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Simultaneous driving by two periodic oscillations yields a practical technique for further engineer-
ing quantum systems. For quantum transport through mesoscopic systems driven by two strong
periodic terms, a non-perturbative Floquet-based quantum master equation (QME) approach is
developed using a set of dissipative time-dependent terms and the reduced density matrix of the
system. This work extends our previous Floquet approach for transport through quantum dots (at fi-
nite temperature and arbitrary bias) driven periodically by a single frequency. In a pedagogical way,
we derive explicit time-dependent dissipative terms. Our theory begins with the derivation of the
two-mode Floquet Liouville-von Neumann equation. We then explain the second-order Wangsness-
Bloch-Redfield QME with a slightly modified definition of the interaction picture. Subsequently,
the two-mode Shirley time evolution formula is applied, allowing for the integration of reservoir dy-
namics. Consequently, the established formalism has a wide range of applications in open quantum
systems driven by two modes in the weak coupling regime. The formalism’s potential applications
are demonstrated through various examples.

I. INTRODUCTION

Quantum transport through mesoscopic nanostruc-
tures exhibits a range of remarkable static characteristics,
including quantized conductance [1–3], Coulomb block-
ade [4], quantum interference [5–7], Kondo effect [8, 9],
and spin filtering [10]. Meanwhile, dynamic effects such
as quantum coherence, polaron formation [11–13], molec-
ular vibronic coupling [14], etc., have attracted interest
in the solid-state physics and quantum chemistry com-
munities. Dynamical control, for example, by applying
oscillating fields to the original systems, allows for the
discovery of new properties unattainable by only altering
static experimental conditions. Very recently, there has
been an increasing interest in controlling the dynamics
of quantum systems or chemical reactions by driving the
system with more than only one frequency, which may de-
scribed as multi-mode Floquet engineering [15–20]. For
instance, mediated by the strong spin-orbit interactions
in a hole silicon spin qubits, the proposed phase-driving
technique couples a secondary frequency (radio wave) to
the qubit phase to reduce the susceptibility of the qubit
to the noise [21]. To the best of our knowledge, there are
no theoretical quantum transport reports (on open quan-
tum systems) where the dot is driven with two frequen-
cies. The interplay between two simultaneous drivings
(specified by two amplitudes, two frequencies, and two
initial phases) and the strength of electronic dissipation is
intriguing from a theoretical standpoint. Several theoret-
ical approaches have been developed to understand both
the steady-state and the dynamical aspects associated
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with transport effects mentioned above. Among these are
Landauer-Büttiker [22, 23], generalized quantum mas-
ter equation [24], non-equilibrium Green’s function [25],
and Hierarchal equation of motion (HEOM) [26]. The
HEOM is inherently time-dependent and capable of cap-
turing non-Markovian effects, but it is computationally
expensive [27]. Generally speaking, no single theoretical
quantum transport approach can capture all the trans-
port features with the same level of simplicity. In pre-
vious work, we developed two types of Floquet-based
quantum master equations (QMEs) to simulate trans-
port properties in a periodically driven open quantum
system, namely the Hilbert space QME and the Floquet
space QME [28]. It has been observed that the number
of quantized current plateaus changes under the strong
coupling regime when the driving amplitude is signifi-
cantly larger than the energy difference between the two
levels and the driving frequency is in resonance. Floquet
space QME has been used within the surface hopping al-
gorithm to address the chemical processes of molecules
under time-periodic driving near a metal surface [29]. In
this work, we first demonstrate the existence of a well-
defined Floquet Liouville-von Neumann (LvN) equation
for a Hamiltonian driven by two independent frequen-
cies, whether commensurate or not. Next, we transform
the Floquet LvN equation into a Floquet Redfield equa-
tion and apply three key simplification steps to arrive at
simplified dissipative terms, enabling simulation of the
reduced density matrix dynamics. More specifically, we
apply our new methods to a driven two-level system (An-
derson model) weakly coupled to two thermal baths (left
and right terminals), where the difference between the
electrochemical potentials in the two baths controls the
current. The time-dependent and quasi-steady-state ex-
pectation values of the current are calculated for several
two-frequency driving scenarios.
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II. FORMALISM

A. Two-mode Floquet Liouville-von Neumann
Equation: closed systems

The Liouville von Neumann (LvN) for the density op-
erator reads as:

dρ̂(t)

dt
= −i[Ĥ(t), ρ̂(t)]. (1)

Here, we set ℏ = 1. One can transform the original
LvN equation into a Floquet counterpart, in the Floquet
space, for any perfectly periodic single mode Hamilto-
nian, Ĥ(t)=Ĥ(t+ T ), as

dρ̂F (t)

dt
= −i

[
ĤF , ρ̂F (t)

]
, (2)

such that the HF is no longer time-dependent. For the
single-mode driven Hamiltonian, details on how to de-
rive Eq. (2) are given in Refs. [30, 31]. Although the
multi-mode Floquet theory introduced many years ago
in an ad hoc manner [32], but to the best of our knowl-
edge there is no rigorous derivation for the density-based
two-mode Floquet theory. In the context of a two-mode
driven Hamiltonian, the question arises: How can such
a transformation be understood in a simple and intu-
itive way? The process of transforming the original LvN
equation into the two-mode Floquet LvN equation can be
divided into three steps: (I) expanding Hamiltonian and
density operator (the components of the LvN equation)
by the 2D complex Fourier series, (II) transformation of
LvN into its Fourier representation by introducing four
algebraic operators, and (III) transformation from the
Fourier representation to the Floquet representation. In
the following, we will highlight the similarities and dif-
ferences between the single-mode Floquet LvN and the
two-mode version as we explain the process.

Step (I) begins with expanding both the time-
dependent Hamiltonian and density operators by the fol-
lowing Fourier series

Ĥ(t) =
∑
mn

Ĥmn einω1teimω2t, (3)

ρ̂(t) =
∑
mn

ρ̂mn(t) einω1teimω2t. (4)

Then, the coefficient operators Ĥmn obtains by

Ĥmn=
1

T1T2

∫ T2

0

dt2

∫ T1

0

dt1Ĥ(t1, t2)e
−inω1t1e−imω2t2 , (5)

where T1(2) = ω1(2)/2π. In evaluating Ĥmn, we re-
indexed the time variable to t1 (t2) in the component of
Hamiltonian that oscillates with the frequency ω1 (ω2).
Reversely, on expanding the time-dependent Hamilto-
nian in terms of Ĥmn, we can employ t1 = t2 → t,

which indicates we intend to retrieve the time-dependent
Hamiltonian, Ĥ(t1, t2), only on the line with 45◦ in the
continuous 2D time space. We then substitute the ex-
pansions given in Eqs. (3) and (4) into the LvN equation
[Eq. (1)] as∑
mn

(dρ̂mn(t)

dt
+ i(nω1 +mω2)ρ̂

mn(t)
)
einω1teimω2t =

− i
∑

kl,k′l′

[
Ĥkl, ρ̂k

′l′(t)
]
ei(l+l′)ω1tei(k+k′)ω2t =

− i
∑

mn,k′l′

[
Ĥ(m−k′)(n−l′), ρ̂k

′l′(t)
]
einω1teimω2t.

(6)

In step (II), we should first define four new algebraic op-

erators, L̂′′
m, L̂′

n, N̂
′′, and N̂ ′, in the two-mode Fourier

space. Note that in the single-mode Floquet theory, we
define two algebraic operators which are called the Flo-
quet Number, N̂ , and the Floquet Ladder, L̂n, operators
and these operators have associations with a single-index
Fourier basis set, {|n⟩}. The index n is the harmonic in-
dex that spans from negative to positive integer values.
In case of the two-mode Floquet theory, we need to build
a two-index Fourier basis set by the tensor product of
single-index Fourier basis sets as {|m,n⟩}={|m⟩}⊗{|n⟩}
in which {|n⟩} ({|m⟩}) corresponds to the first (second)
frequency ω1 (ω2). The above four operators, in turn,
are defined via the Ladder and Number operators in the
one-mode Fourier space by

L̂′
n = Îω2 ⊗ L̂ω1

n , L̂′′
m = L̂ω2

m ⊗ Îω1 ,

N̂ ′ = Îω2 ⊗ N̂ω1 , N̂ ′′ = N̂ω2 ⊗ Îω1 .
(7)

Here, Î refers to the identity operator, and the super in-
dices ω1 and ω2 are used to distinguish the two Fourier
spaces. These four operators obey the following proper-
ties

L̂′
k|m,n⟩ = |m,n+ k⟩, L̂′′

k |m,n⟩ = |m+ k, n⟩,
N̂ ′|m,n⟩ = n|m,n⟩, N̂ ′′|m,n⟩ = m|m,n⟩,

[N̂ ′, L̂′
k] = kL̂′

k, [N̂ ′′, L̂′′
k ] = kL̂′′

k ,

[L̂′
n, L̂

′
k] = 0, [L̂′′

m, L̂′′
k ] = 0.

(8)

Also, we should highlight that the single-primed op-
erators act on the first index n, whereas the double-
primed operators act on the second index m, of the two-
mode Fourier basis set, in the same way as the origi-
nal Ladder and Number operators act on the one-mode
Fourier basis set. In addition by employing the identity
(A⊗B)(C⊗D) = AC⊗BD, one can show that operators
in different subsets commute with each other as

[N̂ ′, N̂ ′′] = 0, [L̂′
n, L̂

′′
k ] = 0, [L̂′

n, N̂
′′] = 0. (9)

Next, we introduce the following Fourier representations

Ĥf (t) =
∑
mn

L̂′′
mL̂′

n ⊗ Ĥmn einω1teimω2t, (10)

ρ̂f (t) =
∑
mn

L̂′′
mL̂′

n ⊗ ρ̂mn(t) einω1teimω2t. (11)
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In which, we have modified Fourier expansions at Eqs.
(3) and (4) by adding the Ladder operator L̂′′

mL̂′
n =

L̂ω2
m ⊗ L̂ω1

n . Ladder operators transform the vector-like
Fourier expansions into fairly complex matrix-like repre-
sentations. Same way as the single-mode Floquet theory,
we substitute Eqs. (10) and (11) into the LvN equation
[Eq. (1)]. The RHS is given by∑
mn

L̂′′
mL̂′

n ⊗
(dρ̂mn(t)

dt
+ i(nω1 +mω2)ρ̂

mn(t)
)
×

einωteimνt.

(12)

Temporarily ignoring the −i, and with the abbreviation
ρ̂mn ≡ ρ̂mn(t), the LHS is given by∑
kl,k′l′

[
L̂′′
kL̂

′
l ⊗ Ĥkl, L̂′′

k′L̂′
l′ ⊗ ρ̂k

′l′
]
ei(l+l′)ω1tei(k+k′)ω2t =

∑
mn,k′l′

[
L̂′′
m−k′L̂′

n−l′ ⊗ Ĥ(m−k′)(n−l′), L̂′′
k′L̂′

l′ ⊗ ρ̂k
′l′
]

× einω1teimω2t =∑
mn,k′l′

L̂′′
mL̂′

n ⊗
[
Ĥ(m−k′)(n−l′), ρ̂k

′l′
]
einω1teimω2t,

(13)

where in the last line, we benefit from [L̂
′′(′)
m−k′ , L̂

′′(′)
k′ ] = 0,

which comes from the fact that L̂
′′(′)
m−k′L̂

′′(′)
k′ = L̂

′′(′)
m . Here

the main point is the commutation relations in Eqs. (8)

and (9) allow us to factor out L̂′′
mL̂′

n. Combining Eq. (12)
and Eq. (13), and recovering the −i, we arrive in∑
mn

L̂′′
mL̂′

n ⊗
(dρ̂mn

dt
+ i(nω1 +mω2)ρ̂

mn
)
einω1teimω2t =

−i
∑

mn,k′l′

L̂′′
mL̂′

n ⊗
[
Ĥ(m−k′)(n−l′), ρ̂k

′l′
]
einω1teimω2t.

(14)

Other than the operator L̂′′
mL̂′

n, the two sides of Eq. (14)
and Eq. (6) are identical. Hence, we have proven that
with proper definition for two-mode Floquet Number and
Ladder operators, the LvN equation in Fourier represen-
tations keeps the original form as

dρ̂f (t)

dt
= −i[Ĥf (t), ρ̂f (t)]. (15)

This is the end of step (II).
Step (III) begins by transforming the coupled density

operator from its Fourier representation to the Floquet
representation by

ρ̂F (t) = e−iN̂ ′′ω2te−iN̂ ′ω1tρ̂f (t)eiN̂
′ω1teiN̂

′′ω2t (16)

=
∑
mn

L̂′′
mL̂′

n ⊗ ρ̂mn(t).

This means we desire to transform Eq. (15) into its Flo-

quet form by acting e−i(N̂ ′′ω2+N̂ ′ω1)t and ei(N̂
′′ω2+N̂ ′ω1)t

from the left and right sides, respectively. Notice that,

to get the last line in the above expression, we have
benefited from the [N̂ ′, N̂ ′′] = 0 which allows us to

shift the order by that operators N̂ ′ and N̂ ′′ act on
ρ̂f . Also, similar to the one-mode Floquet theory, we

have used the commutation relations [N̂ ′′(′), L̂
′′(′)
n ] =

nL̂
′′(′)
n , and the Baker-Campbell-Hausdorff (BCH) ex-

pansion to obtain e−iN̂ ′′ω2tL̂′′
meiN̂

′′ω2t = L̂′′
me−imω2t, and

e−iN̂ ′ω1tL̂′
ne

iN̂ ′ω1t = L̂′
ne

−inω1t, which allows the expo-
nential terms to cancel each other. To proceed, we can
inversely define the ρ̂f (t) in terms of ρ̂F (t), and then ob-
tain the time derivative of ρ̂f (t) as

dρ̂f (t)

dt
= ei(N̂

′′ω2+N̂ ′ω1)t
dρ̂F (t)

dt
e−i(N̂ ′′ω2+N̂ ′ω1)t + (17)

ei(N̂
′′ω2+N̂ ′ω1)t i[N̂ ′′ω2 + N̂ ′ω1, ρ̂

F (t)] e−i(N̂ ′′ω2+N̂ ′ω1)t.

Substituting the above relation into Eq. (15) and apply-
ing the last transformation given in Eq. (16) reads as

dρ̂F

dt
= −i[

∑
mn

L̂′′
mL̂′

n ⊗ Ĥmn + N̂ ′ω1 + N̂ ′′ω2, ρ̂
F ]. (18)

Finally, we define the two-mode Floquet Hamiltonian as

ĤF =
∑
mn

L̂′′
mL̂′

n ⊗ Ĥmn + N̂ ′ω1 + N̂ ′′ω2. (19)

With the above definition for ĤF , Eq. (18) is indeed the
Eq. (2), the two-mode Floquet LvN equation, which has
the same structure as the traditional LvN. Hereafter, an
operator with the super index F refers to the operator in
the two-mode Floquet-Hilbert hybrid space. We stress
that the advantage of the Floquet LvN is that it allows
us to program the dynamics using a time-independent
Hamiltonian, namely ĤF . Also note that Eq. (2) is exact,
irrespective of the ratio between ω1 and ω2.

B. Time evolution and projection to the Hilbert
space

The time evolution associated with the Eq. (18) is:

ÛF (t, t0) = e−iĤF (t−t0), (20)

as the ĤF is time-independent. Then, the two-mode
Floquet density operator can evolve as

ρ̂F (t) = ÛF (t, t0)ρ̂
F (t0)Û

F−1

(t, t0). (21)

According to Eq. (3), one must extract the double-index
coefficients ρ̂mn(t) to project the two-mode Floquet den-
sity operator back into the Hilbert space. Projecting to
the Hilbert space can be understood by employing the
following properties of the Ladder operators

⟨k, q|L̂′
n = ⟨k, q−n|, ⟨k, q|L̂′′

m = ⟨k−m, q|. (22)
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With that, we can show ⟨k, q|ρ̂F (t)|0, 0⟩ = ρ̂kq(t) as:∑
mn

⟨k, q|L̂′′
mL̂′

n ⊗ ρ̂mn(t)|0, 0⟩=
∑
mn

⟨k−m, q−n|0, 0⟩

⊗ ρ̂mn(t) =
∑
mn

δkmδqn ⊗ ρ̂mn(t) = ρ̂kq(t).
(23)

Hence, we can project the two-mode Floquet density op-
erator to the Hilbert space by

ρ̂(t) =
∑
mn

⟨m,n|ρ̂F (t)|0, 0⟩einω1teimω2t. (24)

Such projection can be applied to the ÛF (t, t0) to arrive
at a time evolution operator in Hilbert space as

Û(t, t0) =
∑
mn

⟨m,n|e−iĤF (t−t0)|0, 0⟩einω1teimω2t. (25)

This form of the time-evolution operator indeed satis-
fies the initial condition Û(t0, t0) = Î. The accuracy
of the two-mode Floquet theory for closed systems has
been rigorously tested [33]. Our analysis, though not de-
tailed here, further confirms that the two-mode Shirley-
like time-evolution formula delivers good accuracy. As
a result, we will adopt this time-evolution expression for
open quantum systems, as will be explained shortly, even
though the two-mode driven Hamiltonian is not strictly
periodic.

C. Electronic Model Hamiltonian

We consider a multi-level system (dot) driven by
two periodic frequencies, either through on-site or off-
diagonal coupling, as depicted in Fig. (1). For instance,
a dot can be driven by the simultaneous presence of two
time-periodic external fields with different frequencies, ω1

and ω2. The multi-level system is also weakly coupled to
the left (L) and right (R) electron baths. The electrons in
the leads are assumed to have no interactions with each
other, representing an ideal bath in thermal equilibrium.
The spinless Hamiltonian of our model system is given
by:

Ĥ(t) = ĤS(t) + ĤB + ĤSB (26)

ĤS(t) =
∑
ij

hij(ω1, ω2, t)d̂
†
i d̂j (27)

ĤB =
∑
αk

ϵαk ĉ
†
αk ĉαk (28)

ĤSB =
∑
αk,i

Vαk,iĉ
†
αkd̂i +H.c. =

∑
αi

Ĉ†
αid̂i +H.c. (29)

Without the time-dependent driving, the above Hamil-
tonian system is known as the multi-level Anderson
model [34]. Here, we consider the dot that is strongly
driven by two independent functions, oscillating at two
different frequencies, such that perturbative methods

fail for both components. The total system Hamilto-
nian is not perfectly periodic, except when the ratio
between the frequencies equals to the ratio of two in-
tegers, ω1/ω2 = n1/n2. The bath Hamiltonian, ĤB ,

and the system-bath interaction, ĤSB , are assumed to

remain time-independent. Here, d̂i (d̂ †
i ) is the dot’s

many-body electronic annihilation (creation) operator,
and hij(ω1, ω2, t) represents the one-body Hamiltonian

driven by the two frequencies. Similarly, ĉαk (ĉ†αk) is
the annihilation (creation) operator for the kth electronic
level in the bath α ∈ L,R. The Vαk,i determines the
coupling strength between the kth orbital on the bath
α, and ith orbital level in the system. Note that in the
second part of Eq. (29), we have re-expressed the interac-

tion Hamiltonian based on definition Ĉ†
αi =

∑
k Vαk,iĉ

†
αk

to simplify the notation of the system-bath interaction.
The bath α is also associated with the electrochemical
potential µα, which determines its statistical properties.
Here, we have presented the spinless Hamiltonian for the
sake of compactness and clarity. However, as explained
at the end of Section III, extending the spinless study to
its spinful counterpart is a straightforward process.

FIG. 1: Schematic setup for quantum transport
through a multi-level mesoscopic system driven
simultaneously by two periodic oscillations.

D. Wangsness-Bloch-Redfield (WBR) QME

Here, our theoretical formulation of an open quantum
system also starts with the Liouville-von Neumann (LvN)
equation, i.e., Eq. (1). It is then followed by defining a
rotation protocol (known as the interaction picture) for

the operator Ô as

Õ(t) = U†
B(t, t0)U

†
S(t, t0) Ô(t)US(t, t0)UB(t, t0), (30)

which is basically a rotation protocol in terms of the time
evolution operators of the system and bath Hamiltonians,
which are defined as:

US(t, t0)=T e
−i

∫ t
t0

ĤS(s) ds
, UB(t, t0)=e−iĤB(t−t0). (31)

It should be highlighted that we have used the general
time-evolution operator (with the time-ordering operator
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T ) for the system part because the system Hamiltonian,
HS(t), is time-dependent in our problem. We also stress
that HS(t) will carry the dependency on t0, even though
we have kept only t for the sake of simplicity. Applying
the above transformation to the Hamiltonian and density
operator leads to the following transformed Liouville-von
Neumann (LvN) equation:

dρ̃(t)

dt
= −i[H̃SB(t), ρ̃(t)]. (32)

We proceed by taking the time integral of the above LvN
equation and substituting the integral expression back
into the same relation (to make the equation more self-
contained) as:

dρ̃(t)

dt
=− i[H̃SB(t), ρ̃(t0)]

−
∫ t

t0

[H̃SB(t), [H̃SB(t
′), ρ̃(t′)]] dt′.

(33)

At this point, we invoke three famous approxima-
tions [35]: 1) factorization of initial states which says
that the density operators of the system and the bath
are uncorrelated at t0 such that ρ̃(t0) = ρ̃S(t0) ⊗ ρ̃B . 2)
Born approximation, which says that the density opera-
tors of the system and the bath are uncorrelated at other
times so that the system density operator can be obtained
by tracing over the bath ρ̃S(t) = TrB(ρ̃S(t) ⊗ ρ̃B). 3)
the Markov approximation which implies that the evo-
lution of the system depends only on the present state
and not on its history (i.e., the dρ̃(t)/dt on the left
side of Eq. (33), has to be determined only by ρ̃(t) at
the same time on the right side of the equation). Note
that the Markov approximation makes the dynamic time-
local and it can be justified in the weak coupling regime.
Changing the integration variable from t′ to τ = t − t′

makes the upper limit of the integration to be (t − t0).
Markov approximation also tells us that, in the long-time
limit, t−t0 is large compared to the bath correlation time
such that (t − t0) can be replaced by ∞. After all ap-
proximations implemented, we arrive at the expression

dρ̃S(t)

dt
=−

∫ ∞

0

TrB [H̃SB(t), [H̃SB(t− τ), ρ̃S(t)

⊗ ρ̃B ] ]dτ.

(34)

Note that, the assumption of the bath being always at the
thermal equilibrium is equivalent to defining the bath’s
density operator as ρ̃B = exp(−β(ĤB−µn̂B))/ZB , where
β, µ, n̂B , and ZB are the inverse temperature energy,
electrochemical potential, electronic number operator
and the partition function of the bath respectively. With
a thermal bath, one can show that TrB([H̃SB(t), ρ̃(t0)]) =
0. We then return Eq. (34) to the lab frame (schrödinger
picture) by applying the system and bath unitary time
evolutions in the reverse way of what was introduced in

Eq. (30). A final compact relation can be given as:

dρ̂S(t)

dt
= −i[ĤS(t),ρ̂(t0)]−

∫ ∞

0

TrB [ĤSB , [

ˆ̃HSB(τ, t), ρ̂S(t)⊗ ρ̂B ]]dτ,

(35)

with the following definition

ˆ̃HSB(τ, t)=

US(t, t0)UB(t, t0)H̃SB(t−τ)U†
B(t, t0)U

†
S(t, t0) =

UB(τ)US(t, t−τ)ĤSBU
†
S(t, t−τ)U†

B(τ),

(36)

which, in turn, requires the following definitions

UB(τ) = e−iĤBτ , US(t, t−τ) = T e−i
∫ t
t−τ

ĤS(s)ds. (37)

Notably, all exponential terms with t0 have canceled each
other due to their opposite signs. In addition, if we take
HS time-independnet, WBR QME reduces to a well ac-

cepted form in which the evolution of ˆ̃HSB only deter-
mines with the time difference τ [36]. Within the ac-
cepted approximations, Eq. (35) is very general and not
limited to a specific form of time dependency for the
system’s Hamiltonian. Eq. (35) requires significant sim-
plifications before it can be used practically. Following
cases in which system’s Hamiltonian is time-independent,
we are expecting to arrive at explicit forms for dissipa-
tive terms, so-called dissipators. The final expression in
Eq. (36) reflects a important observation: the possible

dissipators would become time-dependent because ˆ̃HSB

itself is time-dependent. The process of deriving prac-
tical forms for the dissipators can be divided into three
stages, as will be detailed in the following three subsec-
tions. In the first stage, we trace out the bath degrees
of freedom. In the second stage, we perform the time
integration over τ . Finally, in the third stage, we apply
the wide-band approximation to justify the final form of
the dissipators.

E. Time-dependent dissipators for QME - I:
tracing out bath

Here, we start by disentangling the double commuta-
tion and then substitute more explicit forms of ĤSB and
ˆ̃HSB(τ, t) in Eq. (35). To do this compactly, we first
define the following expression

ˆ̃HSB(τ, t) =
∑
li

C̃†
αi(τ)d̃i(t, τ) + d̃†i (t, τ)C̃αi(τ), (38)

with the following definitions for explicit terms

C̃αi(τ) = UB(τ) Ĉαi U
†
B(τ) =

∑
αk

V ∗
αk,iĉαke

i ϵαkτ

d̃
(†)
i (t, τ) = US(t, t−τ) d̂

(†)
i U†

S(t, t−τ).

(39)
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Exponential dependence of C̃αi(τ) to τ can be derived by
using fermionic Pauli principle among bath’s operators
and Baker-Campbell-Hausdorff formula, see Appendix A.

Note that C̃†
αi(τ) = C̃αi(τ)

† and d̃†i (t, τ) = d̃i(t, τ)
†. Dis-

entangling the double commutation yields four generic
integrands. The first and second generic integrands read

as ĤSB
ˆ̃HSB(τ, t)ρ̂S(t)⊗ρ̂B , and ĤSB ρ̂S(t)⊗ρ̂B ˆ̃HSB(τ, t).

Each of these four generic integrands comprises four spe-
cific integrands. However, we only retain two of these
specific integrands, in particular those in which similar
operators multiply to their conjugate transpose. When
faced with the first generic integrand, we only keep fol-
lowing two specific terms∑

αi,βj

Ĉ†
αid̂id̃

†
j(t, τ)C̃βj(τ)ρ̂S(t)⊗ ρ̂B+

d̂†i ĈαiC̃
†
βj(τ)d̃j(t, τ)ρ̂S(t)⊗ ρ̂B ,

(40)

which can be further rearranged as∑
αi,βj

Ĉ†
αiC̃βj(τ)ρ̂B ⊗ d̂id̃

†
j(t, τ)ρ̂S(t)+

ĈαiC̃
†
βj(τ)ρ̂B ⊗ d̂†i d̃j(t, τ)ρ̂S(t).

(41)

We refer to the above two terms as the final first and
second terms. Similarly, the final third and fourth non-
vanishing integrands are∑

αi,βj

Ĉ†
αiρ̂BC̃βj(τ)⊗ d̂iρ̂S(t)d̃

†
j(t, τ)+

Ĉαiρ̂BC̃
†
βj(τ)⊗ d̂†i ρ̂S(t)d̃j(t, τ).

(42)

Now, we are ready to focus on the process of tracing
out the bath degrees of freedom. Fundamentally, the

thermal bath obeys the relations: TrB(ĉ
†
αk ĉβk′ ρ̂B(µ)) =

f(ϵαk, µα)δk,k′δα,β , and TrB(ĉαk ĉ
†
βk′ ρ̂B(µ)) = 1 −

f(ϵαk, µα)δk,k′δα,β [37].
In dealing with the first term in Eq. (41), we should

recall the explicit form of the operator Ĉ†
αi from Eq. (29)

and C̃αi(τ) from the first line of Eq. (39). Then, the dou-
ble summation of the indices k and k′ reduces to only
one summation, namely k. The same reduction in the
summation index also applies to indices α and β. The
process of tracing out the bath degrees of freedom in the
second term of Eq. (41) is carried out using the same
procedure. When tracing out the bath degrees of free-
dom, one has to be cautious with the third and fourth
terms in Eq. (42), as the cyclic invariance of the trace
must be utilized. Thereupon, tracing out the bath de-
grees of freedom gives us the following expression for the
first four non-vanishing terms (out of eight)∫ ∞

0

dτ
∑
αk,ij

Vαk,iV
∗
αk,jf(ϵαk, µα)e

i ϵαkτ d̂id̃
†
j(t, τ)ρ̂S(t) +

V ∗
αk,iVαk,j(1−f(ϵαk, µα))e

−i ϵαkτ d̂†i d̃j(t, τ)ρ̂S(t)−

Vαk,iV
∗
αk,j(1−f(ϵαk, µα))e

i ϵαkτ d̂iρ̂S(t)d̃
†
j(t, τ)−

V ∗
αk,iVαk,jf(ϵαk, µα)e

−i ϵαkτ d̂†i ρ̂S(t)d̃j(t, τ).

(43)

For the sake of clarity and brevity, we retain only the
first four integrands of the full set of eight integrands,
as it provides a sufficient description for the process of
simplification of dissipators. Here, we highlight that per-
forming the integration (analytically) is not feasible until

the explicit dependence of d̃i/j and d̃†i/j to the τ is known.

F. Time-dependenet dissipators for QME - II:
Intergation over τ

A clear distinction between the time variables t and τ
is essential to enable integration over τ . Thus, we must
pay attention to the explicit dependence of HS on t and
τ . In practice, we first need to identify the explicit form

of US(t, t−τ), and then define d̃j(t, τ) and d̃†j(t, τ) as func-
tions of t and τ . In general, when the Hamiltonian of the
system is time-dependent, deriving an analytical form for
the time-evolution operator is not a trivial task, primarily
because HS(t) does not necessarily commute with itself
at different times. This is also a central problem in the
dynamical control of closed quantum systems (e.g., the
Rabi model) [38]. Floquet theory provides an explicit
form for the time-evolution operator when the Hamil-
tonian is exactly periodic, which is known as Shirley’s
time-evolution formula [39]. In our previous work, we
have shown that this form is advantageous for deriving
a time-dependent dissipator. As demonstrated earlier,
Floquet theory can be extended to multi-mode Floquet
theory.
Now, we focus on the simplification of the dissipators

by using the Floquet time evolution operator, Eq. (25),

for U†
S(t, t−τ) as

US(t, t−τ) =
∑
mn

⟨mn|Ŷ e−iΛ̂F
S τ Ŷ †|00⟩ einω1teimω2t, (44)

in which ΛF
S is the diagonalized two-mode Floquet Hamil-

tonian as Λ̂F
S = Ŷ †ĤF

S Ŷ . In the above expression, the
comma between the indices in the double-index bra-ket
is omitted for simplicity. Note that the diagonaliza-
tion operator is a unitary transformation operator, i.e.,
Ŷ †Ŷ = 1̂. Consequently, we can reexpress d̃j(t, τ) and

d̃
(†)
j (t, τ), using Eq. (39) as

d̃
(†)
i (t, τ) =

∑
mn,kq

⟨mn|Ŷ e−iΛ̂F
S τ D̂o (†)

i eiΛ̂
F
S τ Ŷ †|kq⟩×

ei(n−q)ω1tei(m−k)ω2t,

(45)

in which we have defined D̂o
i = Ŷ †|00⟩d̂i⟨00|Ŷ . d̃†j(t, τ)

defines in the same manner by replacing D̂o
i with D̂o†

i =

Ŷ †|00⟩d̂†i ⟨00|Ŷ . Now, the distinction between τ and t be-
comes evident in Eq. (45). At this stage, it is necessary to
choose the basis set for the Hilbert space, {|a⟩}, so that
operators can be expressed as matrices. For instance,
the elements of the density operator can be written as
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ρab(t) = ⟨a|ρ̂(t)|b⟩. By reducing operators to matrices,
particularly the rotating matrix Y , we can work within
the diagonalized two-mode Floquet space, {|γ⟩}, such

that ⟨γ|Λ̂F
S = ⟨γ|Eγ . This allows us to express the ma-

trix elements of the central operator within the bracket
in Eq. (45) as(

e−iΛ̂F τ D̂
o(†)
j eiΛ̂

F τ
)
γν

= e−iΩγντ
(
D̂

o(†)
j

)
γν

, (46)

where Ωγν = Eγ−Eν . Note that, we combined the two
oppositely signed exponential terms into a single expres-
sion. Now, we are in the position to perform integration
over τ as∫ ∞

0

e±i(ϵαk∓Ωγν)τdτ=πδ(ϵαk∓Ωγν)±iP(
1

ϵαk∓Ωγν
), (47)

in terms of the delta function and the Cauchy’s prin-
cipal value, see Appendix B. Hereafter, we neglect the
Cauchy’s principle term.

G. Time-Dependenet dissipators for QME - III:
final step

At this point, before substituting d̃† and d̃ into
Eq. (43), we shall invoke the wide-band approximation.
In general, when the electronic levels in the bath are very
closely spaced we can replace the summation, over k, by
an integral as∑

αk

→
∑
α

∫
Dα(ϵαk)dϵαk (48)

In the wide-band approximation, it is assumed that the
DOS of an ideal bath, Dα, does not change significantly
over the range of energies relevant to the transport such
that

Γα
ij = 2πVαk,iV

∗
αk,jD

α ≈ constant. (49)

Γα
ij is the coupling rate of the bath α. We can perform

the integration over ϵαk in which the Fermi function es-
sentially picks out the element Ωγν . With that, the first
four lead-specific dissipators (relevant to the bath α) can
be simplified as

DI−IV
α =

∑
ij

Γα
ij

2
did

†+
α,j(t)ρS(t) +

Γα
ji

2
d †
i d̄

−
α,j(t)ρS(t)

−
Γα
ij

2
diρS(t)d̄

†+
α,j(t)−

Γα
ji

2
d †
i ρS(t)d

−
α,j(t),

(50)

where we have defined new time-dependent matrices

d
(†)±
α,j (t)=

∑
mn,kq

⟨mn|Y f(±Ω, µα) ◦ Do (†)
j Y †|kq⟩×

ei(n−q)ω1tei(m−k)ω2t,

d̄
(†)∓
α,j (t)=

∑
mn,kq

⟨mn|Y (1−f(∓Ω, µα)) ◦ Do (†)
j Y †|kq⟩×

ei(n−q)ω1tei(m−k)ω2t.

(51)

Note that in Eq. (51), there are two types of occu-
pation matrices: electron occupation, f(±Ω, µα), and
hole occupation, 1 − f(∓Ω, µα). These occupation ma-

trices multiply to Do(†)
j by the Hadamard product, re-

marked by ◦. Accordingly, one can follow the same
procedure for the second four non-vanishing dissipators,
DV−V III

α (ρS(t), t). However, the second set of four non-
vanishing dissipators is the Hermitian conjugates of the
first set. This symmetry can be utilized to reduce the
computational cost of calculations. Finally, we can have
the following compact dynamical equation for the re-
duced density matrix, ρS(t), as

dρS(t)

dt
= −i[HS(t), ρS(t)]−

∑
α

DI−V III
α (ρS(t), t). (52)

Extending the spinless quantum transport theory to the
spinful counterpart is a straightforward process. First,
annihilation (creation) operators must receive the spin

degrees of freedom, σ ∈ {↑, ↓}, as d̂i,σ (d̂ †
i,σ). Conse-

quently, we should define D̂o
i,σ = Ŷ †|00⟩d̂i,σ⟨00|Ŷ and so

on. This essentially indicates that all matrix operators in
Eq. (50) and Eq. (51) should be decorated with the spin
degrees of freedom such that one should consider both
the spin-up and spin-down dissipators.

H. Observables

Essentially, we need to define the system’s electronic

number operator in the Hilbert space as n̂S =
∑

i d̂
†
i d̂i.

With that, we can evaluate the expectation of the sys-
tem’s particle number, ⟨n̂S⟩(t) (known also as the to-
tal occupation or the charge number). Similarly, the
electron number operator for each lead is defined as

n̂α =
∑

k ĉ
†
αk ĉαk, where α ∈ {L,R}. The total charge

number of the system at time t is given by

⟨n̂S⟩(t) = Tr(n̂S ρ̂S(t)). (53)

The second observable is the terminal current. In general,
the particle current operator passing through the termi-
nal α, Îα, is defined as the rate of change of the total par-
ticle number in that lead as: d⟨n̂α⟩(t)/dt = d(n̂αρ̂(t))/dt.
Based on particle conservation, one can perceive that the
rate of particle change in the reduced system is the sum
of the currents passing through all terminals. Hence, one
can reversely define the current operator as

d⟨n̂S⟩(t)
dt

= Tr
(
n̂S

dρ̂S(t)

dt

)
=
∑
α

Tr
(
n̂S D̂I−V III

α (ρ̂S(t), t)
)
=
∑
α

Îα(t).
(54)

Note that, in the above expression, we make use of
Eq. (52) and Tr(n̂S [ĤS(t), ρ̂S(t)]) = 0 due to the cyclic
invariance of the trace and the fact that for fermions
[ĤS , n̂S ] = 0. In addition, [ĤS(t), ρ̂S(t)] describes the
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evolution of the density operator that merely originated
from the system’s Hamiltonian (the closed system) and
this part of evolution does not change the expectation
value of n̂S .

Here, with regard to the static aspect of transport,
we cannot properly define the concept of a steady-state
observable in the long-time limit for scenarios involving
two periodic drivings, as the off-diagonal coupling is not
necessarily perfectly periodic. This means that the sys-
tem observable in the long-time limit may not settle to
a steady constant value, instead it may oscillate unpre-
dictably. Nonetheless, one can have the following defini-
tion for a quasi-steady state observable,

Oq = lim
t→∞

1

T

∫ T

0

dtO(t), (55)

where T indicates the period by which the observ-
able oscillates. For observables in a spinful study, one
should employ the spin-resolved number operators n̂σ

S =∑
i d̂

†
i,σd̂i,σ in Eqs. (53) and (54) to distinguish between

spin-up and spin-down observables.

III. REPRESENTATIVE APPLICATIONS

A. Transport through a spinless two-level dot

As preliminary applications of Eqs. (50)-(55), let us to
consider transport through a spinless two-level dot driven
by a primary off-diagonal coupling, g(ω1, t), oscillating
at ω1 and a secondary off-diagonal or diagonal coupling,
q(ω2, t), oscillating at ω2. The general one-body Hamil-
tonian matrix of such a two-level system can be expressed
as

h(ω1, ω2, t)=

[
ϵ1 g(ω1, t)⊙q(ω2, t)

g∗(ω1, t)⊙q∗(ω2, t) ϵ2 ∨ ϵ2 + q(ω2, t)

]
, (56)

where ⊙ ∈ {+,×}, and ∨ indicates the OR operator.
Here, the goal is to inspect how incorporating a sec-
ondary driving term within different scenarios will alter
the transport characteristics. Both the time-dependent
and quasi-steady-state characteristics will be investi-
gated. We recall that the current-voltage characteristic
of a non-driven non-interacting multi-level system shows
the typical steplike increase (conductance step) as the
bias voltage increases, where each step corresponds to
involving a new level into the transport. Here, volt-
age refers to µL −µR. In our previous work, we ob-
served that a cosine off-diagonal coupling (corresponding
to g(ω1, t) = A1 cos(ω1t) and q(ω2, t) = 0) gives rise to
the doubling of the conductance steps when the coupling
strength, A1, is large compared to the energy difference
between the two levels, ∆ϵ= ϵ2−ϵ1. It is observed that
the largest changes in conductance steps occur in the
strong coupling regime when the driving frequency res-
onates with the energy difference between the two lev-
els, ω1 = ∆ϵ, and A1 = ∆ϵ/2; see the cane-colored line

in Figs. 2 (a) and (b). Here, in the first few examples,
we keep the simulation temperature at 4.2Ko (equiva-
lent to the temperature energy 1/β≈0.36meV ) because
in the low-temperature regime, the thermal energy does
not cause significant smearing of the Fermi distribution,
leading to sharp conductance steps and hence driven in-
duced effects can be more pronounced. Following our pre-
vious work, energy-related parameters are given in eV ,
and hereafter the unit is omitted for simplicity. We set
ϵ1 = −0.1, ϵ2 = +0.1, and the left and right electrodes

are parameterized by the coupling rate of Γ
L/R
ji =0.005.

Hereafter, µR (drain) is fixed at a negative minimum volt-
age, Vmin, far below ϵ1, while µL sweeps within the range
[Vmin,Vmax].

1. Driven by adding a secondary (off-resonance) off-
diagonal term to the main (in-resonance) off-diagonal
driving: In the first set of examples, we define h22(t)=
ϵ2, ⊙ = +, q(ω2, t) = A2 sin(ω2t) (the secondary oscil-
latory term), and g(ω1, t) = A1 sin(ω1t) (the primary
off-diagonal coupling). The main frequency is fixed at
ω1 = 0.2 (in resonance), and the driving amplitudes are
set equal with A1 =A2 =0.05. In Figs. (2) (a) and (b),
we present the system’s quasistatic particle number and
the left terminal’s quasistatic current for two values of
the secondary frequency: ω2=0.150, and ω2=0.175 (off
resonance). One can observe how secondary driving
significantly influenced the number of quantized steps.
In Figs. (2) (a) and (b), we also show the results of
the single mode Floquet QME using solid cane-colored
lines for comparison. This is done by setting A1 = 0.1
and A2 = 0 and can be considered as one of the sim-
plest validity checks for the presented two-mode Floquet
QME as it reproduces results from previous work [28]. In
Figs. 2 (c) and (d), we plot the time-dependent charge
number for the two frequencies, corresponding to selected
steps from Fig. 2(a). Similarly, in Figs. 2 (e) and (f), we
plot the time-dependent current at the left terminal for
the two frequencies, corresponding to selected steps from
Fig. 2(b). Here, we highlight that the oscillatory behav-
ior of ⟨n̂S⟩(t) requires setting T = 4T1 and T = 8T1

for ω2=0.150 and ω2=0.175, respectively. The vertical
dashed lines show the time intervals 4T1 and 8T1 [8T1 and
16T1] in Figs. (2) (c) and (e) [Figs. (2) (d) and (f)]. Here,
the integer ratios between the two frequencies are 4/3 and
8/7 which indicates the period by which the observables
oscillate determines by the in-resonance frequency. Com-
pared to the single-frequency case (cane-colored lines),
two key differences in the results can be reported. First,
the number of conductance steps increased noticeably,
such that for the case of ω2 = 0.150 there are six large
steps and four small steps. For the case of ω2 = 0.175,
there are 14 steps in total. Secondly, observables are no
longer static variables but rather quasistatic.

2. Driven by multiplying a far off-resonance term to
the main in-resonance off-diagonal driving: In the sec-
ond set of examples, we set h22(t) = ϵ2, ⊙ = ×, and
q(ω2, t) = A2 sin

2(ω2t). We then take two forms for
g(ω1, t) as: (I) the real-valued g(1) = A1 sin(ω1t) and
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FIG. 2: quasistatic and dynamics of an open two-level
dot driven by two additive drivings. (a) quasistatic
charge number and (b) quasistatic current at the left
terminal. (c)-(f) the corresponding time-dependent
charge number and current at the left terminal.

(II) the complex-valued g(2) = A1(cos(ω1t)+ i sin(ω1t)).
The main and second frequencies are fixed at ω1 = 0.2
(in resonance) and ω2 = 0.02 (ten times smaller, far off
resonance). The driving amplitudes are set to A1 =0.1,
and A2 =1.0, ensuring that q(ω2, t) acts as an envelope
function. The maximum total amplitude, A1A2, remains
consistent with the previous set of examples, correspond-
ing to the strong interacting regime. In Figs. (3) (a) and
(b), we present the two main quasistatic observables for
the real and complex-valued forms of the primary driv-
ing function, g. Clearly, the complex-valued driving in-
creased the number of plateaus in an intricate way. In
Figs. (3) (c) and (d) [(e) and (f)], we have plotted the
time-dependent charge number [left terminal current] as-
sociated with g(1) and g(1) for a few selected steps. Here,
the oscillation behavior of the dynamical observables re-
quires to set T =T2 as we indicated the sampling time by
the last vertical dashed-lines in Figs. (3) (c)-(f). These
dynamical results are interesting, particularly Figs. (3)
(c) and (d), because it shows how the rise and fall of the
slow envelope function influence the semi-steady behav-
ior of the time-dependent charge number. We remind the
reader that the time-dependent charge number shows an

almost steady behavior when the dot is driven only by
an off-diagonal single-frequency term [28].

3. Driven simultaneously by a secondary diagonal and
a primary off-diagonal driving terms: In the third set of
examples, we set h12(t) = h21(t) = g(ω1, t) =A1 sin(ω1t),
and h22(t) = ϵ2 +A2 cos(ω2t) such that the two-level
system is driven simultaneously by both a primary off-
diagonal and a secondary diagonal terms. The frequency
and amplitude of the primary driving are fixed at ω1=0.2
and A1 = 0.1, and we sweep over the few values for ω2

and A2 to investigate who tuning the variables associated
with secondary diagonal driving will alter the dynamic
and quasistatic pattern of the two main observables. In
Figs. 4 (a) and (b), we present the left terminal qua-
sistatic current while fixing ω2 =0.10 and A2 =0.10, re-
spectively. Clearly from Fig. (4) (a), adding a secondary
on-diagonal oscillatory driving emerges as doubling the
four major current plateaus of the single-frequency driven
two-level system. As the second intensity increases, the
width of the emergent plateau also increases. The height
of these emergent plateaus can be adjusted by altering
the second frequency, as depicted in the Fig. (4) (b).
In addition, changing the second frequency also modifies
the onset of the emergent plateaus. Here, we must high-
light that the quasistatic charge number associated with
Figs. 4 (a) and (b), not presented here, follows an iden-
tical step-like pattern shown in the same figures, except
that its maximum reaches a value of 1.0. In Figs. (4) (c)
and (d), we plot the time-dependent left terminal current
and the corresponding time-dependent charge number as-
sociated with several plateaus using the inputs: A1=0.1,
ω1=0.2, A2=0.08, and ω2=0.08. As the electrochemical
potential increases, the waveform of the time-dependent
current also changes. Here, in this driving scenario, the
integer ratios between the two frequencies can be used
to determine the period over which the observables os-
cillate. For example in Fig. (4) (b), the integer ratios
between the two frequencies are 5/1, 2/1, and 5/3 for
the three curves. These ratios indicate that one must
employ 5T1 [2T1] for ω2 = 0.08 or ω2 = 0.12 [ω2 = 0.1]
when evaluating quasistatic expectation values. Interest-
ingly, the time-dependent charge number shows triangle
waveforms in the first emerged plateaus with a period of
2T1, see the second curve from bottom in Fig. (4) (d).

B. Transport through a spinful two-level dot

Here, we will add an electron-electron (e-e) interaction

term as Ĥee=
∑

i uid̂
†
i,↑d̂i,↑d̂

†
i,↓d̂i,↓ to the system’s Hamil-

tonian in Eq. (27). The numerical calculation follows by
considering spin-up and spin-down dissipators in the evo-
lution of the density matrix and evaluating spin-resolved
observables. Here, we have chosen this example based on
the last spinless case as described below;

Driven simultaneously by the secondary diagonal and
primary off-diagonal drivings in pretense of electron-
electron interaction: In the fourth set of examples, we
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FIG. 3: Quasistatic and dynamics of an open two-level dot driven by multiplying an envelope function to the main
in-resonance off-diagonal driving. (a) quasistatic charge number and (b) quasistatic current at the left terminal for
real and complex valued primary drivings as g(1)=A1 sin(ω1t), and g(2)=A1(cos(ω1t)+i sin(ω1t)). (c) and (d) are
the time-dependent charge number corresponding to the plateaus in (a). (e) and (f) time-dependent current at the
left terminal corresponding to the few main plateaus in (b). Curves with the same color in (c) and (e) are associated

with each other and same for (d) and (f).

set h11,↑/↓ = ϵ1, h12,↑/↓(t) = h21,↑/↓(t) =A1 sin(ω1t), and
h22,↑/↓(t)= ϵ2+A2 cos(ω2t). The frequencies and ampli-
tudes are fixed at ω1 =0.2, ω2 =0.1, and A1 =A2 =0.1,
identical to the input variables used to obtain the red-
colored curve in Fig. 4 (b). In Fig. 5 (a), we present the
left terminal quasistatic current in the absence (u1,2=0)
and presence of the e-e interaction with the interaction
strength u1,2 = 0.1. The main consequence of the e-e
interaction in the quasistatic observables is to lower the
height conductance steps. One can perceive that the in-
terplay between the drivings and e-e interaction does not
promote the spin polarization in the current. In Fig. 5
(b) [(c)], we plot the time-dependent current at the left
terminal [time-dependent charge number] for two [three]
values of µL in (a). Here, thicker solid (doted) lines corre-
spond to plateaus calculated in the absence (presence) of
the e-e interaction. From Fig. 5 (b), we can understand
that the e-e interaction mainly lowers maximums of local
peaks in an alternative way. In contrast, by looking at
Fig. 5 (c), it can be understood that the e-e interaction
lowers the height of the charge number in a uniform way.

IV. CONCLUSION

In summary, we developed a general two-mode Flo-
quet QME framework capable of accounting for a class
of complex driving scenarios, where two oscillating terms
jointly drive a multi-level open quantum system. In par-
ticular, we have explicitly derived the two-mode Floquet
Liouville-von Neumann equation for the Floquet density
operator which is exact. Next, we establish a connection
between this equation and the two-mode Shirley’s-like
time evolution operator in Hilbert space. This time evo-
lution formula is a crucial tool that enables us to de-

rive a series of time-local dissipators for a multi-level
open quantum system that is driven simultaneously by
two independent oscillating terms. Additionally, we have
made a clear connection between the equation of motion
and the time-averaged observables, and demonstrated
the application of our two-mode Floquet QME through
a number of quantum transport examples. Compared to
our previous work, on spinless single-mode driven open
quantum system, we have found that including a sec-
ondary oscillatory driving gives rise to increasing number
of quantized plateaus in the current-voltage characteris-
tics such that one can engineer the appearance of conduc-
tance steps by choosing appropriate driving frequencies,
and amplitudes within different two-mode driving sce-
narios. In addition, we show that a certain two-mode
complex-valued driving scenario results in a significant
increase in quantized plateaus. Furthermore, we have
comprehensively explored how different driving scenar-
ios affect the dynamical behavior of observables. In a
spinfull system, we show that including a moderate elec-
tron–electron term in the system’s Hamiltonian mainly
results in lowering the hight of few quantized plateaus.
We expected that the newly developed two-mode Flo-
quet QME can be applicable in a large number of dis-
sipative systems, as long as the system-bath coupling is
not so strong since our two-mode Floquet QME is ob-
tained by well-justified approximations. Although the
present work is mainly focuses on the transport studies
in finite temperature and arbitrary voltage, but we ex-
pect this work finds more applications in other areas such
as quantum thermodynamics, Floquet engineering, quan-
tum information, strongly correlated quantum systems.
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FIG. 4: Transport trough a spinless two-level dot
driven simultaneously by a primary (in-resonance)
off-diagonal driving as h12(t)=A1 sin(ω1t) and a

secondary diagonal term as h22(t)=ϵ2+A2 cos(ω2t). (a)
quasistatic current at the left terminal while sweeping
over the amplitude of the secondary driving. (b) same

as (a) but sweeping over three frequencies of the
secondary driving. (c) and (d) are time-dependent
current at the left terminal and the time-dependent

charge number corresponding to a few values of µL on
the second curves in (b). Curves with the same color in

(c) and (d) are associated with each.
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FIG. 5: Transport trough a spinfull two-level dot
driven simultaneously by primary (in-resonance)

off-diagonal drivings as h12,↑/↓(t)=A1 sin(ω1t) and
secondary diagonal term as h22,↑/↓(t)=ϵ2+A2 cos(ω2t).
(a) the quasistatic current at the left terminal in the

absence and presence of the e-e interaction is shown by
a red and cane (blue dashed) lines, respectively. (b) the

time-dependent current at the left terminal
corresponding to the two values of µL in (a). Here, the
solid (doted) line corresponds to the absence (presence)

of the e-e interaction. (c) same as (b) for the
time-dependent charge number. Curve’s color in (b)

and (c) are associated with the color of vertical arrow’s
in (a).

Appendix A: Explicit form of C̃
(†)
αi (τ)

The initial step toward understanding how the bath’s
correlation function relates to τ can be achieved by
employing the Baker-Campbell-Hausdorff (BCH) expan-

sion, eÂB̂e−Â=B̂+[Â, B̂]+1/2! [Â, [Â, B̂]]+. . . , as follows:

C̃αi(τ) = e−iĤBτ Ĉαi e
iĤBτ = Ĉαi+

(−iτ)[ĤB , Ĉαi] +
(−iτ)2

2!
[ĤB , [ĤB , Ĉαi]] + . . . ,

(A1)
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which in turn requires evaluation of the commutation

[ĤB , Ĉαi] = [
∑
α′k′

ϵα′k′ ĉ†α′k′ ĉα′k′ ,
∑
k

V ∗
αk,iĉαk] =

∑
α′k′,k

ϵα′k′

V ∗
αk,i[ĉ

†
α′k′ ĉα′k′ , ĉαk] =

∑
α′k′,k

(−ϵα′k′)V ∗
αk,i×

{ĉ†α′k′ , ĉαk}ĉα′k′ =
∑
k

(−ϵαk)V
∗
αk,iĉαk.

(A2)

Here, we have used [AB,C] = A{B,C}−{A,C}B and

{ĉ†α′k′ , ĉαk}= δα′αδk′k. Consequently, [ĤB , [ĤB , Ĉαi]] =∑
k(−ϵαk)

2V ∗
αk,iĉαk. Substituting the results of commu-

tations in the BCH formula gives

C̃αi(τ) =
∑
k

V ∗
αk,iĉαk +

∑
k

(iϵαkτ)V
∗
αk,iĉαk+∑

k

1

2!
(iϵαkτ)

2V ∗
αk,iĉαk + · · · =

∑
k

V ∗
αk,iĉαke

iϵαkτ .
(A3)

For the explicit form of C̃†
αi(τ), we can simply employ

C̃†
αi(τ) = C̃αi(τ)

† as

C̃†
αi(τ) =

∑
k

Vαk,iĉ
†
αke

−iϵαkτ . (A4)

In addition, one can also proceed with the BCH expan-

sion process, which leads to [ĤB , Ĉ
†
αi] =

∑
k ϵαkVαk,iĉ

†
αk,

and [ĤB , [ĤB , Ĉ
†
αi]] =

∑
k(ϵαk)

2Vαk,iĉ
†
αk. Nonetheless,

the explicit form of C̃†
αi(τ) reads the same.

Appendix B: Details of integration

Integration of exp(i(ε−ω)τ)dτ in the limit [0 ∞) can
be evaluated by adding a convergence factor e−ητ as∫ ∞

0

dτei(ε−ω)τ = lim
η→0

∫ ∞

0

dτei(ε−ω+iη)τ =

lim
η→0

ei(ε−ω+iη)τ

i(ε− ω + iη)

∣∣∣∞
0
= lim

η→0

−1

i(ε− ω + iη)
=

lim
η→0

1

−i (ε− ω) + η
= lim

η→0

η

(ε− ω)
2
+ η2

+

i lim
η→0

ε−ω

(ε−ω)
2
+η2

=πδ(ε−ω)+iP(
1

ε− ω
).

(B1)

In the same way, integration of exp(−i(ε+ω)τ)dτ in the
limit [0 ∞) can be evaluated as∫ ∞

0

dτe−i(ε+ω)τ = lim
η→0

∫ ∞

0

dτe−i(ε+ω−iη)τ =

lim
η→0

e−i(ε+ω−iη)τ

−i(ε+ ω − iη)

∣∣∣∞
0
= lim

η→0

−1

−i(ε+ω−iη)
=

lim
η→0

1

i (ε+ ω) + η
= lim

η→0

η

(ε+ ω)
2
+ η2

−

i lim
η→0

ε+ω

(ε+ω)
2
+η2

=πδ(ε+ω)−iP(
1

ε+ω
).

(B2)
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