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The notion of chiral-induced spin selectivity (CISS) has attracted intensive research interest recently. How-
ever, the practical applications of the CISS effects face challenges due to relatively low spin polarization. In
this Letter, we propose a non-perturbative theory illustrating how circularly polarized (CP) light enhances CISS
effects through strong light-matter interactions. We introduce a Floquet electronic friction model to study the
nonadiabatic dynamics and spin transport through a chiral molecule in a molecule junction subjected to external
driving. Our results show that the interplay of the nonadiabatic effects and light-matter interactions can sig-
nificantly (> 90%) enhance electron spin polarization under CP light. Our predictions can be very useful in
experiments for using CP light to control spin current in chiral molecular junctions.

Introduction.—Chirality characterizes parity-symmetry
breaking where a molecule cannot be superposed on its
mirror image in chemistry and biology [1–3]. Chiral or-
ganics have recently been reported to exhibit a topological
feature [4], in which the electronic orbital and momentum are
locked together, to rationalize the intriguing spin selectivity
in DNA-type molecules [5, 6], known as CISS [7]. The
CISS effects were initially reported in 1999 by Naaman
and collaborators[7]. Since then, a number of additional
experimental [8–23] and theoretical [4, 24–64] studies have
been conducted. A future industrial applications of CISS
is spin-based chip design, which should enable electronic
devices to reach atomic scale [65, 66]. Although we can
observe up to 85% spin polarization in experiments using the
contact magnetic atomic force microscope (AFM) setup [67],
spin selection occurs prior to electron passage through the
chiral molecule, and this initial spin selection is primarily due
to the strong SOC of the metal substrate [61]. The SOC alone
induced by electron motion within chiral molecules [54] is
too small to give rise to the observed spin polarization [68].
How to enhance CISS has attracted extensive research.

Recent studies indicate that electron-vibration coupling en-
hances the CISS effect, leading to an increase in the spin po-
larization in double-helix DNA [62]. When considering the
coupling between atomic nuclei and electron spins, calcula-
tions reveal strong spin selectivity near the conical intersec-
tion, even when the SOC is small, with spin selectivity reach-
ing up to 100% [63]. In the presence of a non-zero current,
Berry curvature can induce nuclear spin separation and elec-
tron spin polarization [64]. However, the universal theory on
how to enhance CISS is still lacking.

In physics, chirality usually refers to the spin–momentum
locking of particles such as Weyl fermions [69, 70] and CP
light. Chiral enantiomers exhibit opposite chiroptical activ-
ity when coupling to light [71]. Due to the dissymmetric
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interaction between CP light and chiral molecules, there is
a selectivity in absorption or emission of left-handed versus
right-handed CP light for chiral molecular systems [72, 73].
Therefore, inspired by the close connection between chiral
molecules and light-matter interactions, we sought to explore
whether CP light could enhance the CISS, contributing to the
ongoing advancements in spintronics [5, 74].

In this Letter, we present a non-perturbative theory to il-
lustrate how circularly polarized (CP) light enhances CISS
through strong light-matter interactions. Our results indicate
that when chiral molecules interact with CP light, there is a
significant (> 90%) enhancement of electron spin polariza-
tion. The prediction from our newly developed theory high-
lights the effects of using CP light to control spin current in a
chiral molecular junction, which can be potentially verified in
CISS experiments.

General Hamiltonian.—As shown in the schematic dia-
gram [Fig. 1 (a)], we start from a minimal model for CISS
with two spatial orbitals and spin-orbit couplings between
them [8, 64]. These orbitals couple to left and right leads
whose voltages are µL and µR, respectively. In addition, the
Hamiltonian depends on two nuclear degrees of freedom (x
and y are considered, uniformly represented as R). The total
model Hamiltonian Ĥtot consists of the kinetic energy and an-
other three parts: the system Hamiltonian Ĥs, the bath Hamil-
tonian Ĥb composed of left and right leads, and the system-
bath coupling Hamiltonian Ĥsb,

Ĥtot =
P̂2

2M + Ĥs + Ĥb + Ĥsb, (1)

Ĥs = ∑i j[hs]i j(R, t)d̂†
i d̂ j +U(R), (2)

Ĥb = ∑kζ εkζ ĉ†
kζ

ĉkζ , (3)

Ĥsb = ∑ζ k,i Vζ k,i(ĉ
†
kζ

d̂i + d̂†
i ĉkζ ). (4)

In system Hamiltonian (Ĥs), the operators d̂†
i and d̂i denote

create and annihilate an electron in the i-th spin orbital of the
subsystem respectively. U(R) represents the electrostatic po-
tential between nuclei. As for the Hamiltonian (Ĥb), the op-

ar
X

iv
:2

40
2.

00
90

3v
1 

 [
co

nd
-m

at
.m

es
-h

al
l]

  1
 F

eb
 2

02
4

mailto:douwenjie@westlake.edu.cn


2

FIG. 1. (a) A schematic picture of our chiral molecular junction model interacted with circularly polarized light. µL and µR are chemical
potentials of the left and right leads, and the source-drain voltage Vsd = µL − µR controls the voltage bias Vbias. (b) Steady-state spin current
I↑/↓ in Eq. 13 and spin polarization ξ in Eq. 18 for hs (pump off) in Eq. 7, h[R]

s (pump on and right-handed) in Eq. 5 and h[L]
s (pump on and

left-handed) in Eq. 6. For spin-up and spin-down electrons, we calculate the average spin current using 104 nuclear motion trajectories with
random force δFF

µ , respectively. Parameters: ∆ = 3, A = B = 1, Ω = 1, kT = 0.5, λx = 0, λy = 0.8, Γ̃ = 1, µL =−µR and Floquet level N = 5.

erators ĉ†
kζ

and ĉkζ create and annihilate electrons in the k-th
spin orbital of the lead ζ , where the energy of the orbital is
denoted by εkζ . Lastly, in the interaction Hamiltonian (Ĥsb),
the tunneling element Vζ k,i indicates the interaction between
subsystem spin orbital i and lead spin orbital kζ . In Eq. 4, the
Condon approximation has been utilized, implying that Vζ k,i
is independent of R.

For the system Hamiltonian, we consider chiral molecules
interacting with a CP light beam, which involves peri-
odic driving from light-matter interactions. For right-
handed/clockwise CP light, the system Hamiltonian h[R]

s
writes

h[R]
s (R, t) =[

x+∆ Axcos(Ωt)− iBysin(Ωt)
Axcos(Ωt)+ iBysin(Ωt) −x−∆

]
.

(5)

While for left-handed/counterclockwise CP light, the system
Hamiltonian h[L]

s writes

h[L]
s (R, t) =[

x+∆ Axcos(Ωt)+ iBysin(Ωt)
Axcos(Ωt)− iBysin(Ωt) −x−∆

]
.

(6)

Finally, for no polarized light, the system Hamiltonian hs
writes

hs(R, t) =
[

x+∆ Ax− iBy
Ax+ iBy −x−∆

]
. (7)

Here, ∆ represents the energy gap between two spatial or-
bitals, parameter A denotes the shifts of diabatic PES and B
denotes the strength of spin-orbit couplings. Moreover, Ω de-
notes the frequency of the periodic driving.

The shifted parabola model is extensively employed to
simulate electron transfer and excitation energy transfer pro-
cesses [75]. Note that Eq. 5, Eq. 6 and Eq. 7 are all effective
Hamiltonians, where positive B represents spin-up state and
negative B represents spin-down state.

As commonly used in literature [76], the bare potential
U(R) is set to be a two dimensional parabolas:

U(R) =
1
2
(x−λxx)2 +

1
2
(y−λyy)2. (8)

Even though the scalar potential U(R) does not couple to spin
state directly, the linear terms λx and λy in U(R) can change
the spin current and spin polarization dramatically. At this
point, we have introduced our model for spin transport in a
chiral molecule with optical control.

Floquet Nonadiabatic Dynamics.—We adapt our newly de-
veloped Floquet electronic friction model to study nonadia-
batic spin transport dynamics [77, 78]. In particular, all elec-
tronic DoFs (including spin-orbit couplings) as well as peri-
odic driving are being incorporated into frictional force and
random force on nuclear motion. As a result, one can simply
run Langevin equation of motion for the nuclei, which is given

by

Mµ R̈µ = FF
µ −∑

ν

γ
F
µν Ṙν +δFF

µ . (9)

Here, FF
µ , γF

µν , and δFF
µ are mean force, friction tensor, and

random force respectively. We use the superscript F to denote
their Floquet counterparts. To evaluate FF

µ , γF
µν , and δFF

µ , we
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need to represent h[R]
s and h[L]

s in Floquet levels. Here, we
provide an explicit formula for each block of the extensive
matrix, which is in the Fourier space:

hF
s =

N

∑
n=−N

[h[R]/[L]s ](n)L̂n + N̂ ⊗ Înh̄ω, (10)

[h[R]/[L]s ](n) =
1
T

∫ T

0
h[R]/[L]s (R, t)e−inΩtdt, (11)

where N̂ is the number operator, În is the identity matrix for
the n-th order and T is the period, equal to 2π/Ω. L̂n is the
n-th ladder operator which turns the vector-like Fourier ex-
pansion into a matrix-like representation. Specifically, Eq. 10
represents the decomposition of h[R]/[L]s (R, t) into different
energy components rotating at different frequencies in the
Fourier space. The term [h[R]/[L]s ](n) denotes the decomposi-
tion of h[R]/[L]s (R, t) at the frequency of nΩ. The first term of
Eq. 10 is the weighted sum of each Floquet potential, while the
second term is the tensor product of N̂ and În. This term can
be added to the Hamiltonian because N̂ commutes with the
Hamiltonian. Eq. 10 allows us to understand the time evolu-
tion of the system at different rotating frequencies, and further
investigate the physical properties of the system.

The explicit form of the frictional force and random force
are computed directly in terms of Green’s functions. The fric-
tional force is given by

γ
F
µν =− h̄

2π(2N +1)

∫ +∞

−∞

dεTr
{

∂µ hF
s ∂ε GF

r ∂ν hF
s GF

<

}
+H.c..

(12)
Please refer to Supplemental Material (SM) A for details.

Spin Current.—The spin current I↑/↓ is obtained by averag-
ing over the nuclear DOFs with respect to local current [64]:

I↑/↓ =
∫

dRdPIF
loc(R)ρ↑/↓(R,P). (13)

The local current IF
loc flowing from the left lead through the

molecule to the right lead can be evaluated by the Landauer
formula [79, 80],

IF
loc =

e
2π h̄(2N +1)

∫ +∞

−∞

dεTr
{

T F(ε)[ f F
L (ε)− f F

R(ε)]
}
.

(14)

In the above equation, f F
L (ε) and f F

R(ε) represent the Floquet
Fermi-Dirac distribution functions that correspond to the left
and right leads, respectively. Additionally, T F(ε) denotes the
Floquet transmission probability, which can be deconstructed
using the Green’s functions.

T F(ε) = Γ
F
LGF

r (ε)Γ
F
RGF

a (ε), (15)

where

Γ
F
L = ΓL ⊗ În, Γ

F
R = ΓR ⊗ În. (16)

In this project, we examine the distinct interaction between
a molecule and two leads where solely orbital 1 (x+∆) cou-
ples to the left lead and only orbital 2 (−x − ∆) couples to
the right lead. This arrangement is demonstrated in the subse-
quent definition of the Γ matrices:

ΓL =

(
Γ̃ 0
0 0

)
, ΓR =

(
0 0
0 Γ̃

)
. (17)

Finally, we define spin polarization ξ as follows,

ξ =
I↓− I↑

I↓+ I↑
×100%. (18)

Here, I↑/↓ denotes spin-up or spin-down current. See SM B
for details of computing I↑/↓.

FIG. 2. Dynamics of spin current I↑/↓ in Eq. 13 for hs (pump off) in
Eq. 7 and h[R]

s (pump on and right-handed) in Eq. 5 when µL = 4.0
in Fig. 1 (b). All parameters are identical with Fig. 1 (b).

Spin Polarization Enhanced by CP Light.—We present the
impact of CP light on enhancing spin polarization. In Fig. 1
(b), we illustrate the steady-state spin current and spin polar-
ization for ∆ = 3 with µL =−µR.

In the left panel (pump off) of Fig. 1 (b), we plot the spin
polarization/spin current without light-matter interactions (us-
ing hs in Eq. 7). Without voltage bias, there is no spin po-
larization being observed. This finding agrees with exper-
iments [64, 67]. When −4 ≤ µL < 0, CISS-induced spin
polarization consistently remains below 25%, whereas for
0 < µL ≤ 4, the spin polarization induced by CISS nearly
diminishes. Notably, in the middle panel (pump on, right-
handed) and right panel (pump on, left-handed) of Fig. 1 (b),
activating right-handed (h[R]

s ) or left-handed (h[L]
s ) CP light re-

sults in high spin polarization (|ξ | ≈ 91%) at a small voltage
bias (µL =±0.5). This spin polarization gradually diminishes
as |µL| increases, consistently remaining above 25% within
the range of 0 < |µL| ≤ 4. The symmetric distribution of spin
polarization caused by right-handed and left-handed CP light
with respect to 0% is consistent with experiments [8]. There-
fore, for simplicity, we only present the results of the right-
hand CP light in Fig. 2 and Fig. 3. Note that the presence of
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∆ = 3 results in an asymmetric energy distribution for the two
spatial orbitals. Therefore, the spin polarization for µL > 0 de-
creases more rapidly compared to µL < 0. Within the current
range of results, it is evident that the decline in spin polariza-
tion persists with the increasing magnitude of |µL|. Hence, we
recommend employing a small Vbias for researchers aiming to
observe conspicuous spin polarization in experiments.

In Fig. 2, we plot the dynamics of spin current with the
comparison between no light (pump off) and right-handed CP
light (pump on) when µL = 4.0 in Fig. 1 (b). Spin current
fluctuations arise from random forces and progressively di-
minish with an increasing number of trajectories, set at 104

for each spin state in this calculation. For spin-down elec-
trons, CP light does not result in a significant enhancement of
the steady-state current value; however, the time required to
reach the steady state considerably prolongs, as illustrated in
the upper panel of Fig. 2. In contrast, for spin-up electrons, the
activation of CP light enhances both the steady-state value and
the relaxation time of the spin current, as depicted in the lower
panel of Fig. 2. This observation suggests that in this system,
CP light introduces additional oscillations, and right-handed
CP light specifically exhibits a more pronounced selectivity
toward spin-up electrons.

FIG. 3. Nuclear distribution ρ↑/↓ (300 ≤ time ≤ 2000, ∆t = 0.05)
in Eq. 13 for hs (pump off) in Eq. 7 and h[R]

s (pump on and right-
handed) in Eq. 5 when µL = 4.0 without the random force δFF

µ from
the Langevin dynamics to obtain the steady state distribution. All
parameters are identical with Fig. 2.

In Fig. 3, we illustrate the nuclear distribution at µL = 4.0
without the random force from Langevin dynamics, allow-
ing us to obtain the steady-state distribution [81]. The dis-
tinct steady states observed in nuclei with spin-up and spin-
down electrons, as depicted in Fig. 3, can be ascribed to the
influence of the Lorentz-like force associated with the anti-
symmetric friction tensor γA

xy [77]. When pump off, the steady
state of nuclear motion exhibits counterclockwise rotation for
spin-down electrons and clockwise rotation for spin-up elec-
trons, as illustrated in Fig.3 (pump off). At this stage, the

difference in the distribution range between spin-up and spin-
down states is minimal, as reflected in the spin current, where
the distinction remains inconspicuous (Fig.2, pump off). No-
tably, upon the activation of CP light, the contrast in nuclear
steady-state distribution between spin-up and spin-down elec-
trons undergoes a significant amplification, as illustrated in
Fig. 3 (pump on). This result corresponds with the marked
rise in spin polarization depicted in Fig. 1 (b) [µL = 4.0 for
pump off and on (right-handed)]. The introduction of CP light
emerges as a crucial factor in enhancing the distinctions in nu-
clear motion and spin polarization between spin-up and spin-
down electronic states.

These findings highlight the critical role of the CP light in
influencing the steady states of nuclear motion and, conse-
quently, spin polarization in electronic systems. In addition
to the specific cases discussed here, our results have broader
implications for the fields of spintronics and optoelectron-
ics. The ability to manipulate spin polarization through light-
matter interactions opens up the possibilities for developing
spin-based devices with tunable properties. Furthermore, the
understanding of the underlying mechanisms, such as the in-
fluence of CP light, provides guidance for spin control and
manipulation in designing novel materials and structures.

Conclusions.—In conclusion, our investigation into the in-
fluence of CP light on spin polarization in electronic systems
has yielded valuable insights. We have demonstrated that CP
light can exert a profound enhancement (> 90%) on spin po-
larization. In particular, light-matter interactions introduce
Lorentz-like force that changes the nuclear dynamics dramat-
ically for different spin states. As a result, even small spin-
orbit couplings (SOC) can introduce large spin selectivity. We
find that the interplay of the light-matter interactions and SOC
can enhance the spin polarization in quantum transport.

These findings not only advance our fundamental under-
standing of spin dynamics in optoelectronic systems but also
open up exciting opportunities for practical applications in the
realm of spintronics. The ability to control and manipulate
spin polarization through light-matter interactions holds great
promise for the development of novel technologies, including
spin-based quantum computing and information storage.

As we peer into the future, several promising avenues for
further research emerge. In the realm of electronic structure
theory, there is an urgent need for high-precision calculations
of excited-state electronic spin states in large systems, sur-
passing the capabilities of traditional Density Functional The-
ory (DFT). Accurately modeling spin-orbit coupling (SOC) as
well as derivative couplings is equally crucial. These works
are on-going.

This material is based upon work supported by Na-
tional Natural Science Foundation of China (NSFC No.
22361142829). W.L. acknowledges support from the high-
performance computing center of Westlake University.
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