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Abstract

The stochastic resolution of identity (sRI) approximation significantly
reduces the computational scaling of CC2 from O(N®) to O(N?), where N
is a measure of system size. However, the inherent stochastic noise, while
controllable, can introduce substantial errors in energy derivatives, lim-
iting its reliability for molecular dynamics simulations. To mitigate this
limitation, we introduce a noise-reduced approach, termed THC-sRI-CC2,
which synergistically combines the sRI framework with tensor hypercon-
traction (THC). In this formulation, the expensive Coulomb term, which
scales as O(N 4), is decoupled via THC, while the time-determining ex-
change term with an O(N5) cost is addressed through the sRI scheme,
collectively yielding an overall O(N?®) scaling. Benchmarks demonstrate
that our THC-sRI-CC2 implementation achieves greater accuracy and
markedly reduced stochastic noise compared to conventional sRI-CC2
with identical computational samplings. The resulting O(N?3) scaling sub-
stantially extends the applicability of CC2 for excited-state energy calcu-
lations and nonadiabatic dynamics simulations of large molecular systems.
Furthermore, this work establishes a general THC-sRI hybrid strategy for
the development of reduced-scaling electronic structure methods.

1. INTRODUCTION

Coupled cluster (CC) methods are essential for the highly accurate descrip-
tion of excited states, despite their steep scaling. Within the CC hierarchy, the
CcC2 is particularly valuable; it scales as O(N®) and delivers accuracy near
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that of CCSD for systems dominated by single excitations, offering an attrac-
tive cost-to-accuracy ratio for excited-state energy calculations and nonadia-
batic dynamics simulations.[># Nonetheless, this O(N®) scaling restricts CC2
to medium-size systems. Although various strategies, such as SOS!®¢! SCS[7-8]
and others® '] have been integrated with CC2 to reduce its cost, most results
achieve only O(N%) scaling or merely exhibit a smaller prefactor. Therefore,
the development of a low-scaling CC2 variant remains a critical task.

The stochastic resolution of identity (sRI) is a variant of the conventional RI
approach'2 14 that uses stochastic orbitals to decouple four-rank electron re-
pulsion integrals (ERIs). When implemented for MP2 energy calculations,['517]
this technique lowers the computational scaling from O(N®) to O(N?) with min-
imal loss in accuracy. Despite its reliance on random sampling, the resulting
error (or stochastic noise) is systematically reducible by adjusting the number
of stochastic orbitals. Due to its capability in handling MP2-energy-like terms,
sRI is widely used in various electronic structure methods, such as DFT and
TDDFT,!'823 GF2[2429 and etc.[3932 In our previous work, 3336 we imple-
mented sRI in the CC2 model to calculate excited-state energies and various
dynamical properties, reducing the scaling from O(N®) to O(N3).

While this two-order-of-magnitude reduction is impressive, two key chal-
lenges remain. First, suppressing stochastic noise to achieve higher accuracy
significantly increases the computational prefactor. Second, the cubic-scaling
scheme for CC2 dynamical properties, such as gradients, can exhibit large er-
rors even with extensive stochastic orbital samplings. Further increasing the
sample size is not cost-effective. Although our current solution by partially ap-
plying sRI to the exchange term mitigates this problem, it results in a higher
computational scaling of O(N*). Therefore, new strategies are still needed to
address these cost and accuracy challenges.

Tensor Hypercontraction (THC)[37’39] is a numerical technique that dramat-
ically reduces computational complexity by decomposing the four-index ERIs
into a factorized product of five lower-dimensional matrices with high accuracy.
Among its various applications, its integration with the CC2 method (THC-
C(C2) is particularly notable.[*0-43] This integration achieves a reduced scaling
of O(N?) for the Coulomb term and O(N*) for the exchange term, yielding
an overall O(N*) scaling. The high accuracy and potential for reduced scaling
offered by this technique inspired us to integrate THC and sRI into CC2, target-
ing the Coulomb and exchange terms separately. This hybrid approach, termed
THC-sRI-CC2, is predicted to eliminate the dominant stochastic noise from the
Coulomb terms while preserving O(N?) scaling, thus offering a solution to two
previously discussed challenges.

This paper is organized as follows: Section 2 outlines the theoretical foun-
dations for calculating excited-state energies and dynamic properties within the
CC2 method. It also details the integration of THC and sRI approximation.
In Section 3, we benchmark the THC-sRI-CC2 approach against standard RI-
CC2 and sRI-CC2 methods across a range of molecular properties. We evaluate
its accuracy, statistical noise, and computational scaling for systems of varying
sizes. Finally, Section 4 provides a concluding summary.



2. THEORY

Table 1 summarizes the standard notation used in this work. The parameters
listed in the final column (Nao, Nauzs Naosy Nmos Noces Nuir) all exhibit linear
scaling with respect to the system size N.

Table 1: Summary of notations in the following equations.

Ttem Function or indices Total number
AO Gaussian basis functions x4 (1), x8(71), x+(r1), xs(r1), - - Nao
Auxiliary basis functions P,Q,R,S, - - Naua
General sets of AOs o, 3,7, 0, Nao
General sets of MOs D,q, TS, Novo
Occupied MOs i, k- Noee
Unoccupied MOs a, b,c,d, - Nyir

2.1. CC2 theory

The coupled-cluster wavefunction |CC) is nonlinearly parameterized from
the Hartree-Fock reference |HF).

CC) = ¢ |HF) (1)

The cluster operator T includes contributions from single, double, ..., and n-fold
excitations but is typically truncated for practical calculations.

T=Ti+Tot - +Tn=D tu T (2)
no pn
Here the cluster amplitudes ¢,, = tfjb and the excitation operators 7,, =

E.iEy;--- are expressed with the compound index p that labels the specific
pairs of excited determinant it involves.

In the CC2 formulation,[!! the ground-state energy Eccs is obtained via the
projection method, which yields the following equations

E002=<HF|JEI+[1{LT2} |HF) (3)
Uy = (ul H + [H | |HF) = 0 (4)
Qu, = (u2| H+ [F,T] [HF) =0 (5)

Fis the Fock operator and H is the T} -transformed Hamiltonian, H=eTH el
, which simplifies the derivation of the equations. The ground-state amplitudes
t,, are obtained by iteratively solving the latter two equations, allowing us to
determine Eccg



The CC2 excitation energy is obtained as an eigenvalue of the Jacobian A, .

o,
WiV — : (6)

ot,,
Both the equation-of-motion (EOM) method and linear response (LR) theory

are applicable and yield the same effective Jacobian.[*4 4]
A A
ffo_ 1z yav

A/enm - AH1V1 - ﬁ (7)

Solving the matrix from the right- and left-hand yields the right (r,,) and left
(4;) excited-state amplitudes, respectively, and an identical excitation energy
w.

The dynamic properties of CC2 are primarily calculated using the Lagrangian
method.[46-52] For instance, the Lagrangian for the ground-state analytical gra-
dient is constructed as follows. 3!

L =FEcca + Z £+ Z Cpg (Fpg — Opgep) + prq (Spg = 0pg)  (8)
p pq pq

Its first term represents the ground-state energy. The second term enforces the
constraint for the ground-state amplitudes The subsequent terms are the con-
straints for the use of Hartree-Fock reference, thereby accounting for the orbital-
response contributions to the gradient. The Lagrangian multipliers t,,, (pq, Wpq
are solved to satisfy these constraints. The first derivative of the Lagrangian
with respect to the nuclear coordinates x yields the CC2 ground-state analytical
gradient.

The Lagrangian for the CC2 excited-state analytical gradient includes two
additional terms!®f]

L=Ecca+ Y luAury +@ (1 -y luru>
I

nv

+ Z{ugu + Z Cpg (Fpg — OpgEp) + prq (Spq — Opq)
10 pq

pq

(9)

The second term corresponds to the excitation energy, while the third term
ensures the biorthonormality of the excitation amplitudes. Furthermore, the
Lagrangian for CC2 derivative coupling between states m and n is given as

Limn = Opn + Y <Z Ayt — wnr;;> + (1 -3 zm)
Iz v Iz

+ Z{uQ# + Z Cpg (Fpg — OpgEp) + Zwm (Spq — Opq)
" pq

prq

(10)

The second term is the constraint for the excited-state amplitudes and the
multiplier 4, must be determined. The first term is defined as



For the left state m, the nuclear coordinate is fixed at xg, and derivatives act
only on the right state n with its variable coordinate x. The dependence on
zo and x is omitted in eq 10 for clarity. The derivatives of Lagrangian in eqs
9 and 10 with respect to x give the CC2 exited-state analytical gradient and
derivative coupling F,,,, respectively.

2.2. sRI approximation, THC and Laplace transform

In the RI formulation, the four-index ERI is decoupled into products of three-
and two-index ERIs with the auxiliary basis functions {P}

(@Blyd) = > (aBIP) [V7'] ,, (RI79) (12)

PR

By defining the three-rank tensor Bgﬂ, the four-index RI-ERI is given as

BY =" (aBIP)Vpy'? (13)
P
(aﬁlvé)%ZlZ(aBIP o ZVQW (Rlvd)| =Y BZBS (14
Q P Q

These two steps scales as O(NZ2,,N2)) and O(Nayu.N2)), respectively, yielding
an overall asymptotic complexity of O(N®). Since the four-index ERIs are
always constructed on the fly, the storage requirement for the four-index RI-
ERIs is O(N?), dominated by three-index Bgﬁ and (af|P).

Stochastic RI builds upon the deterministic RI framework, while further
introducing a set of N, stochastic orbitals {6¢}, ¢ = 1,2,--- , N,. These orbitals
are arrays of length Ng,., with each element randomly assigned a value of 1 or
-1, designed to possess the following property:

(0 ©0), Zef (15)

Projecting the index @ in the three-rank RI tensor Bgﬁ onto the subspace of
stochastic orbitals £ yields the sRI tensor Riﬁ, which is used to express the

four-index sRI-ERI
Rep = D (@1P) 3 (Vg *05) (16)
P Q

)

€ (17)

(aﬁlvé)=<z @8IP) Y (Vig*00) | 3
P Q R
_ <RfﬁRw>§ N ZR



Here (), implies the statistical average over the stochastic orbitals {6¢}. The

construction of the sRI tensor Rf; scales as O(NgNyyu N2,)). However, since
N is independent of the system size (discussed later), it can be treated as a
constant prefactor, resulting in an asymptotic scaling of O(N3). Furthermore,
the storage for the sRI tensor Ri 5 scales quadratically as O(N,N?), which is
a lower order of complexity than the O(N?3) scaling of the standard RI tensor
BY,.

In the THC formulation, the complex four-index ERI is approximated by a
sum of products of two-rank tensors

(aBly6) = > ok (r)df (ric) Mok (re)o§ (rr) (18)
KL

The grid points rx are computed optimally using a column-pivoted QR (QRCP)
decomposition in the interpolative separable density fitting (ISDF) procedure,
departing from the standard least-squares THC approach where they are pre-
defined. This ISDF-THC procedure was applied by Joonho et al. for the genera-

tion of the THC tensors in their THC-RI-MP2 and THC-RI-MP3 implementations. 42 53]
Its innovation lies in using a mathematically rigorous interpolative decomposi-

tion to choose critical points for greater accuracy and efficiency, unlike LS-THC’s

less optimal algebraic selection. The number of the interpolation points, Nyp,

is a multiple of Ng,, and increases linearly with the system size.

Nip = c1spF X Naua (19)

Based on our numerical tests, we select a coefficient of ¢;spr = 4.0 for this
work. Both d)ff and M, requires only quadratic storage and their low rank
enables effective and flexible factorization for most ab initio methods.

The crucial four-index ERI appears in the numerator of all MP2-energy-
like terms, which also constitute the most time-consuming steps in the CC2
model. The energy denominator couples the indices i, j, a,b, which prevents
the expression from being factorized into simpler, lower-cost steps. The Laplace
transform addresses this by providing an integral representation of the reciprocal
denominator, which is then evaluated numerically.[>4-56]

€ — €T € — €

_ (aiby) /0 S BE B elei—etes—atgy
Q

Q

N
_sz ZB(?Z-Bije(Ei_Ea)tze(Ej—eb)tz
z Q

(20)

N.
N |
P Q

N
= - > uNNG
z



The quadrature weights and points are denoted by w, and t,, respectively.
We select N, = 7 quadrature points for modest accuracy. Since N, is also
independent of system size, its impact is confined to an increased prefactor in
the computational scaling. The combination of the Laplace transform and RI
factorization leads to the definition of a transformed RI tensor, N, 3

N9 = BYelei=calts (21)

Applying sRI and Laplace transform to this fractional four-index ERI produces
a similar expression, omitted for brevity.

Integrating the Laplace transform with THC results in a similar expression.
For notational convenience, we incorporate the transformation within the phase

of ¢ff (t).

(ai|bj) Y kr 05 (0)0F (0) M r.d% (0)¢5 (0)
Gi—€a+6j—6b7 € — € te€—6
UE t t t t (22)
= =D w06 (5065 (5) My (5)65 ()
z KL

A comparison of eq 14 with eq 20 and eq 18 with eq 22 reveals that the
Laplace transform only modifies the tensors used in the computation without
largely changing the underlying computational steps. Consequently, this tech-
nique affects the prefactor of the scaling but leaves the scaling exponent itself
intact. This result is consistent across the RI, sRI, and THC formulations.
Therefore, in our subsequent derivations, it is convenient to use the standard
four-index ERI form instead of its fractional version for notational brevity.

2.3. THC-sRI-CC2 formulation

The most rate-determining step in the CC2 formulation is the tensor con-
traction between a Tj-transformed doubles quantity bg‘;’ (which can represent
fab pab jab
17771307y R
four-index ERIs, such as (bjlak). As the expressions for all double-excitation
quantities are analogous to the ground-state amplitudes f;‘}’ and the Laplace
transform leaves their computational scaling unchanged, we revert to the sim-

plest forms in the subsequent discussion with RI, sRI and THC.

> bt (bjlak) =Y [2(ailbj) — (bilag)] (bjlak) £ Ay (23)

abj abj

etc., depending on the property being calculated), and a transformed

Within the RI approximation, the Coulomb and exchange terms scale as
O(N*) and O(N?®), respectively. To eliminate the repeated index, the tensor
contraction within the parentheses on the right-hand side of the equation is



evaluated first.

A= > (2BEB[ - BLBY)BIBS
PQabj

(24)
=2> " ZBZUBQ )BE)BE - Z ZBéjBQ )BL)BZ,
Qa P Qa
Using the sRI approximation yields
A =Y ARG R e — (RERG o) Ry REy e
“b (25)

=200 "¢ ZRE RE)RE)RS e — (O Z Zszjo RS, )ee

a

Two distinct sets of stochastic orbitals, £ and &', are used because the two ERIs
are independent, analogous to the roles of P and @) in eq 24. The computational
scaling is reduced to O(N?) for both the Coulomb and exchange terms.

In THC form, this tensor multiplication is given by

A=Y (056f Miropof — o of MicrLon o} o' o) Mun oy 61

KLMNabj

=23 |2 Qo erat Qo ey o) )M Mun | (oo e)of ot o

KN |LM b

= D0 e O e )M Mun | (O dron )b o
7 a

KLN | M b

where the Coulomb term scales as O(N?3) and the exchange term scales as
O(N%).

Among the three approaches (RI, sRI, and THC), the computational scaling
of RI-CC2 and THC-CC2 is O(N®) and O(N*?), respectively. While our sRI-
CC2 implementation demonstrates favorable O(N3) scaling, it is susceptible to
substantial stochastic noise, especially in the calculation of dynamical properties
like analytical gradients. Consequently, we adopt a hybrid strategy that utilizes
THC for the Coulomb term and sRI for the exchange term.

A =2 Z SN K Mot of ¢y &) Mun ol o — (Rp, RS <R§jR§k>5'

KLMNabj

=2>" Z(Zﬁfb%(Z#mMmMMN O AN (27)

KN (LM b
- Z ZRf R)RS)RS,)eer

This method, which we designate THC-sRI-CC2, achieves a drastic reduction
in stochastic noise compared to sRI-CC2 and retains an O(N3) scaling for CC2



excited-state energy and dynamical property calculations. By removing the
main source of stochastic noise, we can achieve the accuracy of standard sRI-
CC2 using significantly fewer stochastic orbitals.

3. RESULTS AND DISCUSSION

This section presents a benchmark of our THC-sRI-CC2 method, evaluating
its performance against the standard sRI-CC2 method with RI-CC2 as a ref-
erence. We compare both accuracy and computational efficiency across several
key metrics: excited-state energies, analytical gradients for ground and excited
states, and derivative couplings. All calculations employ the cc-pVDZ basis set.
For calculations involving sRI, we used Ny = 5000 for excited-state energies
and Ng = 50000 for dynamical properties, unless specified otherwise. Due to
the stochastic nature of the sRI technique, the reported THC-sRI-CC2 and sRI-
CC2 results are averaged over ten independent calculations (each with a unique
random seed); the standard deviations (S.D.) from these replicates are depicted
as error bars. The numerical errors of the matrix-like gradients and derivative
couplings are quantified by the element-wise error (A;) and two metrics: the

maximum error (A,,q.) and the mean absolute error (Agps).

Aoz = max |A| (28)

- 1
Agps = — A, 2
b= 1A (29)

i=1

The THC-sRI-CC2 method is implemented within the Q-Chem[®” package,
utilizing its built-in THC and Laplace transform quadrature modules!*?. All the
calculations are carried out in the high performance computing (HPC) center
of Westlake University, utilizing an AMD EPYC 7502 (2.5 GHz) node with 64
computational cores.

3.1. Convergence of stochastic properties

To determine the optimal number of stochastic orbitals (V) for accurate CC2
excited-state energies and dynamical properties, we use the water molecule as
a test case and plot their convergence with increasing N.

Figure 1 shows that both sRI-CC2 and THC-sRI-CC2 converge to the stan-
dard RI-CC2 result as Ny increases, with their stochastic error bars diminishing
accordingly. Despite introducing an additional prefactor in the THC steps, the
THC-sRI-CC2 method demonstrates greater accuracy at a given Ng compared
to sRI-CC2. Notably, the accuracy of THC-sRI-CC2 at N, = 200 exceeds that
of sRI-CC2 at Ny = 5000, a benchmark value from our previous report on
excited-state energy. Subsequently, we will perform a practical test of these
two methods on molecular systems, using N, = 5000 samples to calculate the
excited-state energy.
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Figure 1: Convergence of HoO excited-state energies with stochastic orbitals.
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Figure 2: Convergence of H2O ground-state gradients with stochastic orbitals.
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To evaluate the performance of THC-sRI-CC2 for dynamical properties, we
consider the ground-state analytical gradient as an example in Figure 2. Both
the maximum error (Apyay) and the mean absolute error (A,y,s) decrease sharply
as Ny increases initially, eventually converging. The errors for THC-sRI-CC2
become acceptably small at Ny = 50000, while those for sRI-CC2 remain sig-
nificant. Since the primary challenge of the cubic-scaling sRI-CC2 formulation
for CC2 gradients or derivative couplings is its large stochastic noise, the per-
formance of THC-sRI-CC2 demonstrates its potential to address this issue. To
balance improved accuracy with computational cost, we selected Ny, = 50000
for all subsequent CC2 dynamical property calculations.

3.2. Accuracy assessment

To test its accuracy, we benchmark our THC-sRI-CC2 method on a series of
molecular systems. The improved stochastic noise is compared to conventional
sRI-CC2 using the same number of stochastic orbitals, with RI-CC2 results
serving as the reference.

We initially calculate the CC2 lowest-lying excited-state energy using Ns =
5000 stochastic orbitals. As shown in Table 2, our THC-sRI-CC2 method re-
duces either the standard deviation or the absolute error (Abs error) by almost
an order of magnitude. The absolute errors across the test set are within 0.01
eV, both for small molecules like water and medium-sized molecules like ben-
zene. While better accuracy could be achieved by further increasing N, our
purpose here is a direct comparison with sRI-CC2. For practical applications
requiring higher accuracy, N can be adjusted accordingly.

Table 2: Excitation energy comparison of sRI-CC2 and THC-sRI-CC2 versus RI-CC2
(in eV).

Molecule RI sRI S.D. Abs error THC-sRI S.D. Abs error

H50 8.0924 8.0500 0.1986 0.0425 8.0965 0.0330 0.0041
LiH 3.7369 3.7318 0.1229 0.0051 3.7372 0.0357 0.0003
HCHO  4.1523 4.3033 0.1884 0.1510 4.1719 0.0277 0.0196
Benzene 5.3668 5.3048 0.0951 0.0619 5.3768 0.0288 0.0101
Furan 6.9492 6.7998 0.1958 0.1493 6.9398 0.0215 0.0094
Pyrrole  6.7658 6.7416 0.2238 0.0242 6.7610 0.0206 0.0048
Pyridine 5.4185 5.4402 0.1726 0.0216 5.4148 0.0292 0.0038

Next, we evaluate the performance of our THC-sRI-CC2 method for dy-
namical properties, starting with the ground-state analytical gradient in Table
3. Using N, = 50000 for both sRI approaches, we find that our THC-sRI-CC2
delivers greater accuracy across all tested systems except for the simplest case
of LiH, where sRI-CC2 is already adequate. This is quantified by reductions

in both the maximum error (A,,,,) and the mean absolute error (Agps). Cru-
cially, THC-sRI-CC2 maintains the cubic scaling of sSRI-CC2. The combination
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of this favorable scaling, which can be further improved with larger N, and
high accuracy makes our method well-suited for dynamic simulations of large
systems with hundreds to thousands of electrons.

Table 3: Ground-state analytical gradient comparison of sRI-CC2 and THC-sRI-CC2
versus RI-CC2 (in hartree/bohr).

sRI-CC2 THC-sRI-CC2

Molecule Gradient S.D. Gradient S.D.

Amaa: Aabs Amaac Aabs Am(m Aabs Amaw Aabs

H20O 0.0028 0.0015 0.0138 0.0075 0.0017 0.0008 0.0030 0.0017
LiH 0.0002 0.0001 0.0004 0.0003 0.0002 0.0001 0.0004 0.0003
HCHO  0.0231 0.0072 0.0706 0.0226 0.0036 0.0011 0.0117 0.0038
Benzene 0.1200 0.0204 0.3611 0.0899 0.0147 0.0026 0.0246 0.0084
Furan 0.0344 0.0137 0.1562 0.0613 0.0066 0.0019 0.0169 0.0059
Pyrrole  0.0768 0.0162 0.2065 0.0695 0.0088 0.0023 0.0187 0.0066
Pyridine 0.0516 0.0167 0.2477 0.0773 0.0100 0.0017 0.0196 0.0073

Results for the THC-sRI-CC2 excited-state analytical gradient and deriva-
tive coupling are provided in Tables 4 and 5. Although the original sRI-CC2
method exhibits significant stochastic noise, our THC-sRI-CC2 calculations for
both properties show markedly less noise at an identical stochastic orbital num-
ber (N; = 50000). This improved performance across multiple dynamical prop-
erties demonstrates that the THC-sRI-CC2 approach successfully mitigates the
high noise levels that plagued the earlier sSRI-CC2 method. Combined with its
cubic scaling, this makes our THC-sRI-CC2 a potential candidate for large-scale
nonadiabatic dynamics.

Table 4: Excited-state analytical gradient comparison of sRI-CC2 and THC-sRI-CC2
versus RI-CC2 (in hartree/bohr).

sRI-CC2 THC-sRI-CC2

Molecule Gradient S.D. Gradient S.D.

A771(1,9: Aabs Am,az Aabs Ama:c Aabs Ama:r Aabs

H>O 0.0139 0.0053 0.0217 0.0142 0.0021 0.0007 0.0036 0.0024
LiH 0.0006 0.0003 0.0018 0.0013 0.0002 0.0002 0.0012 0.0008
HCHO  0.0191 0.0074 0.0682 0.0246 0.0040 0.0017 0.0115 0.0039
Benzene 0.1593 0.0256 0.3450 0.0939 0.0149 0.0021 0.0251 0.0085
Furan 0.1369 0.0248 0.1622 0.0582 0.0049 0.0011 0.0159 0.0060
Pyrrole  0.1235 0.0226 0.2224 0.0800 0.0092 0.0017 0.0214 0.0067
Pyridine 0.0990 0.0259 0.2593 0.0777 0.0100 0.0019 0.0203 0.0076
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Table 5: Derivative coupling comparison of sSRI-CC2 and THC-sRI-CC2 versus RI-CC2
(in 1/bohr).

sRI-CC2 THC-sRI-CC2
Molecule  Item "y vative coupling S.D. Derivative coupling S.D.
Amaac Aabs Amaac Aabs Amaac Aabs Ama,ac Aabs

LiH Fy1 0.0156 0.0085 0.0731 0.0298 0.0184 0.0076 0.0266 0.0116
HCHO F5 0.0139 0.0074 0.0388 0.0195 0.0070 0.0017 0.0181 0.0056
Benzene F 0.0985 0.0153 0.2214 0.0495 0.0087 0.0026 0.0515 0.0140
Furan F5; 0.5818 0.2118 1.3364 0.5820 0.0963 0.0300 0.1008 0.0419
Pyrrole F3o  0.2844 0.0826 0.5500 0.2636 0.0708 0.0207 0.1329 0.0482
Pyridine  F5;  0.0657 0.0165 0.1891 0.0678 0.0234 0.0049 0.0442 0.0132

3.3. Scaling Analysis

In this section, we perform a scaling analysis of our THC-sRI-CC2 method.
We calculate the excited-state energy for a series of (all-E')-olefin chains of vary-
ing electron number (N.) in Table 6. We set N, = 5000 for sRI-CC2 and
Ng = 200 for THC-sRI-CC2, as these values yield comparable accuracy in the
convergence tests of Section 3.1. A key observation is that the stochastic noise
remains stable even as the number of electrons increases. This stability indi-
cates that the required N; does not need to be scaled up for larger systems.
The N; is effectively independent of system size, contributing only a constant
computational prefactor. The persistent error trends further corroborate this
conclusion.

Table 6: Accuracy of sRI-CC2 and THC-sRI-CC2 for olefin chain excitation energies
(in eV).

Molecule RI sRI S.D. Abs error THC-sRI S.D. Abs error

C,H, 87501 87707 0.1764  0.0206 8.7155  0.1256  0.0346
C4Hg  6.6879 6.6460 0.2141  0.0419 6.7029  0.0741  0.0150
C¢Hs  5.6045 5.6478 0.1885  0.0433 5.6523  0.0871  0.0478
CsHip  4.9348 4.9234 0.1624  0.0114 4.9861  0.1072  0.0513
CioHp2  4.4811 4.4836 0.1631  0.0025 4.4739  0.0627  0.0072

The computational time of our THC-sRI-CC2 method is plotted in Figure 3
alongside that of RI-CC2 and sRI-CC2. Among these three approaches, RI-CC2
scales as O(N*32), while sRI-CC2 and THC-sRI-CC2 scale more favorably as
O(N?%™) and O(N?89), respectively. For systems smaller than the crossover
point at about N, = 70 and 120, RI-CC2 is faster due to its smaller prefac-
tor. For larger systems beyond this crossover, however, the two sRI methods
demonstrate superior performance. Notably, THC-sRI-CC2 exhibits a lower
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CPU time across the tested range while maintaining accuracy comparable to
sRI-CC2, highlighting its capability for efficient and accurate calculations.

+ RI-CC2 4 O(N>773)
sRI-CC2 p
10°}  ® THC-sRI-CC2 ) O(N?#4)

Time (seconds)
=

10° | L
O(N4.319)

Figure 3: Computational scaling comparison of RI-CC2, sRI-CC2 and THC-sRI-CC2.

4. CONCLUSIONS

We introduce a hybrid THC-sRI-CC2 method that reduces the computa-
tional scaling of CC2 properties from O(N®) to O(N?3). This is achieved by
applying THC to the Coulomb term and sRI to the exchange term, with only
a minor loss in accuracy. A key advantage over our previous cubic-scaling sRI-
CC2 approach is a dramatic reduction in stochastic noise. This enhancement
enables robust, large-scale calculations of dynamical properties, paving the way
for CC2 dynamic simulations in extended systems. The performance of this
hybrid strategy suggests its potential utility for other electronic structure meth-
ods.
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