the recombination of electrons and holes. This process is
critical in silicon-based devices, such as transistors and solar cells.6,7

In this study, we mainly focus on phonon-assisted interband and
intraband transition,8 as well as charge mobility9 under the influence
of external periodic driving. External periodic driving, such as an
oscillating electric field, an alternating current (AC) voltage source,
a periodic laser field, etc., can influence a wide range of systems, lead-
ing to diverse and often complex behaviors.10,11 Understanding these
responses is crucial in designing and controlling systems.

Interband transitions, involving the excitation of charge carri-
ers from the valence band to the conduction band, are fundamental
to the functionality of optoelectronic devices such as light-emitting
diodes (LEDs),12 laser diodes,13 and photovoltaic cells.14 In par-
ticular, the performance of a solar cell is critically dependent on
the efficiency with which it utilizes interband transitions to con-
vert incident photons into electrical energy.15 Upon absorption of
light, excitons are generated; these bound electron–hole pairs must
then be efficiently dissociated into free charge carriers (electrons and
holes) to facilitate the generation of an electric current.16 In a peri-
odically driven lattice, such as a semiconductor crystal subjected to
an oscillating electric field, electrons can experience Floquet–Bloch
oscillations.17 This can be used to control the electronic properties
of materials in ultrafast electronics and optoelectronics.18–20

Intraband transitions refer to the movement of charge carriers
(electrons or holes) within the same energy band, typically within
the conduction band or the valence band. These transitions enable
a variety of applications, especially in the infrared and terahertz
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regions. They provide essential functionality in sensing, imaging,
communication, and advanced electronic devices. With periodic
driving, the electron’s energy and momentum can be modulated,
leading to dynamic phenomena such as high harmonic generation
(HHG)21,22 and Bloch oscillations.23 For example, Ghimire et al.
have demonstrated HHG in bulk crystals driven by intense laser
fields, showing that electrons driven within the same band can
produce high harmonics of the driving frequency.24

Charge mobility is a critical parameter in the performance
of semiconductor devices, including transistors, solar cells, and
LEDs.25,26 Periodic optical driving, such as intense light or laser
pulses, can excite charge carriers to higher energy states, affect-
ing their mobility. This can lead to phenomena such as the
Franz–Keldysh effect, where the absorption edge of a semicon-
ductor shifts under the influence of an electric field, altering car-
rier dynamics.27,28 Under certain conditions, periodic driving can
lead to coherent transport where charge carriers experience fewer
scattering events, thereby increasing mobility.29 Periodic optical
driving can induce photoconductivity, where the mobility of photo-
generated carriers is modulated by the periodic light, enhancing the
performance of photodetectors and photovoltaic devices.30

To address time periodic systems, we can use Floquet theory,
which is a powerful mathematical framework used to analyze the
behavior of periodic systems in various fields, including physics,
engineering, and mathematics.31–33 For example, Leskes et al. intro-
duce Floquet theory as a means to enhance the understanding and
implementation of solid-state nuclear magnetic resonance (NMR)
spectroscopy.34 Shu et al. present an experimental study on the
observation of Floquet Raman transitions in a solid-state spin sys-
tem subjected to periodic driving, which demonstrates the potential
of Floquet engineering for controlling quantum states.35 In the work
of Rechtsman et al., Floquet theory offers a powerful tool to engi-
neer and control topological phases in photonic systems.36 Tiwari
et al. employed Floquet theory to study the optical absorption of
laser-dressed solids.37

In this study, within the frame of Floquet theory, we devel-
oped Floquet surface hopping (FSH) and Floquet mean field (FMF)
methods to simulate interband and intraband transitions, as well
as charge mobility under the influence of periodic driving. Both of
these two methods can be employed in real and reciprocal space.
For simulations of interband and intraband transitions, conducting
them in reciprocal space is more convenient. However, for simu-
lations of charge mobility, conducting them in real space is more
convenient. The surface hopping algorithm has previously been suc-
cessfully applied in solid-state dynamics.38–41 Although the mean
field method has been used in solid-state dynamics calculations,41,42

it has limitations in certain parameter regimes. Herein, we extend
both surface hopping and mean field algorithms to a two-band
model in Floquet space. External periodic driving helps us control
complex systems beyond their usual stable states. These approaches
for the two-band model have some similarities with the previous
work in Ref. 41 due to the shared framework. However, the addi-
tional degrees of freedom in the two-band system create more
complex dynamical interactions, resulting in qualitative differences
in the system’s response to periodic driving. This two-band model
introduces additional complexity that allows for the exploration
of new phenomena, such as interband transitions and band mix-
ing, which are not present in the one-band case. These effects are

especially important for understanding the behavior of real materials
with multiple electronic bands, which more accurately reflect practi-
cal systems. Our two methods are important for understanding these
dynamic effects. In addition, these methods can improve our basic
knowledge of the systems and can help optimize their performance
in various technological applications.

II. THEORY
A. Model Hamiltonian

In this study, we focus on the one-dimensional lattice model
with two sites per unit cell, A and B. The total Hamiltonian with
electron–phonon coupling and time periodic driving is given as
follows:

Ĥtot(t) = Ĥel(t) + Ĥel−ph(R) +Hph(R, P). (1)

Here, Ĥel(t) is the electronic Hamiltonian, which is subject to a time
periodic driving. Consequently, we have Ĥel(t) = Ĥel(t + T), where
T is the period of the driving. Ĥel−ph(R) is the electron–phonon
coupling, which is dependent on classical nuclear position R. In
this model, we consider dispersionless Einstein phonons Hph(R, P),
which is a simplified theoretical model where all phonons in the
crystal lattice have the same frequency (as in the Einstein model)
and there is no dispersion (frequency does not depend on wavevec-
tor). The phonon Hamiltonian depends on both nuclear position
R and momentum P.

In real space, the electronic Hamiltonian Hel(t) is formulated
as follows:

Ĥel(t) = −∑
n
(J1 + J cos (Ωt))∣n, B⟩⟨n, A∣

+∑
n
(J2 − J cos (Ωt))∣n + 1, A⟩⟨n, B∣ + h.c., (2)

where n is the number of sites, J1 is the hopping energy inside
the cell, and J2 is the energy required to hop between unit cells.
J cos(ωt) is the time periodic driving with strength J and frequency
Ω. Here, the ± phase difference between intra-cell and inter-cell
hopping terms is a mathematical simplicity and illustrates
symmetry-breaking in theoretical models. The phase difference
between intra-cell and inter-cell hopping terms is a crucial part of
topological systems, condensed matter physics, and quantum sim-
ulation. In the experiment, Jotzu et al. achieve this through the
fine-tuning of the lattice shaking frequency and amplitude, which
controls the strength of the hopping and the resulting phase shift
between the different hopping pathways.43

The electron–phonon coupling, which is dependent on classical
nuclear positions R = (r1, r2, . . . , rn), is expressed as follows:

Ĥel−ph =∑
n

g
√

2ω2(rn,A∣n, A⟩⟨n, A∣ + rn,B∣n, B⟩⟨n, B∣), (3)

where we consider the local electron–phonon coupling. g is the
dimensionless coupling parameter and ω is the nuclear oscil-
lation frequency. The vibrational reorganization energy is g2ω.
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For phonons, we consider the classical, noninteracting, harmonic
oscillations,

Hph =∑
n

1
2
(p2

n,A + ω2r2
n,A + p2

n,B + ω2r2
n,B). (4)

By employing Fourier transformation, we can transfer the
system from real space to reciprocal space,

f (k) = 1√
N

N

∑
n=1

eikrn f (r), (5)

where N means the total number of sites. Reciprocal space simplifies
the treatment of periodic systems, such as crystals, due to the inher-
ent periodicity in the structure. According to Ref. 40, in reciprocal
space, the nuclear position rk and momentum pk have the following
relationships with their counterparts in real space:

rk =
1√
N

N

∑
n=1
(rn cos (kn) − pn

ω
sin (kn)), (6)

pk =
ω√
N

N

∑
n=1
(pn

ω
cos (kn) + rn sin (kn)), (7)

where k is the wavevector ranging from −π/a to π/a and a is the
lattice constant.

The electron part in reciprocal space becomes

Ĥel = −∑
k
((J1 + J cos (Ωt))

+ eik (J2 − J cos (Ωt)))∣k, A⟩⟨k, B∣ + h.c.), (8)

the electron–phonon coupling becomes

Ĥel−ph =
g
√

ω√
2N
∑
k,k′
∣k + k′, A⟩⟨k, A∣

× (ω(r−k′ ,A + rk′ ,A) − i(p−k′ ,A − pk′ ,A))

+ g
√

ω√
2N
∑
k,k′
∣k + k′, B⟩⟨k, B∣

× (ω(r−k′ ,B + rk′ ,B) − i(p−k′ ,B − pk′ ,B)), (9)

and the phonon part becomes

Hph =∑
k

1
2
(p2

k,A + ω2q2
k,A + p2

k,B + ω2q2
k,B). (10)

Here, the assumption that only the electrons are driven by a
periodic field is valid in experimental contexts where the driving
frequency and intensity primarily interact with the electronic sub-
system, such as in laser-driven or microwave-driven systems, where
the heavier ions remain largely unaffected.44,45

B. Floquet theory
Floquet theory is a crucial mathematical framework for ana-

lyzing differential equations with periodic coefficients. For systems
subject to periodic driving forces, where the coefficients of the gov-
erning differential equations are periodic functions of time, Floquet

theory is essential for understanding their behavior. Floquet the-
ory simplifies time-dependent problems by transforming them into
effectively time-independent ones for periodic fields. As a non-
perturbative method, it can handle strong driving fields where
perturbation theory may fail. However, when the driving field is not
strictly periodic (e.g., in the case of a pulsed field), Floquet theory
is not directly applicable. In such cases, advanced techniques such
as the Magnus expansion46 or Floquet scattering theory47 may offer
more efficient solutions.

Here, we follow Ref. 48 to construct Floquet Hamiltonian
HF

tot . First, we need to introduce two main operators: the Fourier
number operators N̂ and the Fourier ladder operators L̂u. They have
the following properties:

N̂∣u⟩ = u∣u⟩, L̂u∣v⟩ = ∣u + v⟩, (11)

where ∣u⟩ is the basis set in the Fourier space. Then the Hamiltonian
and density operator in Floquet representation would be

Ĥ F =∑
u

Ĥ (u)L̂u + N̂h̵Ω, (12)

ρ̂ F(t) =∑
u

ρ̂ (u)(t)L̂u. (13)

Here, Ĥ (u) and ρ̂ (u)(t) are the Fourier expansion coefficients in
Ĥ(t) = ∑u Ĥ (u)eiuωt and ρ̂(t) = ∑u ρ̂ (u)(t)eiuωt , respectively.

In the Floquet representation, the equation of motion (EOM)
of ρ̂ F(t) has the same form as ρ̂(t), which follows the Liouville–von
Neumann (LvN) equation,

∂

∂t
ρ̂ F(t) = − i

h̵
[Ĥ F , ρ̂ F(t)]. (14)

Instead of the Schrödinger equation, we evolve the density matrix
according to the LvN equation, which can describe both pure and
mixed states via the density matrix. In the previous study, we suc-
cessfully employed the Floquet LvN equation to study nonadiabatic
dynamics near metal surfaces with periodic drivings.49,50

C. Floquet mean field (FMF)
In real space, classical particles move in the average poten-

tial created by the quantum particles in Floquet mean field (FMF)
dynamics. We can express FMF in real space as follows:

ṙn = pn,

ṗn = −Tr(∇rn Ĥ F ρ̂ F) − ω2rn.
(15)

Here, Ĥ F includes pure electron and electron–phonon coupling
parts.

In reciprocal space, we note that Ĥel−ph is related not only to
rk but also to pk, as evident from Eq. (9). Therefore, the EOM in
FMF dynamics becomes

ṙk = Tr(∇pk Ĥ F ρ̂ F) + pk,

ṗk = −Tr(∇rk Ĥ F ρ̂ F) − ω2rk.
(16)
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D. Floquet surface hopping (FSH)
Unlike the FMF method, the Floquet surface hopping (FSH)

method evolves classical particles on adiabatic surfaces with hopping
rates between these surfaces. In real space, the hopping rate from
surface α to surface β can be determined as follows:

kα→β = Θ
⎛
⎜
⎝
−2Re

⎛
⎜
⎝

P ⋅ dαβ
ρ̂F(ad)

βα

ρ̂F(ad)
αα

⎞
⎟
⎠

⎞
⎟
⎠

, (17)

where Θ is the Heaviside function,

Θ(x) =
⎧⎪⎪⎨⎪⎪⎩

x x > 0,

0 x < 0.
(18)

The P ⋅ dαβ comes from ⟨ΨF(ad)
α ∣ ∂

∂t ∣Ψ
F(ad)
β ⟩, where ΨF(ad)

α is the adi-
abatic Floquet wavefunction, which is dependent on rn. We have
ρ̂F(ad)

βα = ∣ΨF(ad)
β ⟩⟨ΨF(ad)

α ∣. The derivative coupling dαβ has the form
as

dαβ = ⟨ΨF(ad)
α ∣ ∂

∂rn
∣ΨF(ad)

β ⟩. (19)

Following Tully’s surface hopping algorithm, after a hopping event,
the nuclear momentum is rescaled in the direction of dαβ,

pnew = p − κdαβ/∣dαβ∣. (20)

In reciprocal space, the classical position and momentum
become scrambled as shown in Eqs. (6) and (7). Such that ΨF(ad)

α

is dependent on both rk and pk. Consequently, ⟨ΨF(ad)
α ∣ ∂

∂t ∣Ψ
F(ad)
β ⟩

becomes

∂rk

∂t
⟨ΨF(ad)

α ∣ ∂
∂rk
∣ΨF(ad)

β ⟩ + ∂pk

∂t
⟨ΨF(ad)

α ∣ ∂
∂pk
∣ΨF(ad)

β ⟩. (21)

Here, we can define

drk
αβ = ⟨Ψ

F(ad)
α ∣ ∂

∂rk
∣ΨF(ad)

β ⟩,

dpk
αβ = ⟨Ψ

F(ad)
α ∣ ∂

∂pk
∣ΨF(ad)

β ⟩.
(22)

In this way, the hopping rate from surface α to surface β in reciprocal
space becomes

kα→β = Θ
⎛
⎜
⎝
−2Re

⎛
⎜
⎝
(pk ⋅ drk

αβ − ω2rkdpk
αβ)

ρ̂F(ad)
βα

ρ̂F(ad)
αα

⎞
⎟
⎠

⎞
⎟
⎠

. (23)

After a hopping event, both position and momentum should be
rescaled,

pnew = p − κdrk
αβ/∣d

rk
αβ∣,

rnew = r + κdpk
αβ/∣d

pk
αβ∣.

(24)

In Ref. 40, this surface hopping algorithm has been bench-
marked against the numerically accurate hierarchical equations of
motion (HEOM) method for calculating electronic dynamics in the
solid state.

III. RESULTS AND DISCUSSIONS
In the following, we select a set of parameters to perform non-

adiabatic dynamics in both real and reciprocal space. We set J1 = 0.3
and J2 = 0.6, such that the bandgap should be 0.6. Nuclear oscillation
frequency ω = 0.3, temperature kT = 0.5, and reorganization energy
g2ω = 0.075. We choose 10 unit cells in the Brillouin zone. We set
the lattice constant a = 1. For each trajectory, the initial condition of
the phonon conforms to Boltzmann distribution as stated in Ref. 40.
For the interband and intraband dynamics simulations, the electrons
are concentrated at the k = 0 point on the lower band at t = 0. For
the charge mobility simulation, they are concentrated at the central
site in real space at t = 0. To obtain these numerical results, we use
a fourth-order Runge–Kutta algorithm to propagate both classical
and quantum coordinates. The time step for the algorithm is set to
dt = 0.01. We averaged 10 000 trajectories to get the final dynamics
results.

Figure 1 shows the Floquet electronic bands under various driv-
ing conditions. In Floquet space, the original two bands are split
into multiple Floquet replicas. At each step of the evolution, we
transform the density matrix from Floquet space back to Hilbert
space by summing the diagonal Floquet blocks, which represent
the time-averaged driving effect. Note that the electron–phonon
coupling facilitates both interband and intraband transitions. After

FIG. 1. Electronic band structures under different drivings. (a) Electronic band structure when there is no driving; (b) Floquet electronic band structure when J = 0.2, Ω = 1.0;
and (c) Floquet electronic band structure when J = 0.2, Ω = 3.0.
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FIG. 2. Interband transition (upper band electronic population) dynamics under different driving amplitudes J. (a) Comparison of results between Floquet surface hopping
algorithms in real space (R-FSH) and reciprocal space (K-FSH). Both methods show good agreement. Note that with increasing J, the interband transition increases. (b)
Comparison of results between Floquet mean field methods in real space (R-FMF) and reciprocal space (K-FMF). Both methods show good agreement. (c) Comparison of
results between FSH and FMF in real space. In the case of weak drivings, FMF shows a significant deviation from FSH.

each time step evolution, we obtain the diabatic density matrix in
reciprocal space. For each k-point, we then transform the diabatic
density matrix to the adiabatic basis using the eigenvector without
electron–phonon coupling to determine the electronic population
in different k-points and bands.

A. Interband and intraband transitions
Interband transition is the electronic transition between dif-

ferent energy bands in a material. An interband transition occurs

when an electron transitions from the valence band to the conduc-
tion band or vice versa. This process typically requires energy input
or release equal to the energy gap (bandgap) between the two bands.
Herein, the external periodic driving serves as a stimulus to facilitate
electron transfer from the valence band to the conduction band.

In Fig. 2, we show the interband dynamics under different driv-
ing amplitudes J when fixing a driving frequency of Ω = 1.0. Here,
the electronic population refers to the total population on the upper
band (i.e., the conduction band). Figure 2(a) shows the results from
FSH in both real (solid line) and reciprocal spaces (hollow circle).

FIG. 3. Heat map of the electronic population in the upper band under various driving amplitudes J, calculated by FSH in real space. Note that with increasing the driving
amplitude J, the electron population at the upper band edge increases correspondingly.
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FIG. 4. Interband transition (upper band electronic population) dynamics under different driving frequencies Ω. (a) Comparison of results between Floquet surface hopping
algorithms in real space (R-FSH) and reciprocal space (K-FSH). Both methods show good agreement. Note that with increasing Ω, the interband transition initially increases,
then decreases. (b) Comparison of results between Floquet mean field methods in real space (R-FMF) and reciprocal space (K-FMF). Both methods show good agreement.
(c) Comparison of results between FSH and FMF in real space. In the case of mediate drivings, FMF shows a significant deviation from FSH.

We see a good agreement between these two algorithms. When the
amplitude of the driving is increased, we observe an enhancement of
interband transitions from the valence band to the conduction band.
This indicates that external drivings can facilitate interband transi-
tions. This phenomenon is also illustrated by the FMF method, as
shown in Fig. 2(b) in both real and reciprocal space. However, sig-
nificant deviations between FSH and FMF are observed when the
driving amplitudes are small (weak drivings), as depicted in Fig. 2(c).
The dynamics of the electronic population at different k points in the
upper band are shown in Fig. 3. As the driving amplitude J increases,

more electrons are excited to the band edge of the upper band. This
increased electron population at the band edge strengthens the inter-
band transition because more electrons are now in positions where
transitions are more likely to occur. As a result, this enhances the
overall interband transition rate, which directly impacts the system’s
electronic and optical behavior.

Next, we set a fixed driving amplitude of J = 0.2 and show the
electronic dynamics on the upper band with the influence of dif-
ferent driving frequencies, as shown in Fig. 4. Figure 4(a) presents
results from FSH simulations demonstrating that suitable driving

FIG. 5. Heat map of the electronic population in the upper band under various driving frequencies Ω, calculated by FSH in real space. Note that with increasing the driving
frequency Ω, the electron population at the upper band edge increases first and then decreases.
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FIG. 6. Intraband transition (lower band electronic population except for k = 0 points) dynamics under different driving amplitudes J. (a) Comparison of results between
Floquet surface hopping algorithms in real space (R-FSH) and reciprocal space (K-FSH). Both methods show good agreement. Note that with increasing J, the intraband
transition decreases. (b) Comparison of results between Floquet mean field methods in real space (R-FMF) and reciprocal space (K-FMF). Both methods show good
agreement. (c) Comparison of results between FSH and FMF in real space. In the case of weak drivings, FMF shows a significant deviation from FSH.

frequencies facilitate interband transitions. As the driving frequency
increases sufficiently (for example, Ω = 3.0), the system exhibits
dynamics that resemble those observed in the absence of driving.
This is because the system is unable to respond to fast drivings.
The same observations can also be present in FMF simulations
in 4b. However, there are significant deviations between FSH and
FMF under mediate driving frequencies. The dynamics of the elec-
tronic population at different k points in the upper band are shown
in Fig. 5. At appropriate driving frequencies Ω, electron transi-
tions from the lower band to the band edge of the upper band are
increased.

Intraband transition refers to a quantum leap or transition of
an electron within the same band of energy levels in a material. In
the presence of external drivings, we evaluate the electron popula-
tion dynamics in the lower band, excluding the point at k = 0. We
demonstrate that intraband transitions are suppressed, as illustrated
in Figs. 6 and 7. This observation is evident because we already know
that periodic drivings increase interband transitions, thereby leav-
ing fewer electrons available for intraband transitions. The results
presented in Figs. 6 and 7 highlight the balance between interband

and intraband transitions. The observed decrease in intraband tran-
sitions illustrates how the system is utilizing its available electrons
more for exciting them across the bandgap rather than for con-
duction or scattering within the same band under the influence of
external drivings. Similarly, stronger drivings result in slower and
fewer intraband transitions. The system fails to respond to relatively
fast drivings, resulting in dynamics similar to those observed in the
absence of driving.

In summary, we introduce two semiclassical methods (FSH
and FMF) to illustrate how external periodic drivings can pro-
mote interband transitions and correspondingly suppress intraband
transitions.

B. Charge mobility
Charge mobility is a crucial property in materials science and

electronics because it determines how efficiently electrical current
can flow. Here, we calculate the mean squared displacement (MSD)
⟨r2⟩ under the influence of various drivings. In Fig. 8, we can
see that external periodic drivings exert a suppressing effect on

FIG. 7. Intraband transition (lower band electronic population except k = 0 point) dynamics under different driving frequencies Ω. (a) Comparison of results between Floquet
surface hopping algorithms in real space (R-FSH) and reciprocal space (K-FSH). Both methods show good agreement. Note that with increasing Ω, the intraband transition
initially decreases, then increases. (b) Comparison of results between Floquet mean field methods in real space (R-FMF) and reciprocal space (K-FMF). Both methods
show good agreement. (c) Comparison of results between FSH and FMF in real space. In the case of mediate drivings, FMF shows a significant deviation from FSH.
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FIG. 8. Dynamics of mean squared displacement ⟨r2⟩ under the influence of different drivings. (a) Comparison of results between FSH and FMF in real space when the
driving frequency is fixed (Ω = 1.0). (b) Comparison of results between FSH and FMF in real space when the driving amplitude is fixed (J = 0.2). Note that periodic
drivings exert a suppressing effect on charge mobility.

charge mobility in this two-band model. The observed suppression
of charge mobility is manifested through the decreased intraband
transition, as shown in Fig. 6. This effect arises from the fact that
under external drivings, a larger fraction of electrons are promoted
from the lower band to the upper band, which results in a reduced
population of electrons available for transport. Furthermore, in a
band-like conduction regime, the mobility (or conductivity) is typi-
cally inversely related to temperature. The increased driving ampli-
tude contributes additional energy to the system, effectively raising
its thermal energy, which further contributes to reduced mobility.
Remarkably, in real space, both the FSH and FMF methods produce
identical dynamic results under different driving conditions. Due
to its lower computational demand, employing the FMF method
for charge mobility calculations provides a practical and efficient
approach yielding reliable outcomes.

Since we develop a general method to analyze carrier dynamics
within a driven two-band model that incorporates electron–phonon
coupling. For simplicity, we focus on a specific case where the system
operates in the band-like transport regime. In this regime, shorter
simulation times are typically sufficient to evaluate charge mobility
via the MSD, compared to diffusive or hopping transport mecha-
nisms. Such timescales for MSD are common in other studies, as
referenced in Refs. 51 and 52. In the band-like transport regime,
fewer sites may suffice for simulation since delocalized charge carri-
ers can efficiently traverse long distances. In addition, we employed
periodic boundary conditions to mitigate finite-size effects, allowing
us to simulate an effectively infinite system with fewer sites.40,52

IV. CONCLUSIONS
We have introduced two semiclassical algorithms, Floquet sur-

face hopping (FSH) and Floquet mean field (FMF), to simulate
carrier dynamics within a two-band model under periodic drivings.
Both FSH and FMF methods are applicable in both real and recipro-
cal spaces. Our study demonstrates that periodic drivings efficiently

enhance interband transitions while correspondingly suppressing
intraband transitions. For simulations focusing on both interband
and intraband transitions, the FSH method proves to be more reli-
able, having been previously benchmarked against the numerically
accurate HEOM method in the one-band case. Furthermore, our
results indicate that periodic drivings constrain charge mobility
within this two-band model. For simulations of charge mobility
under various periodic driving scenarios, FMF emerges as a practical
and efficient approach. Since external periodic drivings offer ways
to manipulate and control the behavior of complex systems beyond
their static equilibrium states, our proposed two methods here can
play a significant role in understanding these dynamic effects. These
approaches enhance our fundamental understanding of the systems
under study and pave the way for optimizing their performance in
diverse technological applications.
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