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Abstract

Chiral molecular junctions offer a promising platform for realizing chiral-induced

spin selectivity (CISS), where spin filtering occurs without external magnetic fields.

Here, we investigate spin transport in such junctions by combining quantum master

equation (QME) methods for purely electronic dynamics with surface hopping (SH)

and mean-field Ehrenfest (MF) approaches to incorporate electron–phonon coupling.

Our results show that transient spin polarization arises but ultimately decays to zero

at long times. We find that bias voltage, molecular length, and spin–orbit coupling

(SOC) strongly influence the spin current dynamics: higher bias enhances spin current

but reduces polarization, while longer molecules and stronger SOC amplify transient

polarization. Including electron–phonon coupling modifies current–voltage character-

istics, enhancing spin currents at intermediate bias but suppressing them at high bias,

while leaving the polarization dynamics largely unchanged. These findings highlight
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the interplay between electronic and vibrational effects in CISS and provide guidance

for designing molecular spintronic devices.
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INTRODUCTION

The interplay between molecular chirality and spin-dependent electron transport has gar-

nered significant interest due to the discovery of the Chiral-Induced Spin Selectivity (CISS)

effect.1 This phenomenon, wherein chiral molecules preferentially transmit electrons of a

particular spin orientation, challenges conventional understanding of spin polarization, espe-

cially in systems composed of light, nonmagnetic elements.2 CISS offers a promising route

toward molecular spintronics, enabling spin filtering, spin injection, and even magnetoresis-

tance control without relying on magnetic materials or external magnetic fields.3–5

Experimental observations of CISS span a diverse range of chiral systems, including

helical peptides,6–8 DNA strands,9–11 and synthetic helicenes,12–14 revealing robust spin po-

larization effects under both electrical and optical excitations. At the same time, recent

experiments on single-molecule junctions have reported no detectable spin polarization, in-

dicating that in the coherent transport regime the probability of a spin-flip transition is

less than 10−6, rendering the effect too small to be experimentally observed.15 These seem-

ingly contrasting results highlight the complexity of CISS and the influence of experimental

conditions, such as molecular environment, ensemble effects, and coupling to electrodes.

However, the theoretical foundation of CISS remains under active debate. Key challenges

include explaining the emergence of significant spin polarization from systems with weak

intrinsic spin–orbit coupling (SOC), capturing dynamical effects during electron transport,

and understanding the role of electronic coherence and decoherence in molecular junctions.16

Existing theoretical approaches—ranging from static scattering theory17–19 and non-

equilibrium Green’s function (NEGF) methods20–24 to time-dependent wavepacket dynam-

ics25—have provided valuable insights but often yield inconsistent predictions depending on

assumptions about electronic structure, SOC strength, and environmental interactions. No-

tably, certain models reproduce pronounced spin selectivity, while others, even when applied

to similar systems, fail to predict any spin polarization at all.26

In this work, we combine quantum master equation (QME) method for purely electronic
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dynamics with surface hopping (SH) and mean-field Ehrenfest (MF) approaches to incor-

porate electron–phonon coupling, to simulate spin transport for chiral molecule junctions.

This framework allows us to capture both coherent spin transport and vibrationally as-

sisted processes in chiral molecular junctions. We adopt the chiral molecular junction model

introduced in Ref. 27, which builds on Ref. 28, with the only modification being the re-

placement of quantum nuclear vibrations by classical ones. We systematically investigate

how bias voltage, molecular length, SOC strength, and electron–phonon interactions affect

the time-dependent evolution of spin current and spin polarization. Our results show that

the spin current increases with stronger bias. Spin polarization appears transiently on the

sub-picosecond timescale but always decays to zero at long times. Stronger SOC and longer

molecular backbones enhance the magnitude of the transient polarization. Electron–phonon

coupling further modifies current–voltage characteristics, enhancing currents at intermedi-

ate bias but suppressing them at high bias, while leaving the polarization dynamics largely

unaffected. These findings provide new insights into the interplay between SOC and vibra-

tional effects in chiral systems. They highlight the critical role of transient dynamics in

understanding spin selectivity and suggest strategies for optimizing spin transport in molec-

ular devices. Our work paves the way for designing chiral molecular junctions with tailored

spintronic functionalities and for exploring vibrationally assisted spin control in nanoscale

systems.
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RESULTS AND DISCUSSIONS

Following Refs. 27 and 28, we consider a chiral molecule as the system, modeled as a helical

structure with radius a and pitch c. The spatial coordinates of site m are given by

rm = (a cosϕm, a sinϕm, (m− 1)c/(N − 1)) , (1)

ϕm = 2π(m− 1)Nlaps/(N − 1), (2)

where N = Nlaps × Nions is the total number of sites, with Nlaps denoting the number of

helical turns and Nions the number of sites per turn.

The system Hamiltonian follows the chiral molecular model:

Ĥs =
N∑

m=1

ϵ0d̂
†
md̂m +

1

2
ℏω0(R

2 + P 2)−
N−1∑
m=1

(
d̂†md̂m+1 +H.c.

) [
t0 +
√
2t1Rm

]
(3)

+
N−2∑
m=1

i
(
d̂†mν

+
m · σd̂m+2

) [
λ0 +

√
2λ1Rm

]

The molecular Hamiltonian describes a chiral tight-binding chain of N sites coupled to a sin-

gle vibrational mode of frequency ω0, incorporating both nearest-neighbor electron–phonon

interactions and next-nearest-neighbor spin–orbit coupling (SOC). The first term accounts

for the on-site electronic energy ϵ0 at each site, while the second term represents the en-

ergy of the classical vibrational mode described by nuclear position R and momentum P .

The third term captures electron hopping between adjacent sites with amplitude t0, which

is modulated linearly by the phonon displacement with coupling constant t1, thus enabling

phonon-assisted charge transfer. The last term introduces an intrinsic SOC between next-

nearest neighbors, proportional to iνs
m ·σ, where the unit vector νs

m = dm+s×dm+2s (s = ±1)

encodes the local chirality, with dm+s = (rm − rm+s)/|rm − rm+s|. This geometric factor

ensures that the SOC strength reflects the handedness of the helical backbone. This SOC is

characterized by a bare strength λ0 and a phonon-modulated contribution λ1, allowing the
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vibrational mode to dynamically influence spin-dependent transport. Such SOC amplitude

is also modulated by the linear phonon displacement.

Additionally, we include the fermionic bath, representing the metal electrodes, along with

the system–bath coupling in the total Hamiltonian, which is presented in the Theoretical

Framework section.

The parameters used in this paper: ϵ0 = −240 meV, ω0 = 0.4 meV, t0 = 40 meV, t1 = 4

meV, λ0 = 1 meV (10 meV), λ1 = 0.1 meV, kBT = 25 meV. For system-bath coupling

ΓA
L = ΓL(I + Aσz), ΓL = ΓR = 10 meV, A = +(−)1

2
for spin up (spin down) current.

µL = −µR, bias voltage Φ = (µL − µR)/e.

WITHOUT NUCLEAR MOTION

We first investigate the spin polarization in the absence of nuclear motion, focusing on the

effects of the molecular length and spin–orbit coupling (SOC) strength. The current is

calculated using a single-particle quantum master equation (QME) approach.

Figure 1 shows the time-dependent current (left panels) and spin polarization (right

panels) for the chiral tight-binding system under different applied voltage biases Φ. Here, we

consider a short chiral molecule with Nlaps×Nions = 1×5. Left panels (a, c, e, g) display the

spin-resolved currents for spin-up (blue solid line) and spin-down (red dashed line). Right

panels (b, d, f, h) show the corresponding spin polarization, defined as
I↑−I↓
I↑+I↓

× 100%. In the

low-bias regime (Φ = 0.1 V and 0.2 V), the currents are very small, initially negative due

to the transient response, and nearly identical for spin-up and spin-down on the picosecond

timescale. The spin polarization exhibits large short-time fluctuations (up to ∼ 20%) but

decays to nearly zero in the long-time steady state. The inset in Fig. 1b and c shows the

current and polarization at 100 ps, where the current gradually stabilizes after the initial

transient, and the spin polarization, despite strong early fluctuations, ultimately vanishes.

At intermediate bias (Φ = 0.4 V), the current increases to the sub-microampere range. The

spin polarization shows a sharp transient peak (about 2%), yet it also vanishes in the steady
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state. In the high-bias regime (Φ = 0.6 V), the current reaches the microampere scale

(∼ 1.8–2.0 µA). The spin polarization is strongly suppressed, showing only a small transient

peak (∼ 0.5%) before decaying to zero.

Figure 2 presents the corresponding results for a longer chiral molecule withNlaps×Nions =

2×5. Similar to Fig. 1, the left panels present the spin-resolved currents for spin-up (blue solid

line) and spin-down (red dashed line), while the right panels display the corresponding spin

polarization. Compared to the shorter molecule, the overall current amplitude changes only

slightly across all bias regimes, indicating that current transport is not strongly affected by

the increased length on the timescale considered. In contrast, the transient spin polarization

is significantly enhanced. At low bias (Φ = 0.1 V), the polarization exhibits large short-

time fluctuations reaching nearly 40%. For Φ = 0.2 V, the transient polarization exceeds

40%. The long-time results (100 ps) shown in the inset of Fig. 2b and c indicate that the

polarization decays to nearly zero in the steady state. At intermediate bias (Φ = 0.4 V),

the transient polarization is reduced but still reaches about 6%, while at high bias (Φ = 0.6

V) it remains finite at approximately 1%. In all cases, however, the polarization decays to

nearly zero in the steady state.

Figure 3 shows the short chiral molecule under different bias voltages Φ with the SOC

strength increased by an order of magnitude compared to Fig. 1. The enhancement of SOC

leads to a dramatic increase in the transient spin polarization. At low bias (Φ = 0.1 V), the

polarization exceeds 100%, arising from the fact that the total current (I↑ + I↓) approaches

zero near the transient crossing point, which amplifies the polarization ratio. When the bias

is Φ = 0.2 V, the transient polarization reaches values above 200%. The long-time behavior

depicted in the inset of Fig. 3b and c demonstrates that the polarization diminishes to nearly

zero in the steady state. At intermediate bias (Φ = 0.4 V), the polarization still shows a

sizable transient peak of more than 20%, while at high bias (Φ = 0.6 V) it remains finite at

around 4%. In all cases, however, the polarization decays to nearly zero at long times.

Figure 4 presents the results for the long chiral molecule with the SOC strength enhanced
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by a factor of ten compared to Fig. 2. With both increased molecular length and stronger

SOC, the transient spin polarization is markedly amplified. At low bias (Φ = 0.1 V), the

polarization reaches nearly 300%, while at Φ = 0.2 V it approaches 400%. The inset of Fig. 4b

and c shows that, at 100 ps, the polarization has essentially decayed to zero, indicating a

vanishing steady-state value. At intermediate bias (Φ = 0.4 V), the polarization remains

sizable at over 40%, and at high bias (Φ = 0.6 V) it still exceeds 7%. Despite these large

transient enhancements, the polarization decays toward zero in the steady state, consistent

with the behavior observed in shorter molecules and weaker SOC cases.

These results indicate that, for the chiral tight-binding model considered here, transient

spin polarization can be substantial, but the long-time steady-state polarization vanishes in

the absence of nuclear motion.

Figure 1: Time-dependent spin current (left panels) and spin polarization (right panels) for
a Nlaps×Nions = 1×5 chiral molecule under different biases: (a, b) Φ = 0.1 V, (c, d) Φ = 0.2
V, (e, f) Φ = 0.4 V, and (g, h) Φ = 0.6 V. Here, we applied a small SOC strength where
λ0 = 1 meV.
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Figure 2: Time-dependent spin current (left panels) and spin polarization (right panels) for
a Nlaps×Nions = 2×5 chiral molecule under different biases: (a, b) Φ = 0.1 V, (c, d) Φ = 0.2
V, (e, f) Φ = 0.4 V, and (g, h) Φ = 0.6 V. Here, we applied a small SOC strength where
λ0 = 1 meV.
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Figure 3: Time-dependent spin current (left panels) and spin polarization (right panels) for
a Nlaps×Nions = 1×5 chiral molecule under different biases: (a, b) Φ = 0.1 V, (c, d) Φ = 0.2
V, (e, f) Φ = 0.4 V, and (g, h) Φ = 0.6 V. Here, we applied a large SOC strength where
λ0 = 10 meV.
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Figure 4: Time-dependent spin current (left panels) and spin polarization (right panels) for
a Nlaps×Nions = 2×5 chiral molecule under different biases: (a, b) Φ = 0.1 V, (c, d) Φ = 0.2
V, (e, f) Φ = 0.4 V, and (g, h) Φ = 0.6 V. Here, we applied a large SOC strength where
λ0 = 10 meV.

11



WITH NUCLEAR MOTION

In this section, we introduce electron–phonon coupling into both the nearest-neighbor (NN)

hopping and next-nearest-neighbor (NNN) SOC terms. The spin current dynamics are eval-

uated using the surface hopping (SH) and mean-field Ehrenfest (MF) methods.

In Figure 5, the left panels (a, c, e, g) display the time-dependent spin-resolved currents

under different bias voltages Φ, while the right panels (b, d, f, h) show the corresponding

spin polarizations. Results obtained from the QME (gray lines) represent the reference case

without nuclear motion. The SH (blue/red lines) and MF (green/orange lines) dynamics

account for electron–phonon coupling. At low bias (Φ = 0.1 V), the transient spin currents

obtained from QME, SH, and MF coincide almost perfectly for the first 2 ps, indicating

that in such short chiral molecule, the transient electronic transport is dominated by elastic

tunneling. In this regime, the available bias window is too small to activate inelastic phonon

channels, so nuclear motion does not play a significant role.

When the bias is increased to Φ = 0.2 V, SH dynamics predicts a modest current en-

hancement relative to QME, while MF fails to reproduce this effect. The enhancement can

be attributed to phonon-assisted tunneling, where electronic transitions couple to vibrational

displacements, effectively opening additional inelastic channels.29–31 The SH method captures

stochastic hopping between adiabatic surfaces, which better describes the phonon-induced

broadening of transport channels, whereas MF, being an averaged mean-field approach, un-

derestimates this effect.32,33

At an intermediate bias (Φ = 0.4 V), the role of electron–phonon coupling becomes

more pronounced. Both SH and MF yield significantly larger steady-state currents com-

pared to QME. In this regime, the bias window is sufficiently large that multiple inelastic

channels open, and phonon scattering facilitates electron flow by effectively broadening the

transmission spectrum. This behavior can be viewed as phonon-assisted conduction, where

nuclear fluctuations reduce localization effects and increase electronic delocalization along

the transport pathway.34,35
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At high bias (Φ = 0.6 V), however, electron–phonon coupling suppresses the current

relative to QME. In this regime, strong driving enhances electron–phonon scattering, which

introduces decoherence and backscattering, thereby reducing the net current. Since the

phonon frequency is very small (0.4 meV) compared to the bias, the lattice behaves al-

most like a classical fluctuating environment; instead of opening new transport channels,

these fluctuations primarily act to randomize electronic motion and dissipate current. This

explains why the current is lower than in the purely electronic case at large bias.36,37

In contrast to the strong bias-dependent effects on the spin-resolved current, the spin

polarization (right panels of Fig. 5) remains essentially unaffected by nuclear motion across

all voltages. Both SH and MF reproduce the QME polarization, which shows short-lived

transient peaks but vanishes in the long-time steady state.

When the length of the chiral molecule is increased (Fig. 6) or the SOC strength is en-

hanced (Fig. 7), the overall bias-dependent trends of the spin current remain qualitatively the

same as those observed in the short chiral molecule. Specifically, electron–phonon coupling

continues to play a negligible role at low bias, enhances current through phonon-assisted

tunneling at intermediate bias, and suppresses current due to scattering and decoherence at

high bias. For longer molecules, the transient current exhibits stronger amplitude variations

and responds more rapidly, showing either enhancement or suppression at earlier times de-

pending on the applied bias voltage (left panels in Fig. 6). With stronger SOC, the ultrafast

(fs-scale) variations of the spin current retain the same amplitude as in the case without

nuclear motion, while the slower (ps-scale) variations remain unchanged compared to the

weak-SOC case for the same molecular length (left panels of Figs. 7 and 8).

Although the ps-scale spin current is influenced by electron-phonon coupling, the spin

polarization remains unaffected by nuclear motion across all bias voltages (right panels of

Figs. 6 - 8), underscoring that phonon effects alone cannot generate or sustain spin selectivity.

Finally, we perform an 800 ps electronic dynamics simulation on a short chiral molecule

with λ0 = 1 meV and Φ = 0.2 V, as shown in Fig. 9. Over this long-time evolution,
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Figure 5: Time-dependent spin current (left panels) and spin polarization (right panels) for
a Nlaps×Nions = 1×5 chiral molecule with electron-phonon couplings under different biases:
(a, b) Φ = 0.1 V, (c, d) Φ = 0.2 V, (e, f) Φ = 0.4 V, and (g, h) Φ = 0.6 V. Here, we applied
a small SOC strength where λ0 = 1 meV.
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Figure 6: Time-dependent spin current (left panels) and spin polarization (right panels) for
a Nlaps×Nions = 2×5 chiral molecule with electron-phonon couplings under different biases:
(a, b) Φ = 0.1 V, (c, d) Φ = 0.2 V, (e, f) Φ = 0.4 V, and (g, h) Φ = 0.6 V. Here, we applied
a small SOC strength where λ0 = 1 meV.

15



Figure 7: Time-dependent spin current (left panels) and spin polarization (right panels) for
a Nlaps×Nions = 1×5 chiral molecule with electron-phonon couplings under different biases:
(a, b) Φ = 0.1 V, (c, d) Φ = 0.2 V, (e, f) Φ = 0.4 V, and (g, h) Φ = 0.6 V. Here, we applied
a large SOC strength where λ0 = 10 meV.
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Figure 8: Time-dependent spin current (left panels) and spin polarization (right panels) for
a Nlaps×Nions = 2×5 chiral molecule with electron-phonon couplings under different biases:
(a, b) Φ = 0.1 V, (c, d) Φ = 0.2 V, (e, f) Φ = 0.4 V, and (g, h) Φ = 0.6 V. Here, we applied
a large SOC strength where λ0 = 10 meV.

Figure 9: Time-dependent spin current (a) and spin polarization (b) for a Nlaps×Nions = 1×5
chiral molecule with electron-phonon couplings under a bias of Φ = 0.2 V. A small SOC
strength of λ0 = 1 meV is applied, and the dynamics are evolved for 800 ps.
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the spin current obtained from SH initially increases and then decreases relative to QME,

whereas MF fails to capture this behavior. The overall spin selectivity from SH results

fluctuates around zero, indicating that in this regime electron–phonon coupling does not

sustain a robust spin polarization. Instead, phonon-induced scattering primarily acts to

randomize the spin-dependent transport pathways, preventing the emergence of significant

spin selectivity over extended timescales.
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THEORETICAL FRAMEWORK

EQUATION OF MOTION

The general model Hamiltonian in our study consists of three components: the system part

(without electron-electron interaction); the bath part; and the system-bath coupling part:

Ĥt = Ĥs + Ĥb + Ĥc, (4)

Ĥs =
∑
mn

hmn(R)d̂†md̂n + U(R) + T (P ), (5)

Ĥb =
∑
k

ϵkĉ
†
kĉk, (6)

Ĥc =
∑
kn

Vkn(ĉ
†
kd̂n + d̂†nĉk) (7)

It is always possible to transform the one-electron Hamiltonian ĥ into the adiabatic

representation,

Ĥs =
∑
mn

hmn(R)d̂†md̂n + U(R) + T (P ) (8)

=
∑
p

h̃pp(R) ˆ̃d†p
ˆ̃dp + U(R) + T (P ) (9)

where ˆ̃dp =
∑

m Λpmd̂m, with Λ̂ being a unitary matrix, such that ˆ̃h is diagonal,
∑

nm Λ†pnhnmΛmq =

δpqh̃pq. Accordingly, the system-bath coupling Hamiltonian becomes,

Ĥc =
∑
kp

Ṽkp

(
ĉ†k

ˆ̃dp +
ˆ̃d†pĉk

)
, (10)

where Ṽkp =
∑

m VkmΛmp, so the hybridization function Γ̃pq in the wide band approximation
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is,

Γ̃pq(R) =
∑
k

Ṽ ∗kpṼkqδ(ϵ− ϵk) =
∑
mn

Λ∗pmΛnqΓmn (11)

We define the single particle reduced density matrix (1-RDM) in the adiabatic represen-

tation as,

σ̃nm = Tre(ρ̂el
ˆ̃d†m

ˆ̃dn) (12)

Starting from the Liouville–von Neumann (LvN) equation,38,39 we derive the equation of

motion (EOM) for the 1-RDM in the adiabatic representation,

d

dt
ρ̂el = −i[Ĥs, ρ̂el]− ˆ̂Lbsρ̂el, (13)

d

dt
σ̃nm = −iT re([Ĥs, ρ̂el]

ˆ̃d†m
ˆ̃dn)− Tre(

ˆ̂Lbsρ̂el
ˆ̃d†m

ˆ̃dn) (14)

Following steps in Ref. 38, we can see,

d

dt
ˆ̃σ = −i[ˆ̃h, ˆ̃σ]− i[U(R), ˆ̃σ]− i[T (P ), ˆ̃σ]− 1

2
[ˆ̃Γ, ˆ̃σ]+ +

1

2
[f(ˆ̃h), ˆ̃Γ]+ (15)

The first three terms in this equation are identical to those in Ref. 40, while the last two

terms arise from the interaction between the system and the metal bath, where f(ˆ̃h) is the

fermi function.

Without nuclear motion, the QME is

d

dt
ˆ̃σ = −i[ˆ̃h, ˆ̃σ]− 1

2
[ˆ̃Γ, ˆ̃σ]+ +

1

2
[f(ˆ̃h), ˆ̃Γ]+ (16)
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and the spin current can evaluated by

IL = Tr
(
− 1

2
[ˆ̃ΓL, ˆ̃σ]+ +

1

2
[fL(

ˆ̃h), ˆ̃ΓL]+

)
,

IR = Tr
(
− 1

2
[ˆ̃ΓR, ˆ̃σ]+ +

1

2
[fR(

ˆ̃h), ˆ̃ΓR]+

)
,

I =
1

2
(IL + IR)

(17)

ORBITAL SURFACE HOPPING ALGORITHM

Surface hopping (SH) is a mixed quantum-classical approach for simulating molecular dy-

namics. In this method, nuclear motion is treated classically, with nuclei evolving along

Newtonian trajectories and their positions and velocities updated at each time step. Mean-

while, the electronic degrees of freedom are treated quantum mechanically, with the system

assumed to evolve on one of several electronic potential energy surfaces (PESs) at any given

moment. Given the EOM for 1-RDM above, we can derive the algorithm of orbital surface

hopping for open quantum system.

Firstly, we derive the orbital quantum-classical Liouville equation (QCLE) by performing

partial Wigner transformation with respect to the nuclear degree of freedoms (DOFs) on Eq.

15,

d

dt
ˆ̃σW = −i

(
(ˆ̃hˆ̃σ)W − (ˆ̃σˆ̃h)W

)
− i
(
(U ˆ̃σ)W − (ˆ̃σU)W

)
− i
(
(T ˆ̃σ)W − (ˆ̃σT )W

)
−1

2

(
(ˆ̃Γˆ̃σ)W + (ˆ̃σ ˆ̃Γ)W

)
+

1

2

(
(f(ˆ̃h)ˆ̃Γ)W + (ˆ̃Γf(ˆ̃h))W

)
, (18)

Note that the Wigner-Moyal operator can be used to express the partial Wigner transform

of the product of operators Â and B̂:

(ÂB̂)W = ÂW e−i
←→
Λ /2B̂W , (19)

←→
Λ =

←−
∂

∂P

−→
∂

∂R
−
←−
∂

∂R

−→
∂

∂P
. (20)
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When truncating the Wigner-Moyal operator to the first order in the Taylor expansion,

e−i
←→
Λ /2 ≈ 1− iℏ

←→
Λ /2, we arrived at orbital QCLE,

d

dt
ˆ̃σW = −i[ˆ̃hW , ˆ̃σW ]− P

M

∂ ˆ̃σW

∂R
+

∂U

∂R

∂ ˆ̃σW

∂P
+

1

2

[
∂ˆ̃hW

∂R
,
∂ ˆ̃σW

∂P

]
+

−1

2
[ˆ̃ΓW , ˆ̃σW ]+ +

1

2
[f(ˆ̃hW ), ˆ̃ΓW ]+ (21)

Note that we only keep the zeroth-order gradient expansion for the last two terms, following

Ref. 39. In the orbital surface hopping, we propagate the orbital density matrix for each

trajectory according to

dσ̃nm

dt
= − P

M

∑
l

(Dnlσ̃lm − σ̃nlDlm)−
1

2

∑
l

(Γ̃nlσ̃lm + σ̃nlΓ̃lm) +
1

2

(
f(h̃nn)Γ̃nm + Γ̃nmf(h̃mm)

)
,

(22)

where Dnm is the derivative coupling

Dnm =
∑
k

Λ∗kn
∂Λkm

∂R
, (23)

For the EOM of nucleus,

Ṙ =
P

M
, (24)

Ṗ = −∂U

∂R
+

n∑
i=1

Fλi,λi
, (25)

where Fλi,λi
is the force of the occupied surface λi.

There are two types of hopping rates: those arising from the derivative coupling within

the system, denoted as kd
n→m, and those arising from electron transfer between the system
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and the bath, denoted as kL. For kd
n→m, we have

kd
n→m = max

[
2R P

M

Dnmσ̃mn

σ̃nn

, 0

]
(26)

For the hopping rate originating from the metal surface, we only consider inter-state hopping,

since the electrons on the metal surface orbitals are traced out. This implies that there is no

direct hopping between the system orbitals and the bath orbitals. Consequently, each system

orbital is treated as having only two possible states: occupied (denoted as 1) or unoccupied

(denoted as 0). This issue has been previously resolved:41,42

kL
nn(0→1) = Γ̃nnf(h̃nn), (27)

kL
nn(1→0) = Γ̃nn

(
1− f(h̃nn)

)
(28)

The spin current can be evaluated from Eq. 17.

We benchmarked this SH algorithm with the QME using a simple 2-level model for the

system as:

Ĥs =

 ϵ0 −(t0 + it0) + (t1 + it1)(a
† + a)

−(t0 − it0) + (t1 − it1)(a
† + a) ϵ0

+ ℏω0(a
†a+

1

2
)

(29)

where ϵ0 = −240 meV, t0 = 40 meV, t1 = 4 meV, ℏω0 = 4 meV, while all other parameters

are the same as those in Eq. 3. The quantized vibrational mode is described by bosonic

creation and annihilation operators a† and a. We plot the spin current dynamics over 20

ps results both from QME (150 phonon basis) and SH (averaged over 10000 trajectories)

in Fig. 10. The results show excellent agreement between the two methods, confirming the

reliability of the approach presented here.
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Figure 10: Time-dependent spin current for both QME and SH approaches.

ORBITAL MEAN FIELD EHRENFEST ALGORITHM

The mean-field Ehrenfest (MF) method is a mixed quantum–classical approach in which

the electronic degrees of freedom are treated quantum mechanically, while the nuclei evolve

classically on an averaged potential energy surface determined by the instantaneous electronic

state. Therefore, the EOM of electronic density matrix is the same with that in SH algorithm

(Eq. 22), while the EOM of nuclear part becomes much easier than SH:

Ṙ =
P

M
, (30)

Ṗ = Tr

(
∂Ĥs

∂R
σ̂

)
(31)
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CONCLUSIONS

In this work, we systematically investigated spin transport in chiral molecular junctions

with and without electron–phonon coupling. Using the QME for purely electronic dynamics

and SH together with MF approaches for electron–phonon interactions, we characterized the

time-dependent behavior of spin current and spin polarization under varying bias voltage,

molecular length, and SOC strength.

Our results demonstrate that transient spin polarization emerges within the first few

hundred femtoseconds but decays to zero at long times, independent of electron–phonon

coupling. Higher bias voltages increase the overall spin current but suppress spin polar-

ization, while longer molecules and stronger SOC enhance transient polarization. Including

electron–phonon coupling further modifies current–voltage characteristics, leading to current

enhancement at intermediate bias but suppression at high bias, while leaving polarization

dynamics largely unaffected. The SH method incorporates stochastic transitions between

adiabatic potential energy surfaces, thereby providing a more accurate representation of

phonon-induced broadening in transport channels, whereas the MF approach, due to its

averaged mean-field character, systematically underestimates this effect.

These findings clarify the interplay of molecular length, SOC, and vibrational effects in

CISS, and they emphasize the importance of considering both electronic structure and vibra-

tional effects when designing molecular spintronic systems. Looking forward, the approaches

developed here may be extended to more complex junction architectures or combined with

cavity quantum electrodynamics to explore light–matter–spin interactions in chiral systems.
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