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Two-frequency (two-color) laser fields provide a powerful and flexible means for steering molecular dynamics.
However, quantitatively reliable and scalable theoretical tools for simulating laser-driven nonadiabatic pro-
cesses under such fields remain limited. Here, we develop a two-mode Floquet fewest switches surface hopping
(two-mode F-FSSH) approach for two-frequency driving within a mixed quantum–classical framework. We
validate the algorithm on three driven one-dimensional two-state models: a Rabi model and two avoided-
crossing scattering models. The electronic and nuclear dynamics are benchmarked against numerically exact
results from split-operator calculations, showing good agreement across a broad range of field parameters
and initial conditions. These results establish two-mode F-FSSH as a practical framework for simulating and
designing two-frequency control protocols and motivate extensions to more realistic experimental settings.

I. INTRODUCTION

Strong laser fields offer a highly tunable route to ma-
nipulate molecular dynamics far from equilibrium, un-
derpinning a wide range of phenomena in physical chem-
istry and materials science.1–3 Representative examples
include ultrafast spectroscopy,4,5 coherent control,6–8
photocatalysis,9,10 and plasmonic chemistry.11,12 Among
various driving protocols, periodic two-frequency fields
(often termed two-color fields in experiments) have at-
tracted considerable attention13–15. Their structured
spectra and temporal modulation provide additional con-
trol parameters, including independently tunable ampli-
tudes, relative phase, polarization, and frequency de-
tuning between the two components. This expanded
controllability has made periodic two-frequency schemes
valuable across multiple frontiers. In nonlinear op-
tics, two-frequency fields are widely used to tailor high-
order harmonic generation (HHG) and related frequency-
conversion processes.16,17 Two-frequency excitation also
plays a central role in ultrafast spectroscopy, enabling
broadly tunable pump–probe configurations and mul-
tidimensional spectroscopies.18,19 In precision diagnos-
tics and metrology, interferometric techniques (e.g., two-
frequency interferometry and second-harmonic disper-
sion interferometry) allow robust retrieval of plasma- and
density-related observables.20–23 Moreover, in ultrafast
imaging of rapid transients, two-frequency illumination
can improve reconstruction fidelity and enhance image
contrast.24

These rapid experimental advances in periodic two-
frequency laser techniques have stimulated theoretical ef-
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forts to elucidate the underlying dynamical mechanisms
and to enable rational control strategies. A central the-
oretical challenge is that the Born–Oppenheimer (BO)
approximation breaks down under strong external driv-
ing, where field-induced electronic transitions become
intertwined with nuclear motion through nonadiabatic
couplings.25,26 A direct and fully quantum description is
obtained by solving the full time-dependent Schrödinger
equation (TDSE), for example via quantum wavepacket
dynamics27,28 or the multiconfiguration time-dependent
Hartree (MCTDH) method.29,30 However, TDSE-based
approaches typically incur a steep computational cost
that grows rapidly with the number of nuclear degrees of
freedom, which limits their routine applications to small
systems. This consideration motivates mixed quantum–
classical dynamics, most notably Tully’s fewest switches
surface hopping (FSSH)31 and its variants, which often
offer a practical balance between numerical accuracy and
computational efficiency.32

To incorporate external driving into FSSH, two ma-
jor strategies have been pursued. One is instantaneous
adiabatic fewest switches surface hopping (IA-FSSH),
where the explicitly time-dependent electronic Hamilto-
nian is diagonalized on-the-fly to obtain instantaneous
adiabatic states and potential energy surfaces (PESs).
This method has been implemented in several practical
schemes, including the surface hopping including arbi-
trary couplings (SHARC) package33–35 and related field-
induced surface hopping (FISH) approaches.36,37 While
conceptually straightforward, IA-FSSH can face limita-
tions under strong or resonant driving. First, the in-
stantaneous adiabatic PESs may oscillate rapidly, lead-
ing to intricate electronic phase relations and repeated
wavepacket splitting and remerging. Such dynamics can
introduce recoherence events that are not naturally cap-
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tured by trajectory-based surface hopping.38–41 A second
limitation is energy consistency. In standard (field-free)
FSSH, nuclear momenta are typically rescaled during a
hopping event to conserve the total energy. Under ex-
ternal driving, however, energy is not conserved for the
molecular subsystem because it can be continuously ex-
changed with the field.42,43 To date, there is no univer-
sally accepted prescription for handling energy consis-
tency and momentum rescaling in IA-FSSH under strong
time-dependent driving. In addition, accurate evaluation
of time derivative couplings and consistent phase track-
ing of instantaneous adiabatic states can be challenging
in practice.34,44,45

Motivated by these challenges, an alternative strat-
egy is to combine fewest switches surface hopping with
Floquet theory by recasting a periodic time-dependent
Hamiltonian into a time-independent one.46,47 This Flo-
quet fewest switches surface hopping (F-FSSH) approach
has been extensively explored for periodically driven
systems.42,43,48–51 Within this framework, nuclear tra-
jectories propagate on Floquet quasi-energy surfaces and
undergo hops between them. Thus far, F-FSSH has been
developed primarily for single-frequency driving cases. A
general F-FSSH approach for two-frequency driving has
not yet been established.

Here, we develop a two-mode Floquet fewest switches
surface hopping (two-mode F-FSSH) approach for two-
frequency laser-driven nonadiabatic dynamics. In Sec. II,
we present the theoretical formulation and the corre-
sponding two-mode F-FSSH algorithm. In Sec. III, we
introduce the model Hamiltonians and provide simula-
tion details for both the exact and two-mode F-FSSH
calculations. In Sec. IV, we benchmark the two-mode
F-FSSH algorithm by comparing electronic and nuclear
dynamics with numerically exact calculations. Finally,
we summarize the main findings and outline future di-
rections in Sec. V.

II. THEORY AND METHODOLOGY

A. Molecular Hamiltonian Driven by Strong Laser Fields

We consider laser-driven nonadiabatic molecular dy-
namics, where the total Hamiltonian is written as

Ĥ(t) = T̂n + Ĥel(R̂) + V̂int(t). (1)

Here R̂ denotes the nuclear coordinate operator, T̂n is the
nuclear kinetic-energy operator, and Ĥel(R̂) is the field-
free electronic Hamiltonian. Throughout this work, we
employ the electric-dipole approximation for the laser–
molecule interaction,

V̂int(t) = −µ̂(R̂) ·E(t), (2)

where µ̂(R̂) is the molecular dipole operator and E(t) is
the applied electric field. We consider a two-frequency

field composed of two components with frequencies ω1

and ω2 along the unit vector e,

E(t) = e
[
E1 cos

(
ω1t+ ϕ1

)
+ E2 cos

(
ω2t+ ϕ2

)]
, (3)

where E1,2 are the field amplitudes and ϕ1,2 are the car-
rier phases.

B. Two-Mode Floquet Formalism

We now briefly review the general two-mode Floquet
formalism.52 For a closed system, we begin with the time-
independent Floquet Liouville–von Neumann equation in
the extended space,

dρ̂F (t)

dt
= − i

ℏ

[
ĤF , ρ̂F (t)

]
, (4)

where ĤF is the two-mode Floquet Hamiltonian and
ρ̂F (t) is the corresponding two-mode Floquet density op-
erator.

To construct ĤF , we rewrite the time-dependent
Hamiltonian in a two-time form Ĥ(t1, t2) by reindex-
ing the oscillatory terms with frequencies ω1 and ω2 us-
ing independent time variables t1 and t2, respectively.
The original Hamiltonian is recovered on the diagonal
t1 = t2 = t, namely Ĥ(t) ≡ Ĥ(t, t). We then expand
Ĥ(t1, t2) in a two-dimensional Fourier series,

Ĥ(t1, t2) =
∑

m,n∈Z
Ĥmn einω1t1 eimω2t2 , (5)

where the coefficient operators are given by

Ĥmn =
1

T1T2

∫ T2

0

dt2

∫ T1

0

dt1 Ĥ(t1, t2) e
−inω1t1 e−imω2t2 ,

(6)
with T1 = 2π/ω1 and T2 = 2π/ω2.

Next, we introduce the two-mode Fourier basis
{|m,n⟩} for the extended space, where n labels the
Fourier index associated with ω1 and m labels that asso-
ciated with ω2. In this basis, the two families of ladder
operators L̂′

k and L̂′′
k and the corresponding number op-

erators N̂ ′ and N̂ ′′ act as

L̂′
k |m,n⟩ = |m,n+ k⟩ , L̂′′

k |m,n⟩ = |m+ k, n⟩ ,
N̂ ′ |m,n⟩ = n |m,n⟩ , N̂ ′′ |m,n⟩ = m |m,n⟩ ,[
N̂ ′, L̂′

k

]
= k L̂′

k,
[
N̂ ′′, L̂′′

k

]
= k L̂′′

k ,[
L̂′
n, L̂

′′
k

]
= 0,

[
N̂ ′, N̂ ′′

]
= 0. (7)

With the Fourier components Ĥmn and the opera-
tors in Eq. (7), the time-independent two-mode Floquet
Hamiltonian ĤF is assembled as

ĤF =
∑
m,n

L̂′′
mL̂

′
n⊗ Ĥmn+ N̂ ′⊗ Î ℏω1+ N̂

′′⊗ Î ℏω2, (8)
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where Î denotes the identity operator in the electronic
Hilbert space. Similarly, the two-mode Floquet density
operator is defined as

ρ̂F (t) =
∑
m,n

L̂′′
mL̂

′
n ⊗ ρ̂mn(t), (9)

where ρ̂mn(t) are the corresponding coefficient operators.
Physical observables are defined in the electronic

Hilbert space. Accordingly, the physical density oper-
ator ρ̂(t) is obtained by projecting the Floquet density
operator ρ̂F (t) back to the original Hilbert space,

ρ̂(t) =
∑
m,n

⟨m,n| ρ̂F (t) |0, 0⟩ einω1t eimω2t. (10)

Here, we select the reference replica |0, 0⟩, and the phase
factors restore the explicit time dependence in the phys-
ical representation.

C. Two-Mode Floquet Fewest Switches Surface Hopping

By applying a partial Wigner transform53,54 to Eq. (4)
with respect to the nuclear degrees of freedom, we ob-
tain the Floquet quantum–classical Liouville equation
(F-QCLE):55

∂ρ̂FW(t)

∂t
= − i

ℏ

[
ĤF

el , ρ̂
F
W(t)

]
−
∑
α

Pα

Mα

∂ρ̂FW(t)

∂Rα

+
1

2

∑
α

{
∂ĤF

el

∂Rα
,
∂ρ̂FW(t)

∂Pα

}
.

(11)

Here ρ̂FW(t) denotes the partial Wigner transforms of
ρ̂F (t), such that the nuclear operators are replaced by the
corresponding classical phase-space variables R = {Rα}
and P = {Pα}. The index α labels the classical nuclear
degrees of freedom, and

{
Â, B̂

}
≡ ÂB̂ + B̂Â defines the

anticommutator.
Eq. (11) provides a mixed quantum–classical descrip-

tion, which naturally motivates a trajectory-based sur-
face hopping implementation in the two-mode Floquet
representation. For each nuclear geometry R, we con-
struct a Floquet electronic Hamiltonian ĤF

el (R) and di-
agonalize it to obtain the Floquet adiabatic states and
quasi-energies,

ĤF
el (R)

∣∣ΦF
j (R)

〉
= Ej(R)

∣∣ΦF
j (R)

〉
. (12)

Each nuclear trajectory evolves on the active Floquet
quasi-energy surface Ej(R) associated with the active
Floquet state j. The nuclear degrees of freedom are
propagated classically according to Newton’s equations
of motion,

Ṙα =
Pα

Mα
, Ṗα = −∂Ej(R)

∂Rα
. (13)

The Floquet electronic density matrix is propagated ei-
ther (i) in the diabatic Floquet basis by directly integrat-
ing Eq. (4), or (ii) in the adiabatic Floquet basis obtained
by diagonalizing ĤF

el (R). In the adiabatic representation,
we define Floquet adiabatic density matrix elements as
ρFjk(t) =

〈
ΦF

j (R(t))
∣∣ρ̂F (t)∣∣ΦF

k (R(t))
〉
. The equation of

motion is given by

iℏ ρ̇Fjk =
∑
l

[
ρFlk

(
Ejδjl−iℏ Ṙ·dF

jl

)
−ρFjl

(
Elδlk−iℏ Ṙ·dF

lk

)]
.

(14)
where dF

jk(R) =
〈
ΦF

j (R)
∣∣∇R

∣∣ΦF
k (R)

〉
denotes the Flo-

quet derivative coupling between adiabatic Floquet states
j and k.

Following Tully’s fewest-switches prescription,31 the
hopping probability from the active surface j to the tar-
get surface k within one time step ∆t is

gj→k = max

[
0, −2 Re

{
Ṙ · dF

kj

ρFjk
ρFjj

}]
∆t. (15)

Upon a successful hop j → k, the nuclear momentum is
rescaled to conserve the total energy,∑

α

P 2
α

2Mα
+ Ej(R) =

∑
α

P ′ 2
α

2Mα
+ Ek(R). (16)

where P ′
α denotes the post-hop momentum. The mo-

mentum rescaling is performed along the direction of
Re

(
dF
jk

)
,

nF
jk =

Re
(
dF
jk

)
∣∣∣Re(dF

jk

)∣∣∣ . (17)

If Eq. (16) admits no real solution for P ′
α when rescaling,

the hop is rejected.
In principle, the two-mode Floquet Hamiltonian

ĤF (R) acts on an infinite-dimensional extended space
spanned by the Fourier indices (m,n) ∈ Z2, which ren-
ders two-mode F-FSSH computationally impractical. We
therefore truncate the two Fourier spaces by retaining
n ∈ [−N1, N1] for the ω1 component and m ∈ [−N2, N2]
for the ω2 component. The resulting Floquet Hamilto-
nian dimension is DF = De(2N1+1)(2N2+1), where De

is the dimension of the electronic Hilbert space. In prac-
tice, N1 and N2 are increased until the target physical
observables (e.g., electronic populations) are converged
within the desired accuracy.

III. SIMULATION DETAILS

A. Model Hamiltonians

In this subsection, we introduce three driven one-
dimensional two-state model Hamiltonians that serve as
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test systems for assessing the accuracy and robustness of
surface hopping algorithms. Unless otherwise noted, all
quantities are reported in atomic units (a.u.).

1. Rabi Model

As a first model system, we consider a driven Rabi
model with two vertically displaced one-dimensional
harmonic potentials.33 In the diabatic electronic basis
{|1⟩ , |2⟩}, the field-free electronic Hamiltonian reads

Ĥe(x) =

(
1
2kx

2 0
0 1

2kx
2 +∆

)
, (18)

where x is the nuclear coordinate, k is the harmonic force
constant, and ∆ is the vertical energy gap between the
two diabatic potentials. In this work, we set k = 1 and
∆ = 40.

The transition dipole operator is assumed to be purely
off-diagonal and independent of the nuclear coordinate,

µ̂ =

(
0 1
1 0

)
. (19)

For this model, the applied two-frequency field is

E(t) = E1 sin
(
ω1t

)
+ E2 sin

(
ω2t

)
, (20)

which corresponds to Eq. (3) with carrier phases ϕ1 =
ϕ2 = −π/2.

Fig. 1(a) illustrates representative Floquet quasi-
energy surfaces for the driven Rabi model under the driv-
ing parameters specified in the caption.

2. Avoided-Crossing Scattering Models

To benchmark two-mode F-FSSH on field-controlled
nonadiabatic scattering, we consider two standard
one-dimensional avoided-crossing models proposed by
Tully.31 In the diabatic basis {|1⟩ , |2⟩}, the explicitly
time-dependent electronic Hamiltonian is written as

Ĥe(x, t) =

(
V11(x) W (x, t)
W (x, t) V22(x)

)
. (21)

In both models, the diabatic coupling is modulated by a
two-frequency field,

W (x, t) =W0(x)
[
1 + E1 cos(ω1t) + E2 cos(ω2t)

]
, (22)

so that the driving primarily affects the nonadiabatic cou-
pling region. The field-free limit is recovered by setting
E1 = E2 = 0, in which case the time dependence vanishes
and the diabatic coupling reduces to W0(x).

a. Simple Avoided Crossing. For the simple
avoided-crossing model, we take

V11(x) =

{
A
[
1− e−Bx

]
, x > 0,

−A
[
1− eBx

]
, x ≤ 0,

(23)

and set V22(x) = −V11(x), with

W0(x) = C e−Dx2

. (24)

Here we use A = 0.01, B = 1.6, C = 0.005, and D = 1.0.
b. Dual Avoided Crossing. For the dual avoided-

crossing model, we take

V11(x) = 0, (25)

V22(x) = −Ae−Bx2

+ E0, (26)

W0(x) = C e−Dx2

, (27)

which generates two well-separated avoided crossings as
the wavepacket traverses the interaction region. Here we
use A = 0.10, B = 0.28, C = 0.015, D = 0.06, and
E0 = 0.05.

Figs. 1(b,c) illustrate representative Floquet quasi-
energy surfaces for the driven avoided-crossing scatter-
ing models under the driving parameters specified in the
caption. Numerous trivial crossings can compromise the
numerical stability of surface hopping dynamics. Practi-
cal remedies are discussed below.

B. Exact Calculations and Initial Conditions

We obtain numerically exact results using the split-
operator method proposed by Kosloff and Kosloff.56 The
initial nuclear wavepacket is chosen as a normalized
Gaussian,

ψ(x, 0) =

(
1

πσ2

)1/4

exp

[
− (x− x0)

2

2σ2
+
i

ℏ
p0(x− x0)

]
,

(28)
and the initial electronic state is taken to be the ground
diabatic state at t = 0. For the driven Rabi model, we
place the nuclear wavepacket at the minimum of the lower
harmonic potential, with p0 = 0 and σ = 1/

√
2. For

the avoided-crossing scattering models, we initialize the
wavepacket centered at x0 = −10 (far from the interac-
tion region) with σ = p0/20, which adjusts the spatial
width with the incident momentum.31

The initial conditions for two-mode F-FSSH trajec-
tories are sampled from the Wigner distribution corre-
sponding to the Gaussian wavepacket in Eq. (28). For
a minimum-uncertainty Gaussian, the Wigner function
reads

W (x, p) =
1

πℏ
exp

[
− (x− x0)

2

σ2

]
exp

[
−σ

2(p− p0)
2

ℏ2

]
,

(29)
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FIG. 1. Adiabatic Floquet quasi-energy surfaces for the model systems considered in this work. For visualization, the two-mode
Floquet Hamiltonian is truncated with N1 = N2 = 1: (a) driven Rabi model with E1 = E2 = 4.0, ω1 = 40.0, and ω2 = 2ω1;
(b) simple avoided-crossing model with E1 = E2 = 0.3, ω1 = 0.015, and ω2 = 2ω1; and (c) dual avoided-crossing model with
E1 = E2 = 0.3, ω1 = 0.05, and ω2 = 2ω1. The dense replica structure in the avoided-crossing models gives rise to numerous
trivial crossings that can cause numerical instabilities.

which implies that x and p can be sampled independently
from normal distributions with standard deviations ∆x =
σ/

√
2 and ∆p = ℏ/(

√
2σ), respectively. Because Flo-

quet nonadiabatic dynamics under external driving can
be sensitive to the initial nuclear distribution, we ensure
that the trajectory sampling uses the same (x0, p0, σ) as
the corresponding wavepacket benchmarks.42

C. Implementation Details of Two-Mode F-FSSH

To improve numerical stability and reproducibility, we
employ several implementation techniques in our two-
mode F-FSSH simulations. These procedures are not
specific to any particular model and serve as practical
guidelines for robust calculations.

1. Trivial Crossings in the Floquet Representation

Trivial crossings are ubiquitous in Floquet representa-
tions because the enlarged Floquet space contains many
near-degenerate replicas that can intersect as functions of
nuclear geometry.45 They become particularly problem-
atic when the Floquet derivative couplings dF

jk(R) are
evaluated via the Hellmann–Feynman expression,

dF
jk(R) = −

〈
ΦF

j (R)
∣∣∇RĤ

F
el (R)

∣∣ΦF
k (R)

〉
Ej(R)− Ek(R)

, (j ̸= k).

(30)
Specifically, the small quasi-energy gaps Ej(R)−Ek(R)
in the denominator can spuriously amplify dF

jk near ex-
act trivial crossings, which can in turn lead to erroneous
hopping probabilities and distorted electronic coherences.
To obtain stable and physically meaningful dynamics in
the presence of trivial crossings, we employ the following
two remedies simultaneously:

a. Phase Correction. In numerical implementa-
tions, the Floquet adiabatic states are obtained by di-
agonalizing ĤF (R). Mathematically, if

∣∣ΦF
j (R)

〉
is an

eigenvector then eiθj(R)
∣∣ΦF

j (R)
〉

is equally valid for any
real θj(R). This intrinsic gauge freedom leads to phase
indeterminacy from one geometry to the next in repeated
diagonalizations.57 Surface hopping in the Floquet repre-
sentation is sensitive to these phases. In this work, con-
ventional parallel transport does not provide sufficiently
robust phase tracking, and we therefore employ the phase
correction procedure introduced by Mai et al.34,35 to en-
force phase continuity of the Floquet adiabatic states.

b. Diabatic Evolution. The Floquet electronic den-
sity matrix can be propagated in either the diabatic or
the adiabatic representation. In principle, the two choices
are equivalent and related by a unitary transformation.58
In practice, however, adiabatic propagation requires
derivative couplings and can become numerically unsta-
ble near trivial crossings, even with phase correction. We
therefore propagate the Floquet electronic density matrix
in the diabatic basis while evaluating hopping events in
the adiabatic basis. Although this mixed-representation
strategy is not common in conventional FSSH implemen-
tations, it is essential for robust and reproducible two-
mode F-FSSH simulations.

2. Frustrated Hops

In FSSH, an attempted hop from an active surface j to
a target surface k may be rejected when the nuclear ki-
netic energy along the rescaling direction is insufficient to
satisfy the energy-matching requirement. Such rejected
events are referred to as frustrated hops. Properly treat-
ing frustrated hops is essential for maintaining physically
reasonable nuclear momentum distributions and avoiding
systematic biases in state populations. In this work, we
adopt the widely used ∆V prescription introduced by
Jasper and Truhlar.59 Briefly, when a hop j → k is at-
tempted but rejected, the nuclear momentum is reversed
along nF

jk defined in Eq. (17) if(
∇REk · nF

jk

)(
P · nF

jk

)
> 0. (31)
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Otherwise, the momentum is kept unchanged and the
trajectory continues evolving on the current surface j.

IV. RESULTS AND DISCUSSION

In this section, we report electronic and nuclear dy-
namics for the three model Hamiltonians introduced
above. Numerically exact reference results are obtained
with the split-operator method, and the approximate re-
sults are generated using our two-mode Floquet fewest
switches surface hopping (two-mode F-FSSH) approach.

A. Rabi Model

We first test two-mode F-FSSH on the driven Rabi
model. Fig. 2 compares diabatic populations obtained
from numerically exact split-operator propagation (top
row) and from two-mode F-FSSH (bottom row). For the
two-mode F-FSSH results, we use an ensemble of 100
trajectories with a time step ∆t = 0.002. The two sets
of curves are in excellent agreement in all cases. This
agreement is expected for the present model: the field-
free Hamiltonian is strictly diagonal [Eq. (18)], and thus
there are no hops due to nonadiabatic transitions. The
population dynamics are driven entirely by the light–
matter interaction V̂int(t) = −µ̂E(t), which induces co-
herent and continuous population transfer between the
diabatic states.

The three columns illustrate representative combina-
tions of driving frequencies and field amplitudes. In
Fig. 2(a,d), the field contains a resonant component at
ω1 = ∆ = 40 together with a second-harmonic com-
ponent at ω2 = 2∆ = 80, with E1 = 4 and E2 = 4.
The resonant component produces the dominant coher-
ent population cycling, while the 2∆ component con-
tributes rapid dressing-induced modulations, visible as
higher-frequency ripples superimposed on the primary os-
cillation. In Fig. 2(b,e), both components are detuned
(E1 = 4, E2 = 4, ω1 = 36, and ω2 = 44), leading
to strongly reduced net population transfer. Finally,
Fig. 2(c,f) shows that the long-time population exchange
is governed primarily by the resonant component: with
E1 = 1 at ω1 = ∆ = 40 and a stronger off-resonant sec-
ond harmonic (E2 = 4 at ω2 = 2∆ = 80), slow Rabi oscil-
lations persist with a timescale set mainly by the weaker
resonant field, whereas the stronger high-frequency com-
ponent mainly adds fast oscillatory dressing rather than
dominating the net population exchange.

B. Simple Avoided Crossing

We next consider the driven simple avoided-crossing
model, where the two-frequency field modulates the dia-
batic coupling in the interaction region and thereby con-
trols nonadiabatic scattering. Fig. 3 compares transmit-

ted probabilities from numerically exact split-operator
propagation (top row) with those from two-mode F-FSSH
(bottom row). For two-mode F-FSSH, we use an en-
semble of 104 trajectories with a time step ∆t = 0.5.
Across these scans, two-mode F-FSSH closely tracks the
split-operator benchmarks, indicating that it captures
the field-controlled scattering dynamics over a wide range
of parameters.

The left column [Fig. 3(a,d)] shows the transmitted
probabilities as a function of the incident momentum p0
at fixed driving parameters (E1 = E2 = 0.3, ω1 = 0.02,
and ω2 = 2ω1). As p0 increases, the traversal time
through the localized interaction region decreases, reduc-
ing the effective action of the time-dependent coupling
and leading to a systematic redistribution of transmis-
sion between the lower and upper surfaces. The middle
column [Fig. 3(b,e)] scans the field amplitudes E1(= E2)
at fixed p0 = 20 and fixed frequencies (ω1 = 0.02
and ω2 = 2ω1). The transmitted probabilities vary
smoothly with increasing field strength, consistent with
an effective-coupling picture: a larger modulation depth
enhances the time-dependent mixing in the interaction
region and thus biases the net transfer between the lower
and upper surfaces. The right column [Fig. 3(c,f)] scans
the driving frequency ω1 (with ω2 = 2ω1) at fixed p0 = 20
and E1 = E2 = 0.3. At low frequencies, the transmitted
probabilities exhibit pronounced oscillations. These os-
cillations arise from interference between multiple nona-
diabatic transition pathways, which accumulate differ-
ent dynamical phases while the nuclear wavepacket tra-
verses the time-modulated interaction region. As ω1 in-
creases, the oscillations are rapidly suppressed and the
transmission approaches a nearly frequency-independent
limit with Trans 0 ≈ Trans 1 ≈ 0.5. This crossover re-
flects a high-frequency averaging effect: when the cou-
pling oscillates much faster than the scattering timescale,
phase-dependent interference between different transition
pathways is effectively averaged out, and the dynamics is
governed by an effective time-averaged coupling.

C. Dual Avoided Crossing

We now turn to the driven dual avoided-crossing
model. We fix the two-frequency field parameters at
E1 = E2 = 0.3, ω1 = 0.05, and ω2 = 2ω1, and vary the
incident momentum p0. Fig. 4 reports the transmitted
probabilities together with the final nuclear momentum
pfinal. Compared with the split-operator benchmarks
(top row), two-mode F-FSSH reproduces pfinal in great
agreement across the entire p0 range, whereas the trans-
mitted probabilities show more noticeable deviations at
lower p0 and improve progressively as p0 increases.

In Fig. 4(a,c), the transmitted probabilities exhibit
pronounced oscillations as a function of p0, consistent
with Stückelberg-type interference in a dual avoided-
crossing geometry. The two successive nonadiabatic pas-
sages generate multiple pathways, and the resulting in-
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FIG. 2. Diabatic populations for the driven Rabi model under representative two-frequency driving. Top row: numerically
exact split-operator results. Bottom row: two-mode F-FSSH results using 100 trajectories with ∆t = 0.002. Left column:
E1 = 4, ω1 = 40, E2 = 4, ω2 = 80. Middle column: E1 = 4, ω1 = 36, E2 = 4, ω2 = 44. Right column: E1 = 1, ω1 = 40,
E2 = 4, ω2 = 80. Overall, two-mode F-FSSH quantitatively reproduces the numerically exact split-operator predictions for the
electronic population dynamics across these representative two-frequency driving conditions.

terference depends on the dynamical phase accumulated
during the nuclear propagation between the two cross-
ings. At lower p0, the longer traversal time amplifies the
sensitivity of the final populations to phase accumulation
and quantum interference, which can lead to an apparent
phase shift of the oscillations in independent-trajectory
surface hopping. Similar behavior has been reported
for this model in Tully’s original work.31 At higher p0,
the nuclear motion is faster and the momentum-resolved
transmission becomes less sensitive to such phase effects,
which makes two-mode F-FSSH more reliable. Mean-
while, Fig. 4(b,d) shows that pfinal increases approxi-
mately monotonically with p0, with small modulations
correlated with the electronic outcome. The two-mode
F-FSSH results for pfinal are essentially indistinguishable
from the exact benchmarks.

V. CONCLUSIONS

In this work, we developed a two-mode Floquet fewest
switches surface hopping (two-mode F-FSSH) approach
for two-frequency laser-driven nonadiabatic dynamics.
Benchmarking on three driven one-dimensional two-
state models, we found that two-mode F-FSSH captures
the numerically exact results obtained from the split-
operator method over a broad range of field parameters

and initial conditions. This includes regimes where two-
frequency driving reshapes Rabi-type population trans-
fer, as well as regimes where field-controlled transitions
dominate avoided-crossing scattering. Together, these re-
sults demonstrate that two-mode F-FSSH is a practical
and conceptually transparent route for simulating period-
ically driven nonadiabatic processes with two-frequency
fields.

Despite these promising results, several limitations and
open directions remain. First, the present algorithm
can be computationally demanding. Although the time-
independent Floquet framework can permit larger inte-
gration time steps than instantaneous adiabatic fewest
switches surface hopping (IA-FSSH) in many situations,
convergence with respect to the two-mode truncation of-
ten requires sufficiently large N1 and N2. As a result,
the two-mode F-FSSH dynamics can become expensive
to propagate in practice. Therefore, further efficiency im-
provements will be important. Possible strategies include
a more aggressive separation of nuclear and electronic
time steps.42,43,45,60

Second, extending the present two-mode FSSH frame-
work to pulsed laser fields raises additional conceptual
and numerical questions. Floquet theory can render the
strictly periodic carrier dynamics time-independent, but
slowly varying pulse envelopes reintroduce explicit time
dependence.48 A key open issue is how to treat this resid-
ual time dependence within a surface hopping formula-
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FIG. 3. Transmitted probabilities on the lower surface (Trans 0) and the upper surface (Trans 1) for the driven simple
avoided-crossing model. Top row: numerically exact split-operator results. Bottom row: two-mode F-FSSH results using 104

trajectories and a time step ∆t = 0.5. Left column: scan over the incident momentum p0 with E1 = E2 = 0.3, ω1 = 0.02, and
ω2 = 2ω1. Middle column: scan over field amplitudes E1 = E2 with p0 = 20, ω1 = 0.02, and ω2 = 2ω1. Right column: scan
over the driving frequency ω1 (with ω2 = 2ω1) with p0 = 20 and E1 = E2 = 0.3. Overall, two-mode F-FSSH closely matches
the split-operator benchmarks for the transmitted probabilities across the momentum, field amplitude, and driving frequency
scans.

tion. One option is to adopt a slow-envelope (adiabatic)
approximation: if the envelope E(t) varies slowly, then
within any single cycle t ∈ [t0, t0 + T ) one may approx-
imate E(t) ≈ E(t0). Alternatively, one may incorpo-
rate the envelope-induced time-dependent contributions
to the nonadiabatic couplings in the spirit of instanta-
neous adiabatic treatments. The accuracy and practical
trade-offs of these choices remain to be assessed in future
work.

Third, the current algorithm is formulated for closed-
system coherent dynamics. Extending two-mode F-FSSH
to open-system settings, such as nonadiabatic dynamics
of molecules coupled to metallic surfaces or electrodes, is
an important future direction. Building on our previous
one-mode F-FSSH formulations for open systems,49,50,61
such an extension would enable simulations of quantum-
transport phenomena under two-frequency driving. One
particularly appealing application is to generalize previ-
ously demonstrated enhancement of the chiral-induced
spin selectivity (CISS) effect using circularly polarized
light (CPL).62 Extending to two-frequency driving may
offer finer control over the CISS response and broaden
the accessible control landscape.
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