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The electronic friction-Langevin dynamics (EF-LD) offers a simplified framework for describing nonadiabatic
effects at metal surfaces, particularly in electrochemical and molecular electronic applications. We investigate
the electronic friction behavior for the Hubbard-Holstein model using density matrix renormalization group
(DMRG) theory. We show that electron-electron interactions lead to the formation of two energy levels in
the impurity, resulting in two peaks in the electronic friction at the resonances of electron attachment or
detachment with the metal’s Fermi level. We further benchmark our results against mean field theory (MFT)
and exact diagonalization (ED). The results calculated by ED and DMRG show strong agreement at high
temperatures, suggesting the results from DMRG are reliable; however, at low temperatures, ED exhibits
significant deviations relative to DMRG due to the finite-size limitations inherent in ED calculations. MFT
completely fails to recover Fermi resonance in electronic friction. Moreover, we investigate the dynamics of the
electronic friction using EF-LD. Simulations reveal differences between the electronic population and kinetic
energy dynamics predicted by MFT and DMRG approaches, suggesting that MFT approach is unreliable for
nonadiabatic dynamics of strongly correlated systems.

I. INTRODUCTION

When nuclear motion couples strongly to a continuum
of electronic states (as encountered in molecule-metal
surface interactions), the Born-Oppenheimer approxima-
tion fails strenuously. For example, see the experiments
of gas molecules scattering off from a metal surface1,2.
While exact quantum mechanical treatments exist for
closed systems with limited degrees of freedom, such
as hierarchical equations of motion (HEOM)3–5, mul-
ticonfiguration time-dependent Hartree (MCTDH)6–8,
such approaches prove computationally intractable for
realistic interfacial systems. To overcome this limita-
tion, the generalized Langevin dynamics framework has
emerged as a practical computational paradigm for sim-
ulating nonadiabatic dynamics at the molecule-metal in-
terfaces. In this framework, nonadiabatic dynamics is in-
corporated into electronic friction and random forces9,10,
thereby capturing essential electron transfer between the
molecule and the metal surfaces while maintaining com-
putational feasibility.

The electronic friction represents the first order cor-
rection to the Born-Oppenheimer approximation, provid-
ing a fundamental mechanism for understanding nonadi-
abaticity in a metallic bath. The concept of electronic
friction has been widely applied in diverse fields, includ-
ing electrochemistry11–15 and molecular electronics16–22.
For example, electronic friction has been used to ex-
plain the energy loss of gas molecules scattering off
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metal surfaces1,23,24. Moreover, electronic friction has
also been shown to be relevant for chemisorption and
dissociation2,25,26. That being said, the electronic fric-
tion is mostly calculated for non-interacting electrons.
The inclusion of electron-electron is challenging27–33.
Let us consider the coupled electron-nuclear motion

with el-el interaction. The total Hamiltonian Ĥtot can
be divided into the electronic Hamiltonian Ĥ (R), and
nuclear kinetic energy

Ĥtot = Ĥ (R) +
∑
α

P 2
α

2mα
+ U0 (R) , (1)

where U0 (R) represents the classical nuclear repulsion

potential, and the electronic Hamiltonian Ĥ (R) consists
of a manifold of electron,

Ĥ (R) =
∑
pq

hpq ĉ
†
pĉq +

∑
pqrs

gpqrsĉ
†
pĉ

†
q ĉr ĉs. (2)

Theoretical frameworks for electronic friction originate
from considering nuclei interacting with fast-relaxing
electronic baths. In this paradigm, nuclear motion per-
turbs the electronic equilibrium. Due to the fast relax-
ation of the electronic bath compared to nuclear motion,
the resulting feedback force on the nuclei, while funda-
mentally arising from a delayed electronic response, can
be modeled effectively through Markovian damping and
thermal noise34. The resulting Langevin equation gov-
erning nuclear coordinates (R) takes the form:

mαR̈α = F̄α −
∑
v

γαvṘv + ζα(t), (3)
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where α and ν are index nuclear degrees of freedom

(DoFs), F̄α = − tre

(
∂αĤρss

)
represents the mean force,

γαν the (Markovian) friction tensor, and ζα(t) the ran-
dom force component. In our previous work, we have
derived a universal electronic friction from a quantum-
classical Liouville equation (QCLE)34, which should be
valid in and out of the electronic equilibrium, with or
without el-el interactions:

γµν(R) = −
∫ ∞

0

dt tre

[
∂µĤ(R)e−iĤ(R)t/ℏ

×∂ν ρ̂ss(R)eiĤ(R)t/ℏ
]
, (4)

where µ and ν are nuclear DoFs, Ĥ (R) is the electronic
Hamiltonian, ρ̂ss (R) is the steady state’s electronic den-
sity matrix, and tre implies tracing over many-body elec-
tronic states. Subsequently, we have derived an explicit,
very general formula for calculating that friction tensor
in and out of the electronic equilibrium35–37 under the
premise that the el-el interactions are independent of po-
sition in Eq. (2):

γµν = ℏ
∫

dϵ

2π
trs

(
∂µH (R) ∂ϵG

R∂νH (R)G<
)
+H.c.,

(5)
where trs implies summation over system orbitals, GR

and G< are system retard Green’s functions (GF) and
lesser GFs respectively, and H (R) ≡

∑
pq hpq ĉ

†
pĉq is the

quadratic Hamiltonian in Eq. (2). In time domain, sys-
tem retarded GFs and lesser GFs are defined as

G<
qp (t1, t2) =

i

ℏ
〈
ĉ†p (t2) ĉq (t1)

〉
R(t1)

, (6)

and

GR
qp (t1, t2) = − i

ℏ
θ (t1 − t2)

〈{
ĉq (t1) , ĉ

†
p (t2)

}〉
R(t1)

(7)

respectively.

At the electronic equilibrium, Eq. (5) can be simplified
as36

γµν = −πℏ
∫

dϵ trs (∂µH (R)P∂νH (R)P ) ∂ϵf, (8)

where f is the Fermi function, f (ϵ) =
(
eβϵ + 1

)−1
, P ≡

− 1
π ImGR.
In previous work, the electronic friction with el-el inter-

actions have been evaluated, which can give very new and
interesting physics at low temperature32,34,38. In Ref.34,
the Anderson model is calculated by numerical renor-
malization group (NRG)39. However, the bath is still
assumed to be non-interacting. In this work, we eval-
uate the electronic friction of interacting electrons from
the Hubbard model with density matrix renormalization
group (DMRG)40–43. We compare our results to mean
field theory (MFT), exact diagonalization (ED). We show
that the DMRG is reliable in predicting electronic fric-
tion whereas MFT can give rise to wrong dynamics.
The structure of this paper is as follows. In Sec.II,

we give a brief introduction to the framework of DMRG
to evaluate correlation function in time domain and fre-
quency domain, and a general model for the study of
strongly correlated systems with electron-phonon (el-ph)
coupling. In Sec.III A, we compare the electronic fric-
tion according to different methods, and we compare the
results where the mean force and electronic friction eval-
uated by MFT and DMRG; in Sec.III B, we study the dy-
namics of the electronic friction. We conclude in Sec.IV.

II. METHODOLOGY

The Hubbard-Holstein (HH) model provides an ideal
testbed for studying strongly correlated systems with
electron-phonon (el-ph) coupling. To establish the im-
portance of el-el interactions for every system and bath
site, we will now calculate the electronic friction for the
HH model,

Ĥ = ĤHub + Ĥosc, (9)

ĤHub = E(x)
∑
σ

ĉ†1σ ĉ1σ + ϵ
∑
i ̸=1,σ

ĉ†iσ ĉiσ + t
∑
i,σ

(
ĉ†iσ ĉi+1,σ + h.c.

)
+ U

∑
i

n̂i↑n̂i↓, (10)

Ĥosc =
p2

2m
+

1

2
ω2x2, (11)

where ĉ†iσ,ĉiσ are fermionic creation and annihilation op-

erators of spin σ on site i, and n̂iσ ≡ ĉ†iσ ĉiσ. Physically,
the Hubbard-Holstein model represents an electronic im-
purity on 1-th site near a bath and coupled to a vibrating
oscillator with position and momentum x and p. The im-
purity can be filled with an electron of up or down spin,

such that σ =↑, ↓ indicates spin states. The oscillator is a
vibrational DoF and feels a different force depending on
the occupation of the impurity. We set the on-site energy
of the impurity in Eq. (10) to be E(x) ≡ Ed+

√
2gx. To

understand how the motion of the oscillator is perturbed
by the fluctuating charge of the impurity, we will evalu-
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ate the electronic friction of Hubbard-Holstein model at
different temperatures.

We use Eq. (8) to calculate the electronic friction ten-
sor in our DMRG calculation, since the system has one
electronic bath instead of two electronic baths with dif-
ferent temperatures or chemical potentials.

A. Time-dependent DMRG for finite-temperature
calculations

The computation of retarded Green’s functions (Eq.
(7)) at finite temperatures employs time-dependent
DMRG44 (TD-DMRG) techniques combining imaginary-
and real-time propagation. Our implementation utilizes
the purification approach45 for thermal state representa-
tion, where mixed states are encoded as pure states in an
enlarged Hilbert space P⊗Q formed by adding an auxil-
iary space Q to the physical space P. Thermal equilibrium
states at specific temperature |ψβ⟩ are generated through
imaginary-time evolution from the maximally entangled
identity state:

|ψβ⟩ =
1√
Z
e−βĤ |I⟩ , (12)

|I⟩ ≡
∑
n

|n, ñ⟩ , (13)

where |ñ⟩ is the state in auxiliary space that is same as
the state |n⟩ in physical space.

For time evolution operators, we adopt a hybrid
strategy leveraging both time-evolving block decima-
tion (TEBD)46,47 and time-dependent variational prin-
ciple (TDVP)44,48,49 methods. For any nearest-neighbor
Hamiltonian with 2N sites

Ĥ =

2N−1∑
j=1

ĥj,j+1, (14)

where ĥj,j+1 acts on the j-th site and (j+1)-th site. The
Hamiltonian can be decomposed into two parts

Ĥ = Ĥ1 + Ĥ2, (15)

Ĥ1 =

N∑
j=1

ĥ2j−1,2j , (16)

Ĥ2 =

N−1∑
j=1

ĥ2j,2j+1. (17)

The TEBD algorithm employs a second-order Suzuki-
Trotter decomposition:

e−τĤ = e−τĤ1/2e−τĤ2e−τĤ1/2 +O
(
τ3
)
. (18)

While TEBD efficiently handles nearest-neighbor inter-
actions in Hubbard model, its long-time accuracy suf-
fers from non-unitary errors. To address this limitation,

we implement TDVP-based propagation governed by the
variational condition:

min

∥∥∥∥H |ψ(t)⟩ − iℏ
∂

∂t
|ψ(t)⟩

∥∥∥∥ , (19)

which preserves wavefunction norms through con-
strained optimization in the matrix product state (MPS)
manifold44.
The TDVP framework offers two implementation

schemes: (i) two-site formulation enabling dynamic bond
dimension adaptation during temporal evolution, and (ii)
single-site approach maintaining fixed bond dimensions
for computational efficiency. These variants exhibit con-
trasting resource scaling: O

(
Nm3dt

)
for single-site ver-

sus O
(
Nm3d2t

)
for two-site implementations, where N

represents lattice sites, m the virtual bond dimension,
and d the physical bond dimension. For spinful electronic
systems, d = 4.

B. Dynamical DMRG for zero-temperature calculations

The temperature dependence of correlation effects in-
troduces distinct computational challenges: enhanced
electronic correlations at low temperatures prolong the
relaxation timescale of retarded Green’s functions (GFs),
necessitating extended temporal propagation for accu-
rate characterization. This requirement conflicts with
the inherent difficulty in simulating long-time dynam-
ics due to entanglement entropy’s quasi-linear temporal
growth50—a phenomenon demanding exponentially in-
creasing bond dimensions for error control. To circum-
vent this dichotomy, frequency-domain approaches like
dynamical DMRG (DDMRG)51 provide an alternative
pathway by directly computing spectral properties.
At zero temperature, the Fermi function derivative col-

lapses to a delta distribution:

lim
β→∞

∂ϵf = −δ (ϵ) , (20)

so we can only calculate the retarded GFs when ϵ = 0 in
frequency domain at zero temperature to evaluate elec-
tronic friction (Eq. (8)) according to dynamical DMRG
(DDMRG).
For a general correlation function C (ω) =∫ 〈
A†(t)A

〉
eiωtdω, in general, we are usually inter-

ested in calculating the imaginary part of the correlation
function

I(ω) ≡ ImC(ω)

= −⟨ψ0|A† η

(ℏω −H + E0)
2
+ η2

A |ψ0⟩ , (21)

where H is the time-independent Hamiltonian, E0 and
|ψ0⟩ are ground-state energy and wavefunction, A is the
operator corresponding to the physical quantity which
is analyzed. A small real number η > 0 is used in the
calculation to shift the poles of the correlation function
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into the complex plane. The imaginary part of correction
vector associated with C(ω) is defined by

|X(ω)⟩ ≡ Im

{
1

ℏω −H + E0 + iη
A |ψ0⟩

}
= − η

(ℏω −H + E0)
2
+ η2

A |ψ0⟩ . (22)

The computational kernel involves solving the inhomoge-
neous equation:[

(ℏω −H + E0)
2
+ η2

]
|X(ω)⟩ = −ηA |ψ0⟩ . (23)

where the correction vector X(ω) encapsulates the dy-
namical response. This is equivalent to minimizing the
constrained functional:

F (ω) = ⟨X(ω)|
[
(ℏω −H + E0)

2
+ η2

]
|X(ω)⟩+ η ⟨ψ0|A† |X(ω)⟩+ η ⟨X(ω)|A |ψ0⟩ , (24)

establishing a variational framework for spectral resolu-
tion across frequency space.

We summarize our strategy for evaluating the retarded
Green’s functions (Eq. (7)) according to DMRG as fol-
lows:

Finite temperature:
1. Obtain the thermal equilibrium state |ψβ⟩ via

imaginary-time evolution starting from the maximally
entangled identity state (Eq. (12)).

2. Evaluate the Green’s function through real-time evo-
lution.

During both evolution stages, the evolution workflow is
as follows52:
1. Apply the TEBD with high accuracy up to a time
τTEBD to obtain a MPS with a suitably large bond
dimension.

2. Employ two-site TDVP (2TDVP) to further increase
the bond dimension.

3. Upon reaching maximum bond dimension, switch to
single-site TDVP (1TDVP) for computational effi-
ciency.
Zero temperature:

1. Calculate the ground-state wavefunction by DMRG.
2. Evaluate the Green’s function using DDMRG in the

frequency domain.
All DMRG calculations were performed using the

ITensor library53, leveraging its native implementations
of TEBD and TDVP algorithms. To enable finite-
temperature simulations, we extended the ITensor frame-
work through purification method. We developed a
DDMRG module building upon ITensor’s tensor contrac-
tion engine and matrix product state (MPS) infrastruc-
ture to implement our calculations.

III. RESULTS AND DISCUSSIONS

A. Electronic friction and potential of mean force

In Fig. 1(a), we show that the electronic friction as a
function of x of Hubbard-Holstein model (Eqs. (9)-(11))
without el-el interactions (U = 0). There is one peak

in the electronic friction, where there is the resonance of
electron attachment or detachment with the Fermi level
of the metal ϵF , i.e. Ed+

√
2gx = 0 (we have set ϵF = 0).

Notice that, as we decrease temperature T = 0.01 to
T = 0.001, the friction does not change, meaning we have
reached to the zero temperature limit. In Fig. 1(b), we
compare the electronic friction calculated from DMRG
versus the results from MFT at temperature T = 0.1.
Notice that DMRG predicts two peaks in the electronic
friction, indicating the existence of a new energy level due
to el-el interactions. Therefore, resonances of electron
attachment or detachment in impurity with the Fermi
level of other sites within the Hubbard model occur near
Ed +

√
2gx = 0 and Ed +

√
2gx + U = 0. In contrast,

MFT only predicts one peak at the position in the middle
of two Fermi resonance, where DMRG predicts a dip. In
Fig. 1(c), we compare the electronic friction calculated
from DMRG versus the results calculated from ED at
different temperatures. We have limited the calculation
to 10 sites in ED due to the high computational cost,
while 20-site Hubbard model is calculated in DMRG. At
T = 0.1, the results of Hubbard model calculated by
ED agree with DMRG very well; while at lower temper-
ature T = 0.01, the difference between ED and DMRG
is larger. When simulating lattice models like the Hub-
bard model, approaching the thermodynamic limit (infi-
nite system size) is crucial for obtaining physically mean-
ingful results that represent bulk materials. The required
number of lattice sites L to achieve this approximation
depends significantly on temperature. Finite-size effects
refer to deviations in the properties of a simulated sys-
tem from those of the thermodynamic limit due to the
system’s finite size. Generally, the finite-size effects are
more significant at low temperatures than at high tem-
peratures, so larger system sizes are required at low tem-
peratures compared to high temperatures. the results
in Fig. 1(c) are consistent with our expectations. Ap-
proaches such as DMRG to calculate large systems are
necessary for low temperature. In Fig. 1(d), we have
further included zero temperature results for electronic
friction from DMRG. The electronic frictions at tempera-
ture T = 0.1 and T = 0.01 are calculated by TD-DMRG,
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FIG. 1. (a) Electronic friction of the lattice model without el-el interactions (U = 0) as a function of position x. Only one peak
occurs in the electronic friction. (b) Electronic friction according to MFT and DMRG calculations at temperature T = 0.1.
Since there are el-el repulsions in the Hubbard model, DMRG successfully predicts two peaks in the friction, while MFT fails to
recover the two peaks. (c) Electronic friction according to DMRG and ED. When T = 0.1, the results of 10-site Hubbard model
calculated by ED are basically consistent with DMRG, and the finite-size effects are not yet very obvious at this temperature;
when the temperature T = 0.01, there is a significant difference between the results of ED and DMRG, and the finite-size
effects have a great impact on the results. (d) Electronic friction as a function of position x according to DMRG. In all of our
calculations above, the parameters are Ed = −0.5, ϵ = −0.5, g = 0.075, t = 0.3, U = 1, and we set kB = ℏ = 1.

and the results at temperature T = 0 are calculated by
DDMRG. As mentioned above, at lower temperatures
the correlation effects are stronger, such that the time
for the real-time Green’s functions to decay to 0 is very
long. DDMRG is more suitable to evaluate the electronic
friction at zero temperature. Notice that the results from
TD-DMRG is consistent with DDMRG at low tempera-
ture.

In the diabatic picture, there are three different po-
tential energy surfaces (PESs)-those with the impurity
unoccupied (denoted as 0), those with the impurity oc-
cupied by only one electron (denoted as 1), and those
with the impurity occupied by two electrons (denoted as

2):

Hα =
p2

2m
+ Vα, α = 0, 1, 2 (25)

V0 =
1

2
ω2x2, (26)

V1 =
1

2
ω2x2 + E(x), (27)

V2 =
1

2
ω2x2 + 2E(x) + U. (28)

Also, the potential of mean force (PMF) is defined as35

VPMF =
1

2
ω2x2 −

∫ x

x0

dx′F̄x (x
′) , (29)

where F̄x is the mean force along x direction defined as
Eq. (3).
In Fig. 2(a), we plot the potential of mean force calcu-

lated by DMRG and potential energy surfaces as a func-
tion of x for the HH model. At the intersection of po-
tential energy surfaces V0 and V1, as well as V1 and V2,
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the potential of mean force shows two peaks. Again, the
peaks indicate the Fermi resonance. In Fig. 2(b) and (c),
we plot the potential of mean force and electronic fric-
tion as a function of x calculated by MFT and DMRG
respectively. Note that the PMF shows two peaks in the
same position with the peaks shown in the electronic fric-
tions. At these points, electrons are exchanged between
the molecule and metal surface most frequencly, where
the partial occupation of the molecule facilitates this ex-
change. But MFT only predicts one peak in the elec-
tronic friction as well as in the potential of mean force.
This result indicates that the MFT fails in predicting cor-
rect PMF and electronic friction for strongly correlated

systems. Here we set Ed = g2

mω2 to conveniently demon-
strate the relationship between PESs, PMF and friction.

B. Electronic friction-Langevin dynamics(EF-LD)

We will now study the nonadiabatic dynamics within
the electronic frictional model. In our previous work54

comparing the dynamics according to surface hopping
(SH) and EF-LD, we observed significant disagreement
between the two approaches in the short term, with
agreement emerging only in the long term. EF-LD
proved significantly more reliable for nuclear observables
than the impurity population.

The Langevin equation (3) can be simplified as follows
in the one-dimensional case,

mv̇x = F̄x − γvx + ζ(t), (30)

vx =
dx

dt
, (31)

where the random force ζ (t) is assumed to be a Gaussian

variable with a norm σ =
√

2γmkT
dt . This condition sat-

isfies the second fluctuation-dissipation theorem55. dt is
the time step interval. We then use 4th order Runge-
Kutta (RK4) to integrate Eqs. (30) and (31), where
10000 trajectories have been used for the EF-LD simula-
tions. We initialize the oscillators localized in one of the
wells at x = 0 by sampling their states from a Boltzmann
distribution, where the average initial kinetic energy per
oscillator is 5kBT . The random force ζ(t) is generated
by a normal distribution.

Figure 3 presents the EF-LD results for both the av-
erage kinetic energy and the electronic population of the
impurity. We carry out the EF-LD simulation using
the electronic friction and potential of mean force from
both MFT and DMRG calculations. According to the
equipartition theorem, the long-time average kinetic en-
ergy should converge to 1

2kT . Both MFT- and DMRG-
based results eventually approach this limit. Notice also
that the dynamics for nuclear motion from MFT and
DMRG are in a good agreement. However, substantial
discrepancies arise between the two methods for elec-
tronic dynamics-at short times, the DMRG-based elec-
tronic population is different from the MFT-based; at

longer time, the equilibrium population also exhibits sig-
nificantly differences between the two methods. These
disagreements can be understood by examining Fig. 2,
which shows significant differences between the MFT-
and DMRG-derived mean forces and electronic friction
coefficients in the Langevin equation (Eq. (3) or (30)).
Consequently, we expect that the dynamical results from
DMRG and MFT are very different.

IV. CONCLUSION

In this work, we systematically evaluate electronic fric-
tion in the Hubbard-Holstein model as a function of the
impurity position x, employing mean field theory (MFT),
exact diagonalization (ED) and density matrix renormal-
ization group (DMRG). The electronic friction exhibits
two distinct peaks associated with electron attachment
and detachment resonances at the metal’s Fermi level
due to electron-electron interactions. While MFT fails
to capture these two peaks, highlighting its limitations
for strongly correlated systems, both ED and DMRG ac-
curately reproduce the two peaks.
As temperature decreases, the magnitudes of the peaks

increase, and finite-size effects become more pronounced,
necessitating large-scale methods like DMRG for accu-
rate low-temperature calculations. Physically, the peaks
in electronic friction occur when electron-exchange pro-
cesses are most active near the Fermi energy, where the
partial occupation of metal electron levels enhances such
transitions.
Although the MFT-based and DMRG-based electronic

friction-Langevin dynamics (EF-LD) of average kinetic
energy agree well with each other, the inaccuracies in
MFT-based electronic friction and mean force arise in
the dynamics of electronic population: MFT-based EF-
LD deviates substantially from the more reliable DMRG-
based results. This proves the importance of beyond
MFT approaches for modeling dynamics of strongly cor-
related systems. Notice that, for the case without el-el
repulsion, the lattice model is equivalent to the impu-
rity model. The EF-LD method for the impurity model
has been benchmarked in Refs.56. Moreover, the cases
with el-el repulsion from DMRG-based EF-LD should be
validated against numerically exact results as well.

ACKNOWLEDGMENTS

W.D. thanks the funding from National Natural Sci-
ence Foundation of China (No. 22361142829) and
Zhejiang Provincial Natural Science Foundation (No.
XHD24B0301). Y.L. thanks Tong Jiang, and Liang-
dong Hu for helpful discussions about TD-DMRG and
DDMRG.

1Y. Huang, C. T. Rettner, D. J. Auerbach, and
A. M. Wodtke, “Vibrational promotion of elec-



7

40 30 20 10 0 10 20
x

0

2

4

6

8

10 (a)

V0

V1

V2

PMF (DMRG)

25 20 15 10 5 0 5

0.20

0.15

0.10

0.05

0.00

0.05 (b)

friction (MFT)
PMF (MFT)

25 20 15 10 5 0 5
x

0.15

0.10

0.05

0.00

0.05
(c)

friction (DMRG)
PMF (DMRG)
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